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We study a new class of two-dimensional field theories which are integrable deformations
of the string sigma model on AdSs x S°. We show that some of these theories are scale
but not Weyl invariant. For the real deformation parameter we find the quantum spectral
curve equations which encode the energy spectrum. More generally, we investigate a rela-
tion between integrable deformations of CFTs and functional equations as well as lattice
integrable discretisations based on the universal R-matrix.

1 Introduction

In recent years significant progress has been made towards understanding the excitation spec-
trum of strings moving in five-dimensional anti-de Sitter space-time and, accordingly, the spec-
trum of scaling dimensions of composite operators in planar N/ = 4 supersymmetric gauge
theory. This progress became possible due to the fundamental insight that strings propagating
in AdS space can be described by an integrable model. In certain aspects, however, the deep
origin of this exact solvability has not yet been unraveled, mainly because of tremendous com-
plexity of the corresponding model. A related question concerns robustness of integrability in
the context of the gauge-string correspondence [1], as well as the relationship between integra-
bility and the amount of global (super)symmetries preserved by the target space-time in which
strings propagate. To shed further light on these important issues, one may attempt to search
for new examples of integrable string backgrounds that can be solved by similar techniques.
One such instance, where this program is largely promising to succeed, is to study various
deformations of the string target space that preserve the integrability of the two-dimensional
quantum field theory on the world sheet. Simultaneously, this should provide interesting new
information about integrable string models and their dual gauge theories.

There are two known classes of integrable deformations of the AdSs x S® superstring. The
first of these is a class of backgrounds obtained either by orbifolding AdS5 x S° by a discrete
subgroup of the corresponding isometry group or by applying a sequence of T-duality — shift —
T-duality transformations (also known as y-deformations) to this space, giving a string theory
on a TsT-transformed background. Eventually all deformations of this class can be conveniently
described in terms of the original string theory, where the deformations result into quasi-periodic
but still integrable boundary conditions for the world-sheet fields.
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The second class of deformations affects the AdSs x S® model on a much more fundamental
level and is related to deformations of the underlying symmetry algebra. In the light-cone gauge
this symmetry algebra constitutes two copies of the centrally extended Lie superalgebra psu(2|2)
with the same central extension for each copy. It appears that this centrally extended psu(2]2),
or more precisely its universal enveloping algebra, admits a natural deformation psuq(2|2) in
the sense of quantum groups. This algebraic structure is the starting point for the construction
of a psu,(2[2) ® psu,(2|2)-invariant S-matrix, giving a quantum deformation of the AdSs x S°
world-sheet S-matrix [2]. The deformation parameter ¢ can be an arbitrary complex number,
but in physical applications is typically taken to be either real or a root of unity.

Some time ago there was an interesting proposal on how to deform the sigma-model for
strings on AdSs x S® with a real deformation parameter 7, preserving classical integrability [3,
4]. In the following we call these models n-deformed and we will talk about n-deformations.
Deformations of this type constitute a general class of deformations governed by solutions
of the classical Yang—Baxter equation [5]. This class is not solely restricted to the string
model in question but includes a large variety of two-dimensional integrable models based on
(super) groups or their cosets.

The paper is organised as follows. In the next three sections we summarise the main results
of our investigation of the n-deformed string sigma models and discuss a number of important
related issues. We concentrate on three directions — the n-deformed background, the access to
the spectrum of the model via the quantum spectral curve and finite-dimensional integrable
systems obtained through various reductions of the sigma model. In section 5 we address a
more general problem on finding perturbations of CFTs which preserve integrability and also
investigate a vital question on uniqueness of solutions of functional equations that suppose to
encode the spectrum of a deformed CFT. Finally, in section 6, aiming at developing direct
quantisation tools for world-sheet theories, including string sigma model on AdSs x S° and its
deformations, we consider lattice discretisations of integrable systems in the formalism of the
universal R-matrix. Importantly, we outline a general program of constructing such integrable
discretisations and solving the corresponding spectral problem. The results presented in sections
5 and 6 constitute a continuation of the research line of the former SFB project AS.

2 The nature of the deformed background

Recall that the Lagrangian density of the n-deformed model is given by [3]

1

7 _%(1 + n2)(,yaﬁ _ 6045) str [J(AQ)W(Aﬁ)} .

