Schrödinger's equation for Conformal Symmetry

Volker Schomerus IGST 2018, Copenhagen

Based on work with M. Isachenkov, E. Sobko, P. Liendo, Y. Linke;

M. Cornagliotto, M. Lemos, I. Buric, T. Bargheer

0.1 CFT and Conformal Symmetry

CFT is everywhere: 2nd order phase transitions, IR dynamics of many interesting QFTs, AdS/CFT correspondence

Understanding of perturbative & non-perturbative dynamics is based on the study of both local and non-local observables

Primary fields $\Phi_{\Delta,\ell}(x)$

't Hooft, Wilson line, surface,

weights of SO(1,1) & SO(d)

defect, interface operators ...

Analyis and construction of their correlators relies on mathematics of conformal symmetry G = SO(1,d+1) ... yet ... our present knowledge of conformal symmetry is incomplete

0.2 Conformal Partial Waves

... are the CFT-analogues of plane waves in Fourier theory

e.g. 4-pt fcts
$$\langle \prod_{i=1}^4 \Phi_i(x_i) \rangle = \sum_\Phi \gamma_{12\Phi} \gamma_{34\Phi}$$
 CPW

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)
angle = \gamma_{123}$$

3J symbol

$$= G_{\Delta,l}(z,\bar{z}) \sim \qquad \mu = \frac{x_{10}}{x_{10}^2} - \frac{x_{20}}{x_{20}^2} \qquad \tilde{\mu} = \frac{x_{40}}{x_{40}^2} - \frac{x_{30}}{x_{30}^2}$$

$$\sim \int d^dx_0 \, x_{10}^{l+a-\Delta} x_{20}^{l-a-\Delta} x_{30}^{l-b+\Delta-d} x_{40}^{l+b+\Delta-d} \, (|\mu||\tilde{\mu}|)^l \, Y_l^d \left(\frac{\mu \cdot \tilde{\mu}}{|\mu||\tilde{\mu}|}\right)$$
 Zonal spherical functions

0.2 Conformal Partial Waves

... are the CFT-analogues of plane waves in Fourier theory

e.g. 4-pt fcts
$$\langle \prod_{i=1}^4 \Phi_i(x_i) \rangle = \sum_\Phi \gamma_{12\Phi} \gamma_{34\Phi}$$
 CPW

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)
angle = \gamma_{123}$$

CPW

$$\langle D_p(\mathcal{X})\Phi(x)
angle=lpha_\Phi^{(p)}$$
 p

What kind of functions are the CPWs?

How do they depend on Conformal cross ratios u and parameters of field Φ

0.3 Main Results and Plan

CPWs are wave functions of integrable N-particle Schrödinger problem in coordinate space and in weight/momentum space.

Hyperbolic Calogero-Sutherland model for BC_N root system in u_i

Schneider model in Δ , ℓ

Rational Ruiijsenaars -

[Isachenkov, VS] [Isachenkov, Liendo, Linke, VS] ...

- → "Euclidean" Heckman-Opdam hypergeometric functions and degenerations of virtual Koornwinder polynomials
- 1. Review. CPWs and the Calogero-Sutherland potential
- 2. Extension. Defects blocks and the N-particle CS model
- 3. Integrability. *Bi-spectral duality: weights ↔ coordinates*

Review

Talks at IGST 2016 [VS], IGST 2017 [Sobko]

1.1 Conformal Partial Waves

... are G invariants in TP of 4 principal series representations

= sections of a vector bundle on 2-sided coset space K\G/K

with fiber V SO(d-2) Space of tensor structures

2 – dimensional [cross ratios]

$$egin{aligned} \left(igotimes \Gamma_{G/H}^{\Delta_i,\ell_i}
ight)^G = \set{f:G\longrightarrow V\,|\,f(k_lgk_r) = \pi(k_l\otimes k_r^{-1})f(g)} \ V = igotimes_{i=1}^4 V_{\Delta_i,\ell_i} \end{aligned}$$

