Photo Injector Test Facility at DESY, Location Zeuthen (PITZ)
Ye Chen for the PITZ team, Würzburg, Germany, 19.03.2018
Contents

- Facility Overview
- Accelerator R&D Activities
 - Photocathode laser pulse shaping
 - Beam asymmetry compensation with gun quadrupole
 - Photoemission modeling
 - Gun system developments
 - High repetition rate THz source development
 - Micro bunching by dielectric lined waveguides
 - Beam driven plasma acceleration
 - Slice emittance measurement
Facility Overview

Accelerator R&D Activities
- Photocathode laser pulse shaping
- Beam asymmetry compensation with gun quadrupole
- Photoemission modeling
- Gun system developments
- High repetition rate THz source development
- Micro bunching by dielectric lined waveguides
- Beam driven plasma acceleration
- Slice emittance measurement

16:30-17:00 AKBP10.1-2 Osip Lishilin

17:45-18:00 AKBP4.6 Raffael Niemczyk
17:45 AKBP 4.6 Progress towards slice emittance measurements at PIZT — •RAFFEL NIEMCZYK, FRACH BODORPORNFRAERT, YE CHEN, JAMES GOOD, MATTHIAS GROSS, HOLGER HUCK, IGOR ISAEV, DAMIT KALANTARYAN, CHRISTIAN KOSCHITZKI, MIKHAIL KRASILNIKOV, KIM LI, OSIY LISILIN, GREGOR LOOSCH, DAVID MELKUMYAN, ANNE OPPELT, HOUSHIN OSAWA, YVES PENIKER, CHAIYATTANA SASSA-ARO, FRANK STEPHAN, ZOHRAV, ARSHIYANKH, ANUSHAVAN AZATYAN, ARMIN GRIGORYAN, VANE HAYKIAN, ARTSHIN SAROYAN, ASHOT VARDANYAN, AKHAIY JEB activations, MAREK CHERVEL, SAKIOMI RIMAI, GALINA ASOVA, QUANTANG ZHAO, and INGO WOLL
An apology to the colleagues who are not included in this photo!

This talk is based on contributions from all members of the PITZ Group.
Photo Injector Test facility at DESY, Zeuthen site (PITZ)

- The Photo Injector Test facility at DESY in Zeuthen (PITZ) focuses on the development, test and optimization of high brightness electron sources for superconducting linac driven SASE FELs:
 - test-bed for FEL injectors: FLAS, the European XFEL
 - high brightness \rightarrow small $\varepsilon_{tr} \rightarrow$ emittance optimization
 - fundamental research in photo injector physics \rightarrow cathode, photoemission, thermal emittance, etc.
 - applications of high brightness beam \rightarrow high repetition rate THz source, beam-driven plasma acceleration, etc.

Detailed description of the PITZ facility and research activities:
The PITZ RF Gun and Photocathode (UV) Laser

- L-band (1.3 GHz) 1.6-cell copper cavity
- $E_{\text{cath}} \approx 60\text{MV/m}$
- $650\mu\text{s} \times 10\text{Hz}$
- Cs$_2$Te photocathode (QE~5-10%) → up to 5nC/bunch
- LLRF control for amplitude & phase stability
- Solenoid for emittance compensation
The PITZ RF Gun and Photocathode (UV) Laser

- L-band (1.3 GHz) 1.6-cell copper cavity
- \(E_{\text{cath}} \approx 60 \text{MV/m} \)
- 650\(\mu \text{s} \times 10\text{Hz} \)
- \(\text{Cs}_2\text{Te} \) photocathode (QE~5-10%) \(\Rightarrow \) up to 5nC/bunch
- LLRF control for amplitude & phase stability
- Solenoid for emittance compensation

Trains with up to 600 (2700) laser pulses

Flattop

Gaussian:

Default PC laser system
(Max-Born-Institute, Berlin)
The PITZ RF Gun and Photocathode (UV) Laser