We use the notations and conventions from [6], in particular g is the effective string tension. The
current A, = —g~'dag, where g = g(7,0) is a coset representative from PSU(2,2|4)/SO(4, 1) x
SO(5). The operators d and d acting on the currents A, are defined as

2 ~ 2
d = Pi+-—=PFP—Ps, d=-P+——=P+PF;,
1—n 1—n

where P;, i = 0,1,2,3, are projections on the corresponding components of the Zs-graded
decomposition of the superalgebra ¢4 = psu(2,2|4). The operator Ry acts on M € ¢ as follows

Ry(M) =g 'R(gMg ")g,
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where R is a linear operator on ¢ which in this paper we define as

1 it i<y
1 if P>

where M is an arbitrary 8 x 8 matrix. This choice of R corresponds to the standard Dynkin
diagram of psu(2,2|4).

The n-deformed model appears to be rather involved, primarily because of fermionic degrees
of freedom. The strategy is therefore to first switch off fermions and proceed by studying the
corresponding bosonic action. This action can be further used to determine 2 — 2 scattering
matrix for the n-deformed model in the limit of large string tension g and to compare the corre-
sponding result with the known ¢-deformed S-matrix found from quantum group symmetries,
unitarity and crossing [2]. Of course, the perturbative S-matrix computed from this action will
not coincide with the full world-sheet S-matrix but nevertheless will give a sufficient part of the
scattering data to provide a non-trivial test for both integrability (the Yang-Baxter equation)
and a comparison with the g-deformed S-matrix.

This preliminary work has been carried out in [6], where it was shown that for a particular
choice of the bosonic coset element the n-deformed metric G and the B-field (NSNS background)
can be written in the form

L2 dt? (1 + p?) dp?
Zds? = —
R WP R fpaye) ey
d 2.2 d 2 2C082
¢p — vip - QC +d1/1§pzsin2c,
14 2ptsin® ¢ 1+ »2p*sin®(
Lo 49" (1—-1?) dr?
Zds? =
g ° 1+ 222 (1 —72) (14 »3r2)
de?r? de3r? cos® & 9 9 . 9
+d i ,
14 22r4sin® € 14 s2r4sin®¢ gar”sin”¢
1 p* sin 2¢ rdsin 2¢
-B = —————dp1 Nd( — ——————dp1 NdE |
g <1 + »#2ptsin? ¢ v Ad 1+ s2risin? ¢ o1 N de
where » = 13’372 and § = gv1-+ 2. This metric corresponds to a product of two five-

dimensional spaces with coordinates {t, p, {, 91,12} and {@,r, &, ¢1, P2} respectively. The range
of p is restricted to [0, 1/5¢) to preserve the time-like nature of ¢, with a curvature singularity at
p =1/5. At 3 = 0 there is no singularity but rather the conformal boundary of anti-de Sitter
space at p = co. The bosonic two-body S-matrix computed from this action perfectly coincides
with the large tension limit of the exact S-matrix based on the psu,(2|2) symmetry [6].

The next step is to clarify an important question of whether or not the 7n-deformed model
is a type IIB string sigma model. As we will show, the answer turns out to be negative.

One way to approach this question would be to try to find an embedding of the given NSNS
background into a full solution of type IIB supergravity. Given the complexity of the NSNS
background, this appears however a rather difficult task. First of all the equation for the dilaton
has many solutions and also many components of the RR forms seem to be switched on. Even
if successful, this approach does not however guarantee that the string sigma model in the
corresponding supergravity background will actually coincide with a deformed model.
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Another way to proceed is to note that the Green—Schwarz (GS) action restricted to quadratic
order in fermions contains all the information about the background fields. The corresponding
Lagrangian has the form, see e.g. [7],

fgz = —% 7 C:)] (’yaﬁ(sl‘] =+ G(XBU?I,J)egLFm DéKGK,
where O are two Majorana—Weyl fermions of the same chirality. The operator D/ acting on
fermions has the following expression

1 1
IJ 1J mn I1J_m n
Da :(5 <8a — Zwa an) + §0'3 ea Hmon P

1 1J 1 | - L rppgrst (5) m
—§e¢ (e FPF;)Jrial rpe F;q;+ﬁe reerstp ) o) em Ty,

where (e,w, H) constitute a vielbein, the spin connection and the field strength of a B-field,
while F’s are RR forms and ¢ is a dilaton. Note that the dilaton and RR forms appear only
through the combination F, = e?F,. Our approach is therefore to work out the quadratic
fermionic action starting from the n-deformed action of [3] and find a field redefinition which
brings this action into the GS canonical form above. This would allow us to identify the back-
ground fields and further check if they satisfy the equations of motion of type IIB supergravity
and, in particular, to find a solution for the dilaton.