Principal series reps induced from fd irrep of K = SO(1,1) x SO(d) on $V_{\Delta,\ell}$

$$\Gamma^{\Delta,\ell}_{G/H} = \{\, f: G \longrightarrow V_{\Delta,\ell} \, | \, f(gnk) = \pi(k^{-1})f(g) \, \}$$

 $V_{\Delta,\ell}$ - valued functions on the coset space $\ G/H \cong \mathbb{R}^d \ \ H = K \ltimes N$

1.2 The Casimir Equation

Eigenvalue equation for the quadratic Casimir element C₂ of the conformal group G on space Γ of conformal partial waves

$$m^{1/2}(u)\mathcal{D}_2 m^{-1/2}(u) = -rac{1}{2}rac{d^2}{du_1^2} - rac{1}{2}rac{d^2}{du_2^2} + V(u_1,u_2)$$

m is volume of K x K orbit through u

[M. Isachenkov, VS, E. Sobko]

$$\Delta_2 - \Delta_1 = 2a$$

Scalar CPWs:
$$\Delta_2 - \Delta_1 = 2a$$
 $\Delta_3 - \Delta_4 = 2b$

$$V(u_1,u_2)=\sum_{i=1}^2\left(rac{(a+b)^2-1/4}{2\sinh^2u_i}-rac{ab}{2\sinh^2rac{u_i}{2}}
ight)$$
 = 2 Poeschl-Teller particles

Calogero-Sutherland model with interaction

$$+\frac{(d-2)(d-4)}{16\sinh^2\frac{u_1-u_2}{2}}+\frac{(d-2)(d-4)}{16\sinh^2\frac{u_1+u_2}{2}}+\frac{d^2-2d+2}{8}$$

1.2 The Casimir Equation (contd)

 $G_{\Delta,l}$ in Dolan-Osbon conventions \leftrightarrow CS eigenfunctions $\psi_{\lambda_1,\lambda_2}$

$$egin{aligned} \psi_{\lambda_1,\lambda_2}(u_1,u_2) := \prod_i rac{(z_i-1)^{rac{a+b}{2}+rac{1}{4}}}{z_i^{rac{1}{2}+rac{\epsilon}{2}}} |z_1-z_2|^{rac{\epsilon}{2}} G_{\Delta,l}(z_1,z_2) \ \lambda_1 = rac{1}{2} + rac{\epsilon}{2} - rac{1}{2}(\Delta - l) & z_i = -\sinh^{-2}rac{u_i}{2} \ \lambda_2 = rac{1}{2} - rac{1}{2}(\Delta + l) & z_i = -\sinh^{-2}rac{u_i}{2} \ [ext{Isachenkov,VS}] \end{aligned}$$

u_i radial coordinates [Hogervorst,Rychkov]

$$\operatorname{Cas}_d^2 G(z, \overline{z}) = rac{1}{2} C_{\Delta,l} G(z, \overline{z})$$
 where $\operatorname{Cas}_d^2 := \Delta(\Delta - d) + l(l + d - 2)$ $\operatorname{Cas}_d^2 := D^2 + \overline{D}^2 + \epsilon \left[rac{z\overline{z}}{\overline{z} - z} \left(\overline{\partial} - \partial
ight) + \left(z^2 \partial - \overline{z}^2 \overline{\partial}
ight)
ight]$ $\epsilon = d - 2$ $2a = \Delta_2 - \Delta_1$ $2b = \Delta_3 - \Delta_4$ $D^2 = z^2 (1 - z) \partial^2 - (a + b + 1) z^2 \partial - abz$

[Dolan, Osborn]

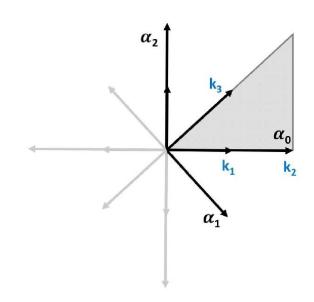
1.3 Calogero-Sutherland Models

[Calogero 71] [Sutherland 72]