- L-band (1.3 GHz) 1.6-cell copper cavity
- $E_{\text{cath}} \approx 60$ MV/m
- 650µs × 10Hz
- Cs$_2$Te photocathode (QE~5-10%) → up to 5nC/bunch
- LLRF control for amplitude & phase stability
- Solenoid for emittance compensation

Collaboration with MBI

- Shaped output pulses
- Multicrystal birefringent pulse shaper containing 13 crystals
- UV laser measurements

Other flexible shapes: e.g. comb, double triangular
Highlights of the Evolution:

- Increasing the brightness (decreasing the emittance)
- Improving gun stability and reliability
- Extending beam diagnostics
- Use high brightness beam capability
Improving Projected Transverse Emittance and Slice Emittance
by cathode laser pulse (quasi-ellipsoidal) shaping

\[\varepsilon_n = \sqrt{\varepsilon_{\text{th}}^2 + \varepsilon_{\text{sc}}^2 + \varepsilon_{\text{rf}}^2 + \varepsilon_{\text{mp}}^2 + \varepsilon_{Bz}^2 + 2\eta \varepsilon_{\text{sc}} \varepsilon_{\text{rf}}} \]

→ Optimization of the cathode laser pulse shape in order to minimize the impact of the space charge on the transverse emittance

\(\varepsilon_{\text{th}} \): thermal, \(\varepsilon_{\text{sc}} \): space charge, \(\varepsilon_{\text{rf}} \): RF,
\(\varepsilon_{\text{mp}} \): multipole, \(\varepsilon_{Bz} \): solenoid, \(\eta \): coupling

Physics Uspekhi 60 (10) 1039 -1050 (2017)
Improving Projected Transverse Emittance and Slice Emittance (cont'd)
by cathode laser pulse (quasi-ellipsoidal) shaping

Transverse phase spaces at z=5.74m
- Gaussian
- Flat-top
- 3D Ellipsoid

Longitudinal phase space (Z-Pz) at z=5.74m
- 106.7 mm keV
- 98.2 mm keV
- 88 mm keV

- ~no beam halo → better signal/noise, reduced radiation damage
- ~pure sinusoidal longitudinal phase space +3rd harm. → simplify/allow required compression
- less sensitive to machine settings → higher stability

Spatial Light Modulator (SLM) shaper
Collaboration with IAP, JINR

Laser shaping simulation
IR cross correlation measurements
Beam Asymmetry Compensation

For improving transverse beam profile and phase space

- Demonstration for a 500 pC bunch of 22 MeV/c

Guan quadrupoles off

Guan quadrupoles on

- Gun quads compensate rotational asymmetry of gun RF field and solenoid field, improve both beam symmetry and emittance.
- Three copies are installed at PITZ, XFEL, FLASH

On RF coupler: Proc. FEL 2017, WEP005
On gun quads: Proc. FEL 2017, WEP007
On quadrupole field error: Proc. FEL 2017, WEP010
Photoemission Modeling
For cathode brightness optimization and slice emittance formation modeling

- Photoemission beyond linear region is not well simulated.
- Short Gaussian laser case is improved using Core + Halo model.
- For long laser pulses more relevant to FELs (e.g. Flattop), agreement is worse work needed.

Collaboration with TU Darmstadt

→ 3D photoemission modeling using full EM Lienard-Wiechert approach.
→ Cathode surface barrier correction due to Schottky effect and laser potential.
→ Cathode physics model determines 3D QE distribution.
→ Modeling of penetrating field effects

Best beam emittance located in transition region, needs more accurate photoemission modeling.
High Repetition Rate THz Source Development
For XFEL pump-probe experiments

Laser based THz pulse energy is limited at high repetition rate, while most IR/THz driven dynamics needs pulse energy above 1 μJ.

PITZ like high repetition rate compact accelerator can produce ~mJ THz pulses matching timing structure of XFEL X-ray pulse.
High Repetition Rate THz Source Development (cont'd)

For XFEL pump-probe experiments

- Compact accelerator based THz source is proposed for **XFEL pump & probe experiment**.
- PITZ like accelerator can be placed close to the XFEL end station.
- **Preliminary THz studies** were started at PITZ.