Performing the corresponding calculations, we arrive at the following result for non-vanishing
RR forms written with flat indices of the tangent space [8]

Fi = —4s? c}l pPsin, Fo = +4x° c}l r3siné,

Fora = +4x c}l p2 sin (, Fio3 = —4x c}l 0,

Fse9 = +4s c}l r?siné, Fers = —4x c}l T

Fosg = +423 cl_,l pr3sin€, Fosge = —4s c}l pr3sinCsin €,

Fisg = —4¢3 cl_,l pirsinc, Firg = —46° c}l pr?sinCsiné,
Foi234 = +4 ¢z, Foozae = —4x* et pPrisin sing,
Foraso = +4s22 c;1p2r sin ¢, Forars = +4s° c;1p27‘2 sin sin &,
Foaseo = +43 ¢t pr?siné, Foaers = —4s* cplpr.

Here we defined the common coefficient
1
cp = ————/1 — 32924/ 1 + 32p4sin? /1 + 2124/ 1 + »2r4sin? €.
T V P2/ p ¢ 3

For the five-form we presented here only half of all its non-vanishing components, namely those
which involve the index 0. The other half is obtained from the self-duality equation for the
five-form. The answer appears to be rather simple and in the limit > — 0 all the components
vanish except Fyi234 which reduces to the constant five-form flux of the AdSs x S® background.
In the following we will use for the background found above the name “ABF background”.
Inspection of the found RR couplings reveals that contrary to the natural expectations they
do not obey equations of motion of type IIB supergravity. First of all for the Bianchi identities
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this is already obvious from the expression for the 1-form F;. To fit the supergravity content
this form must be exact F(1) = dy, where y is axion. One can verify that there is no way to split
off an integrating factor e?, such that the corresponding F(!) becomes exact. Concerning other
equations of motion, consider, for instance, the Einstein equations which involve an unknown
dilaton. One can show that to achieve vanishing of the off-diagonal components of the Einstein
equations the dilaton ¢ must be of the form ¢ = ®,(p,{) + Ps(r, ), where @, and P, are
some functions. However, analysis of the diagonal components of the Einstein equations shows
that a solution for &, and ®; does not exist. The next surprising observation is that the RR
couplings do not meet the necessary conditions of the mirror duality [9], and, as a consequence,
the mirror background [10] is not reproduced in the expected limit n — 1. Although this duality
is a symmetry of the exact S-matrix, it involves rescaling of the string tension and therefore its
absence in the classical Lagrangian might be explained by the order of limits problem.

While not solving the standard type IIB equations directly this ABF background still turns
out to be very special: it is related by T-duality to an exact type IIB supergravity solution [11].
The latter HT background involves a non-diagonal metric G, an imaginary 5-form Fy and the
dilaton qg, and the T-duality applied in all 6 isometric directions acts only on the fields G and
Fs = eF; entering the corresponding GS action on a flat 2d background. The GS action
for any type II solution (and thus for the HT background) should be Weyl invariant and, in
particular, scale invariant. As the T-duality applied to the GS action is a simple path integral
transformation, the T-duality relation between the ABF and HT backgrounds implies that the
action should define a scale invariant 2d theory at least to 1-loop order.

However, there may be a problem with Weyl invariance for the n-deformed sigma-model on
a curved 2d background. The HT dilaton (;AS has a term linearly depending on the isometric di-
rections of @ and F5 and thus one cannot directly apply the standard T-duality transformation
rules to the full HT background to get a full T-dual supergravity solution, and thus the Weyl
invariance of the T-dual sigma model requires further investigation. This is of course consis-
tent with the observation [8] that the ABF background does not satisfy the IIB supergravity
equations.

In the work [12] we have found that the ABF background, while not a supergravity solu-
tion, satisfies the following two generalisations or “modifications" of the type II supergravity
equations:

(i) the scale invariance conditions for the type II superstring sigma model (with equations
on the R-R fields F being of 2nd order in derivatives);

(ii) a set of equations that are structurally similar to those of type IT supergravity (with
1st-order equations for the RR fields F) but involving, instead of derivatives of the dilaton,
a certain co-vector Z,, playing now the role of the dilaton one-form and a Killing vector I™
responsible for the “modification” of the equations from their standard form.

The conditions of scale invariance for the bosonic NSNS fields have the familiar form in-
volving the S-function for the metric and the B-field

Sln = Rmn - %Hmlenkl - Tmn = _Dan - DnXm 5

mn —

Tmn = %-men + %-Fmpq]:npq + 4i41fmpqrsfnpqrs - %Gmn(%fkfk + %fkpq]:kpq) )
Kmn = %]:kfkmn + %‘anklpfklp .
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Here T, is the stress tensor that follows from the type IIB action upon variation over G,,,,.
For X,, = 0@, Y, = 0 these equations follow from the standard type IIB supergravity action.