Integrable multi-particle generalization of Poeschl-Teller model

Associated with non-reduced root system – here with BC_N

Eigenvalue problem ↔ hypergeometrics



The scattering problem for particles in a Weyl chamber is solved

$$\Psi_{\lambda}(u) \sim e^{\lambda u}$$

for

$$u_i o \infty$$

[Heckman,Opdam]

Harish-Chandra functions: single plane plane waves asymptotics

Much is known: Poles in space of momenta λ , series representations

Extensions

- Spinning blocks
- Defect blocks

- Superconformal blocks
- Thermal blocks
- Multi-point blocks

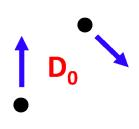
2.1 Conformal Defect Operators

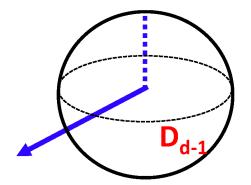
Isometries of a p-dimensional conformal defect form subgroup

$$G_p = SO(1, p+1) \times SO(d-p) \subset G$$

p = 0: isometries of pair of points (dilations, rotations); $G_0 = K$

Conformal defect possesses $\dim G/G_p = (p+2)(d-p)$ parameters





e.g. D₀: 2d parameters

 D_{d-1} : d+1 parameters

2.2 Conformal Partial Waves

Space of CPWs for two scalar defects D_p and D_q can be realized as as functions on the 2-sided coset space $G_p \setminus G/G_q$

$$\Gamma^{p,q;d} = \{\, f: G
ightarrow \mathbb{C} \, | \, f(h_L g h_R) = f(g); h_L \in G_p \, , \, h_R \in G_q \}$$

number N of "cross ratios"

$$dim G_p \setminus G/G_q = dim G - dim G_p - dim G_q + dim B =$$

$$N = min(d-p, q+2) \qquad \Longleftrightarrow \text{[Gadde]}$$

$$B = SO(p-q) \times SO(|d-p-q-2|) \subset G_{p,q}$$

2.3 The Casimir Equation

Eigenvalue equation for the quadratic Casimir element C_2 of the conformal group G on space Γ of conformal partial waves

$$m^{1/2}(u)\mathcal{D}_2 m^{-1/2}(u) = -rac{1}{2}\sum_{i=1}^Nrac{d^2}{du_i^2} + V(u)$$

 \emph{m} is volume of $\emph{G}_p imes \emph{G}_q$ orbit through $\emph{u} = (\emph{u}_1, ..., \emph{u}_N)$

Scalar CPWs:

[Isachenkov,Liendo,Linke,VS]

$$\begin{split} V(u) &= \sum_{i=1}^{N} \left(\frac{(p-q)(p-q-2)}{8 \sinh^2 u_i} + \frac{(N-d/2)(N-d/2+p-q-1)}{8 \sinh^2 \frac{u_i}{2}} \right) \\ &- \sum_{i < j} \left(\frac{1}{16 \sinh^2 \frac{u_i-u_j}{2}} + \frac{1}{16 \sinh^2 \frac{u_i+u_j}{2}} \right) + C \\ &N = \min(d-p,q+2) \end{split}$$

2.4 Some Applications

All defect blocks for any value of N were constructed in terms of multi-variate hypergeometrics. [Liendo,Linke,Isachenkov,VS]

For N = 2 we found complete set of relations with 4-point blocks extending results by [Billo,Goncalves,Lauria,Meineri] [Liendo,Meneghelli]

We found a Lorentzian inversion formula extending [Caron-Huot]

→ Computation of bulk-defect OPE coefficients for large spins.

work in progress

related with [Alday et al.] [Caron-Huot][Lemos,Liendo,Meineri,Sarkar]