Case studies of THz radiation generation produced by the PITZ electron beam

Coherent Transition Radiation (CTR) for $\lambda_{rad} \geq 100\ \mu m$ ($f \leq 3\ \text{THz}$)

PITZ beamline layout including extension for simulation studies

SASE FEL for $\lambda_{rad} \leq 100\ \mu m$ ($f \geq 3\ \text{THz}$)
High Repetition Rate THz Source Development (cont'd)

THz CTR

- Preliminary measurements of THz CTR

Measured comb-beam profiles with various bunch charges and booster phases

Interferograms obtained from the Michelson interferometer

Spectral distributions obtained from the Michelson interferometer
High Repetition Rate THz Source Development (cont'd)

THz SASE FEL

- 4nC beam characterization for THz SASE FEL

\[\lambda_{\text{rad}} = 100 \, \mu\text{m} \]

<table>
<thead>
<tr>
<th>#</th>
<th>Photocathode laser pulse</th>
<th>Procedure</th>
<th>THz pulse energy (z=5m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start-to-End (S2E) simulations (ASTRA⇒GENESIS)</td>
<td></td>
<td>2.6 mJ</td>
</tr>
<tr>
<td>2</td>
<td>ASTRA⇒GENESIS</td>
<td></td>
<td>0.9 mJ</td>
</tr>
<tr>
<td>3</td>
<td>Measured (not optimized) electron beam ⇒ GENESIS</td>
<td></td>
<td>0.5 mJ</td>
</tr>
</tbody>
</table>
Micro Bunching by DLW (dielectric lined waveguides)
For improving THz radiation stability

Beam micro bunching induced by DLW wakefield and ballistic bunching
In collaboration with CFEL (F. Lemery) and APC FNAL (P. Piot)

DLW withstands ~1 nC beam and 200 pulses per train at PITZ.
Summary

- PITZ-E-XFEL-FLASH
- Gun-Emittance
- Advanced photocathode laser shaping for improved emittance
- Gun quads for phase space improvements
- IR/THz source for potential pump-probe experiments at E-XFEL
- Photoemission modeling
- Micro-bunching by DLW

Know PITZ from recent publications:

- **Facility overview**

- **Beam driven plasma acceleration activities**
 - Self-modulation experiments on PRL 2018

- **Advanced photocathode laser shaping**
 - Physics Uspekhi 60 (10) 1039 -1050 (2017)
 - Proc. FEL 2017, WEP006

- **Photoemission modeling**
 - NIM A 889 (2018) 129–137
 - NIM A 871 (2017) 97–104

- **Beam asymmetry compensation**
 - Proc. FEL 2017, WEP005
 - Proc. FEL 2017, WEP007
 - Proc. FEL 2017, WEP010

- **Gun system development**
 - NIM A 854 (2017) 113–126
 - Proc. IPAC 2017, TUP1K031

- **High repetition rate THz source development**
 - Proc. IPAC 2017, WEPAB033
 - Proc. FEL 2017, WEP004

- **Micro bunching by DLW**
 - Proc. IPAC 2017, WEPAB122
 - Proc. EAAC 2017

Thank you very much for your attention!
Gun System Development

Gun 4.6 Summary and Gun 5 Development

- PITZ high gradient RF guns drives superconducting linac in long pulse mode (e.g. 650 μs × 10 Hz).
- State of the art electron beam emittance has been demonstrated with PITZ gun in bunch train mode.
- Further improvement of gun stability and reliability requires new gun design (Gun 5).

Gun 4.6

- Ecath = 53 MV/m (XFEL startup)
- 60 MV/m (XFEL nominal), for better slice emittance, operated with up to 98.9% up time
- Improved cathode spring holder design
- Double RF windows with optimized location
- In-vacuum directional coupler enabled RF stability improvements to ~2e-4 (amplitude) and ~0.06° (phase).

Collaboration with INR

Gun 5

- Cavity RF pickup added: enable fine control of RF stability and allows symmetric RF coupler
- Improved cell geometry: reduced RF heating
- Improved water cooling + reduced gun deformation
- More reliable operation at high duty cycle