The key observation is that indeed there exist vectors X,,, and Y,, such that the equations
above are satisfied for the ABF background. The vector X,, turns out to be

_ m 1+ p? 2 . 9 p?cos? ¢
X = defL' = Cp mdt +c1 P sm deQ + C2 mdwl
1—1r2 9 . o r? cos? ¢
+c3 T2 dp + cqr*sin“ £ dps + c5 T3 2 on® e 7€
2 p* sin 2¢ 1(1_ 3 n 2 )dp
2(1 + »2ptsin? () p 1—32p% 1+ 2ptsin?(
2%t sin 26 1 3 2

d¢ + —

1— dr |
r( 1+%27'2+1+%2r4sin2§) "

2(1 4 »2rtsin? )
and it can be split in the following way
Xpn=Im+Zpn, DyI,+ D,I, =0, D™, =0,

where I™ = Z?Zl ci(I®)™. The index i labels the 6 isometric directions y* = (¢, 2,1, @, P2, ¢1)
of the 10d ABF metric and ¢; are arbitrary constant coefficients. The quantities (I())™ are
the 6 independent commuting Killing vectors of the ABF background: the Lie derivatives of
the G, B and F-fields along I"™ all vanish. If we split the coordinates as 2™ = (y, z*) where
pw=1,2,3,4 labels the non-isometric directions z* = (¢, p,§,7), then

6
I, = ZéfnciGii(x”) , I™ = 6! ¢; = const | Zm =002, (") .
i=1

For the ABF background the vector Y;, turns out to coincide with X provided we fix ¢; to the
following specific values

co=c3 =4, cp=c4=0, Co = —C5 = 2.

The next surprising observation is that for these specially chosen values of ¢; the vector X,
satisfies also a direct generalisation of the dilaton equation

X =R-— SHZ, , +4Dp X" —4X, Xk =0 .

The scale invariance equations for the F-fields (to be discussed later) will not, however, have
the familiar supergravity form of Ist-order equations for F (these should follow from the Weyl
invariance conditions). Instead they will be of 2nd order, D2F + ... = X-dependent terms, and
for X,,, = 0, ¢ will be a consequence of the 1st-order supergravity equations.

Now we come to the discussion of the modified type IIB equations for the RR couplings
satisfied by the ABF background [12]. Introduce Z = Z,,,dz™ and I = I,,dz™. The equations
for the one-form are

D" Fpy — Z™ Fpp — s H™P Frpy = 0, I"Frn =0,
(dF1 = Z AN F1)mn — 1P Founp =0 .
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We have added the condition I"™F,, = 0 as an independent equation on F;. Similarly, the
equations satisfied for the three-form F3 are found to be

Dp]:pmn - Zp]:pmn - %Hpqrfmnpqr - (I/\fl)mn =0 )
(de_Z/\-F3+H3/\fl)mnpq_Irfmnpqr:0 .

Finally, the equations satisfied by F5 of the ABF background are

Drfrmnpq - errmnpq + :TlﬁgmnpqrstuvaTStfuvw - (I A f3)mnpq =0 )
(dff) —ZN ]:5 + H3 A FS)mnpqrs + %5mnpqrstuvw1tfuvw =0.

These two are equivalent in view of the self-duality of Fs5.
These modified equations reduce back to the standard type II equations if we drop all terms
with I, and assume that dZ = 0, i.e. if we set

L — Om@ I, —0.

The structure of modified equations supports the interpretation of Z as a generalised “dilaton
one-form”, while the isometry vector I effectively drives the deformation of the standard type
IIB equations.

An interesting observation is that there exist certain combinations of the modified super-
gravity equations that depend on Z and I only through the combination X = Z 4+ I, which
entered the NS-NS equations of the previous section. These are found by adding together equa-
tions of equal form degree, for example, the equation of motion for the R-R three-form and the
Bianchi identity for the R-R one-form. The resulting X-dependent equations are given by

D" Fppy— X" Fpy — SH™ F = 0
Dpfpmn - Xp]:pmn - %Hqu]:'mnqu + (d]:l - XA Fl)mn =0 )
Drfrmnpq - errmnpq + %EmnpqrstuvaTSt]:uvw + (dj—_:i -XA ]:3 + Hd A -Fl)mnpq =0.

Using the self-duality of F5 the last equation can be also written as
(d*/r5 - XA ]:5 + H3 A f?))pqumn - %gpqumnvstu(DUJ—:Stu - vastu - vastu) =0.