Integrability

3.1 Dependence on weights/momenta

Dolan & Osborn noticed that scalar blocks obey shift equations

$$\left(\frac{x+z}{xz} - 1 \right) F_{\lambda_1 \lambda_2}(x,z) = F_{\lambda_1 \lambda_2 - 1}(x,z) + \frac{\lambda_-(\lambda_- - 1 + \varepsilon)}{(\lambda_- + \frac{1}{2}\varepsilon)(\lambda_- - 1 + \frac{1}{2}\varepsilon)} F_{\lambda_1 - 1\lambda_2}(x,z)$$

$$- \frac{1}{4} \left((2\lambda_1 + c)(2\lambda_1 + c - 2) + (2\lambda_2 + c - \varepsilon)(2\lambda_2 + c - 2 - \varepsilon) - \varepsilon(\varepsilon - 2) \right) \hat{A}_{\lambda_1 \lambda_2 - \frac{1}{2}\varepsilon} F_{\lambda_1 \lambda_2}(x,z)$$

$$+ \frac{(\lambda_1 + \lambda_2 + c - 1)(\lambda_1 + \lambda_2 + c - \varepsilon)}{(\lambda_1 + \lambda_2 + c - \frac{1}{2}\varepsilon)(\lambda_1 + \lambda_2 + c - 1 - \frac{1}{2}\varepsilon)} B_{\lambda_1} F_{\lambda_1 + 1\lambda_2}(x,z)$$

$$+ \frac{\lambda_-(\lambda_- - 1 + \varepsilon)}{(\lambda_- + \frac{1}{2}\varepsilon)(\lambda_- - 1 + \frac{1}{2}\varepsilon)} \frac{(\lambda_1 + \lambda_2 + c - 1)(\lambda_1 + \lambda_2 + c - \varepsilon)}{(\lambda_1 + \lambda_2 + c - \frac{1}{2}\varepsilon)(\lambda_1 + \lambda_2 + c - 1 - \frac{1}{2}\varepsilon)} B_{\lambda_2 - \frac{1}{2}\varepsilon} F_{\lambda_1 \lambda_2 + 1}(x,z)$$

Eq. (5.1) from hep-th/0309180 [Dolan, Osborn]

3.2 Ruijsenaars-Schneider model

After multiplication with some factor $c = c(\lambda_1, \lambda_2)$ one obtains

$$\sum_{j=1,2} \left[v_j(\lambda) (\psi_{\lambda + e_j} - \psi_{\lambda}) + v_j(-\lambda) (\psi_{\lambda - e_j} - \psi_{\lambda}) \right] = 4 \sum_{j=1,2} \sinh^2 u_i / 2 \ \psi_{\lambda}$$

$$v_{j}(\lambda) = \frac{(\lambda_{j} + a + 1/2)(\lambda_{j} - b + 1/2)}{\lambda_{j}(\lambda_{j} + 1/2)} \frac{(\lambda_{1} + \lambda_{2} + \epsilon/2)(\lambda_{1} - \lambda_{2} + \epsilon/2)}{(\lambda_{1} + \lambda_{2})(\lambda_{1} - \lambda_{2})}$$

2nd order difference eq: rational Ruijsenaars-Schneider model

Comments: This generalizes to wave functions $\psi_{\lambda}(u)$ of the

BC_N Calogero-Sutherland model and hence to defect blocks.

note
$$\psi_{\lambda+e_i} = e^{\partial_i} \psi_{\lambda}$$

Rational RS contains exponential of $\partial_i = \frac{\partial}{\partial \lambda_i}$ & is rational in λ_i

Hyperbolic CS is polynomial in $\ \partial_i = rac{\partial}{\partial u_i} \$ exponential of u_i

3.3 Hyperbolic RS model

Rational Ruijsenaars-Schneider model possesses integrable hyperbolic/trigonometric deformation deformation parameter q

Dependence of its wave functions $\psi^q_\lambda(u)$ on coordinates u determined by dual hyperbolic Ruijsenaars-Schneider model

Casimir differential equation obtained by degeneration q → 1

Wave functions of this bi-spectrally self-dual RS model are (virtual) Koornwinder polynomials (functions)

Conformal partial waves obtained by degeneration

4 Outlook and Conclusions

Integrable quantum mechanics provides a new approach to CPWs

that is powerful

by embedding into modern theory of multivariate

Series expansions, recurrence relations, integral formulas

•••

is flexible

Applies to conformal defects, spinning correlators

superconformal symmetry [VS,Sobko][Buric,VS,Sobko]

↔ [Cornagliotto,Lemos,VS] ...

Many aspects need to be further developed