As will be discussed below, these three equations are already sufficient for deriving candidates
for the scale invariance equations for the F-fields, which are 2nd order in derivatives.

Let us return to the discussion of the scale invariance conditions for the couplings of the GS
sigma model and consider the equations for the RR couplings F that should follow from the
requirement of (1-loop) UV finiteness of the 2d model. One can argue that the conditions for
the G and B-field couplings should have the form

1
/Bk]-—lks = §D2fk1_“ks +...= Xmamfklmks + kalmmmksakiXm ,

where we have omitted possible non-linear terms such as RF + DHJF + ... on the L.h.s. The
X-dependent Lie derivative term on the r.h.s. reflects the reparametrisation (or off-shell z™-
renormalisation) freedom.

For X,,, = 0,,¢ the equation for B,g’; &, should be a consequence of stronger Weyl invariance
conditions, which should be equivalent to the type II supergravity equations with Z = X = d¢.
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Indeed, combining (“squaring”) the familiar dF + ... = 0, d *x F' + ... = 0 equations leads to
dxd*F+xdxdF + ... =0 or D?F + ... = 0, where the leading term is the Hodge-de Rham
operator.

Moreover, the same equations should follow also from the modified type II equations (as,
e.g., the ABF background that solves the modified equations should also be a solution of the
scale invariance conditions). This should provide a non-trivial consistency check: after properly
“squaring” the equations of modified supergravity, the dependence on the Z and I vectors in
any candidate scale invariance equations should appear only through their sum X = Z + I.
Note that to be a candidate for the scale invariance conditions these equations should have the
following properties:

(i) vanish on the modified supergravity equations with X = d¢, ¥ =0

(ii) depend on Z and I through X = Z + 1

(iii) depend on X through Lie derivatives.

Starting with the modified equations and properly acting with xdx and dx, we arrive at the
equations, which satisfies the above properties. For F; we find

D*Fp = Ry F" + 5 (R — 2H?) Fppy
+ LHP"" H o Fie — £ Dy HP™ Fpt, — SHP™ Dy Froem,
=2(XPDyFom + D XPFp) + BS, F" — L85 Fk,,

The equation for F3 reads as

DQ]:nkm - Ra[n]:akm] + Rab[nk]:abm] + i(R - %H2)fnk7rz
+ %HubcHab[nfkm]c - %HabcHa[nkfm]bc
+ DaHa[nka] + Ha[nkDa‘Fm] — FaD"Hppm
- %D[nHabcfkm]abc - %HabCDa]:bcnkm
= 2(XaDa~Fnkm + D[nXafkm]a) + ﬁﬁnfakm] + ﬂ[ﬁk-}—m] - %ﬁﬁ;]_—abnkm )
while the equation for Fj is
D*Fijim — RafiF® jram) + Rab[ij]:abkzm] + 1(R — 3H?) Fijrim
+ %HabcHab[ifjklm]c - %HabcHa[ij]:klm]bc
+ DaHa[ijfk:lm] + Ha[ijDafklm] - fa[ijDaHklm]
4 Tlgsijklmbdef (DaHabC]:def 4 HabCDaf'def _ FabCDaHdef) —
= 2(AXaDa‘/_'.ijk'lm, + D[iXafjk:lm]a) + /Bﬁi]:ajklm] + ﬂﬁfklm] =+ %sijklmabcde(ﬂB)ab‘FCde .
This expression is consistent with the self-duality of F5 (in particular, the third and fourth lines
are manifestly dual to each other).

These 2nd-order equations for Fi, F3 and F5 exhibit obvious structural similarities. In
particular, they contain the expected Hodge—-de Rham operator terms and the vector X only
enters through the reparametrisation terms.

In summary, we have suggested the modified supergravity equations that replace the con-
dition of Weyl invariance and proved that they are satisfied by the background fields of the

n-deformed theory. We have also derived the equations expressing the conditions of scale in-
variance and showed that they are satisfied by the corresponding background fields. Thus, the
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n-deformed model is a new interesting example of a sigma model which is scale but not Weyl
invariant.

3 Quantum spectral curve

As alluded to in the introduction, finding the excitation spectrum of the AdSs x S° superstring
theory — also dubbed the AdSs x S® spectral problem — has been an important goal on the way
to understanding the AdS/CFT correspondence. For the AdSs x S° superstring theory string
excitations can be related to scaling dimensions of local operators of planar A" = 4 SYM theory,
such that finding a description of the former directly also yields a description of the latter. Apart
from its consequences for the AdS/CFT correspondence, having a clear description of these sets
of observables is desirable in itself: it is very rare to have so much control over the observables
in an interacting quantum field theory.

Using the integrability present in both the planar gauge and string theory discussed above it
is possible to give a very simple but exact description of the spectral problem. This description
has gotten simpler over the years, going through various intermediate stages, and at present
the simplest form known is the quantum spectral curve (QSC) [13]. The QSC has led to many
interesting results: not only did it allow for the analysis of arbitrary states such as twist
operators, it turned out to be a starting point for the study of different observables in A = 4
SYM, such as the BFKL pomeron, the cusped Wilson line and the quark-anti-quark potential.
This is remarkable, as these observables are outside of the scope of the original spectral problem.
Its wide applicability suggests a deeper level to the QSC that is yet to be understood. One might
also wonder whether the occurrence of such a drastic simplification to the spectral problem is
unique to the AdSs x S° case.

In an effort to gain more understanding of the QSC and more generally the role played by
integrability in the simplification of the spectral problem a project was undertaken to construct
the quantum spectral curve for the 7n-deformed superstring theory. More precisely, starting
from the exact quantum scattering theory described by the S-matrix constructed in [2] one
can follow the same path as was taken for the original AdSs x S° case: the first step was
already undertaken in [14] in the construction of the n-deformed Thermodynamic Bethe Ansatz
equations, an infinite set of non-linear integral equations.

To understand these equations and their constructions better the Thermodynamic Bethe
Ansatz (TBA) method was applied to a simpler model first: Inozemtsev’s elliptic spin chain.
This spin chain with elliptic long-range interactions was never analyzed in the thermal regime,
despite interesting claims being made about its thermodynamic behaviour [15], namely being
insensitive to the presence of supersymmetry. The TBA-equations were derived in [16], allowing
for the numerical analysis necessary to confirm the insensitivity to supersymmetry. Moreover,
the succesful application of this approach provides further evidence towards the integrability of
the model, which has still not been established.

After these introductory remarks we come to the derivation of the n-deformed quantum
spectral curve. The first step is to rewrite the TBA-equations in the form of a Y-system: a set
of finite-difference equations for the unknown 27-periodic functions Y, s that can be compactly
written as

+ Y- — (1 + Ya—l,s)(l + Ya+1,s)
ST @8 (1 + Ya,sfl)(l + Ya,erl) ’

where f*(u) = f(u + ic) with ¢ the parameter carrying the n-deformation and where the
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indices (a, s) take values on what is known as the Y-hook. To specify which solutions of the
Y -system should be considered to describe the spectral problem one has to impose additional
conditions known as discontinuity equations. These discontinuities relate the jump of the various
Y functions at their infinitely many branch cuts on the complex plane. These discontinuities
were derived in [17], moreover showing equivalence of the Y-system with the original TBA-
equations in line with the original work in [18].

The second step consists in further simplifying the Y-system equations by the introduction
of a new parametrisation known as the T-system: the Y-system equations simplify further and
can now be written as

T+ T,,= Ta,erlTa,sfl + Ta+1,sTa71,S7

a,s*a,s

where the (a, s) live on the T-hook. This equation is known as the Hirota equation, a ubiquitous
equation in integrability. The price to pay for the further simplicity of the equations is that
the additional conditions become more convoluted. The T-functions and the Hirota equations
admit a huge gauge freedom that makes it hard to select a convenient gauge to work in, and
moreover it seems that no single convenient gauge exists. Nevertheless, in [17] four sets of T-
gauges were proposed inspired by T-system for AdSs x S° in [19]. Their construction is based
on spectral theory for periodic functions on the complex plane, more details of which can be
found in [20]. Combined with gluing conditions that relate the different gauges this gives a
full description of the spectral problem. In principal this T-system can be used to analyse the
spectrum of n-deformed AdSs x S® superstring theory, but like in the AdSs x S® case a further
simplification exists.

Using the solution theory of the Hirota equation [21] one can reparametrise one of the T-
gauges into so-called P functions, which can be regarded as the first step in the construction of
the quantum spectral curve. Working out all the constraints ultimately yields five independent
functions Py, Py, P3, P4, 115 which describe all the T-gauges. All these functions are 27 (anti)-
periodic (at least just above the real axis) and have branch cuts: the P have only one on
the real axis whereas p12 has an infinite ladder that goes all the way to imaginary infinity.
This analytic structure is illustrated in Fig. 1. All of these branch cuts are of square-root type
though, allowing for a relatively large amount of control. Introducing auxiliary functions P,, P®
and pqp the equations that these objects need to satisfy — known as the Pu system — become
particularly pleasing. Written for a,b=1,...,4 it reads

ljab — Hab = Paf)b - PbPaa 1’f)a = /,Labe, PaPa = 07 Pf(,u) = 17

where the tilde indicates the second sheet evaluation of the function involved, the summation
convention is followed and Pf(u) is the Pfaffian of the antisymmetric matrix p. The form of
these equations exactly coincide with the Py system derived for the undeformed AdSs x S°
superstring, consistent with the similarities between the representation theory of the AdSs x S°
superstring and its n-deformed counterpart. These equations form one of the many equivalent
ways to write the QSC-equations. Another important set of equations one can derive is the
dual Qw system, which also has the same form as in the undeformed case.

As before, these equations do not give a full description of the spectral problem, which
need to be supplemented by boundary conditions that encode which solution of the Py system
corresponds to which state in the n-deformed string theory. Clearly, this is also where the
difference between the undeformed and deformed becomes most pronounced. In the undeformed
case, the extra boundary conditions come in the form of asymptotics, that is prescribed limiting
behaviour for all the functions in the Py system as one sends u — co. Clearly, such a condition
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Figure 1: The analytic structure of the P, (a) and the pq, (b) on the cylinder. The thick lines
indicate branch cuts between 6 on the first sheet. The continuation of short-cutted g, can
be expressed on the first sheet using its 2ic periodicity. The squiggly line in (b) indicates that
for generic 6 outside the physical strip the pq, cannot be put on (a finite cover of) the cylinder.
Figure taken from Ref. [17].

it

is impossible for 27-periodic functions and one should consider other options. Using the TBA-
equations it proved possible to prove that at least some of the functions carry information about
the quantum labels of an excited state in their asymptotics as one considers the limit v — ioo,
i.e. moves infinitely far up the cylinder. Postulating that this limit should yield the charges
also for the other functions in the QSC one can deduce a fairly simple set of asymptotics [17]:
for z = e~*/2 one finds that

P, ~ A,z Ma, ;~ BizMi P~ A Me QP B2 M,
where

~ 1
M:5{:]1+J2*J3+2,J1*J2+J3,*J1+J2+J3,*J1*J27J3*2},

~

1
M:§{A—Sl—SQ+27A+51+Sg,—A—Sl+SQ,—A+Sl—52—2}.

The six labels (A, Jy, Jo, J3,51, 52) are the quantum labels for states in the 7-deformed string
theory. The prefactors Aq, A%, B; and B are explicitly known trigonometric functions of the
quantum labels.

This defines the n-deformed QSC, which can be used for further analysis of the n-deformed
string theory. Particularly interesting questions are (1) what is the field of numbers involved
in the actual computation of string energies, (2) can the deformed BFKL eigenvalue be com-
puted and possibly shed light on the thermal BFKL theory through the mirror duality of the
n-deformed string theory and (3) which operator is related to the Hagedorn temperature com-
putation through the same mirror duality.
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4 New and old integrable models

The string sigma model on AdSs x S° and its deformations provide a source for a number of
known as well as new finite-dimensional integrable models that can be obtained by applying var-
ious reduction schemes. At first glance this concerns a particle limit, 7.e. the limit of vanishing
string length. Studying this limit, as well as other finite-dimensional reductions, is principally
important since in spite of the progress relying on the surmised quantum integrability, quanti-
zation of the AdSs x S° superstring from first principles is still an open problem. Especially for
light string states, for which the psu(2,2|4) charges take finite values, it has been a renowned
challenge to determine the spectrum beyond the leading order [22], E ~ A/4 where X is the
't Hooft coupling. A way to proceed was offered in [23], where, arguing about supersymmetric
effects heuristically, an investigation of the isometry group orbits of a pulsating string allowed
to reproduce the first quantum corrections of order A='/4. For this the crucial step has been
to reformulate the system as a massive AdSs x S° particle with the mass term determined
by the stringy non-zero-modes. But since quantization of massive as well as massless AdS
superparticles is not yet understood, to attack this question we utilised the gauge invariant
Kirillov-Kostant—Souriau method of coadjoint orbits .

In particular, in [24] we applied the orbit method quantization to the AdS; superparti-
cle on OSP(1]2)/SO(1,1), yielding a Holstein—Primakoff-like realization of the superisometries
osp(1]2). However, for the massless case the k-symmetry transformation leaves only one physi-
cal real fermion, rendering the model quantum inconsistent. This problem was overcome in [25]
by studying the AdSs3 superparticle on OSP(1]2) x OSP(1|2)/SL(2,R). Here, calculation of the
symplectic form as well as of the Noether charges naturally split up into left and right chiral
sectors, yielding a quantum realization of osp;(1]2) @ osp,.(1|2). For the massless particle it
was then found that the superisometry algebra extends to the corresponding superconformal
algebra osp(2[4), with its 19 charges realized by all possible real quadratic combinations of the
phase space variables.

With the goal to prepare the formalism for general semi-symmetric spaces, in [26] we de-
vised orbit method quantization of the massive bosonic AdSy particle in a scheme manifestly
exposing the coset nature of AdSy. Apart from reproducing previous results, this led to a new
quantization scheme in terms of dual oscillator variables. Furthermore, we also generalized the
results of [24] and [25] and proposed an ansatz for the AdS, superparticle.

In [27] and [28] we continued probing the integrability of sigma models on n-deformed
backgrounds. Building on previous work for the n-deformed Neumann model [29], in [27]
we studied generalized bosonic string solutions on AdSs; x S°, yielding a novel n-deformed
Neumann—Rosochatius model. By constructing a 4 x 4 Lax representation we obtained a set
of abelian integrals of motion, ensuring Liouville integrability of the system. We furthermore
established how these generalize the integrals of motion of the known limiting cases, i.e., of the
n-deformed Neumann and geodesic systems as well as of the undeformed Neumann—Rosochatius
model.

As sigma models on 5-deformed backgrounds enjoy a quantum deformed symmetry algebra,
U, (psu(2,2|4)) in the case of (AdSs x S°),, it is interesting to track how the non-abelian
symmetry charges behave under the n-deformation. In [28] this question was posed in the
simplest possible setup, the geodesic motion on the squashed sphere (Sz)n, the manifold of the
Fateev sausage model [30]. New local integrals of motion were found, which by construction
form an s[(2) Poisson algebra and therefore amount to maximal superintegrability of the system.
With this observation we devised a canonical map to an auxiliary sphere, by which we completely
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solve the geodesics problem.

5 Integrable deformations of CFTs and functional equa-
tions

While the discussion in sections 1-4 focusses on the analysis of concrete world-sheet theories
directly related to the AdS/CFT correspondence, here we take a step back and look at some
general questions that arise in the above procedure:

1. Give a quantum world-sheet theory, how can one describe its integrable structure? And
how can one detect deformations which preserve all or part of the integrability?

2. How much ambiguity is there in solutions to functional equations, such as T- and Y-
systems? What additional conditions make their solution unique?

We will not answer any of these questions for the models discussed in sections 14, but we will
outline a framework which is convenient to discuss the questions in point 1, and we will answer
question 2 at least for a much simpler type of Y-system than those arising in AdS/CFT.

The fundamental example of our approach is the integrable structure of the free boson,
perturbed and unperturbed, captured in terms of non-local conserved charges, as developed
by Bazhanov, Lukyanov and Zamolodchikov [31,32]. There, the authors construct mutually
commuting families of conserved charges by path-ordered integrals of free boson vertex operators
which depend on a spectral parameter A\. They argue that the large-A expansion encodes the
values of all local conserved charges, i.e. conserved charges obtained by integrating conserved
currents of the model.

The setting in which we discuss question 1 is that of two-dimensional conformal quan-
tum field theory in euclidean signature. We allow the world sheet to be decorated with one-
dimensional line defects, across which the bulk fields of the theory may have discontinuities.
The line defects themselves are topological in the sense that they can be deformed without
affecting the value of a correlator, as long as they are not taken across field insertions. The
most basic example here is the critical Ising model, where across the line defect the sign of the
spin-spin coupling is inverted (this is called a disorder line). When taken across such a disorder
line, the Ising spin field changes sign, while the energy field (the field dual to the temperature
perturbation) is continuous, see e.g. [33].

One now observes that in addition to bulk fields, there are new fields in a CFT with line
defects, namely fields which are localised on the line defect itself. These fields behave differently
from bulk fields in that they are not local (they have monodromies) when moved around other
field insertions. Geometrically this is very intuitive, as in moving a defect field around another
field tangles up the defect lines and there is no reason for the resulting value of the correlator
to be equal to the initial one.

Consider now a world sheet which is a cylinder, with a topological defect line with defect
condition X wrapped around it. This defines an operator Dx on the state space H of the CFT.
Since X is a topological defect condition, this operator commutes with the Hamiltonian of the
CFT:

[DX’HCFT] =0 , Hcpr= i(Lo + Eo - TC2) .
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The operator Dx is thus a conserved charge for the conformal field theory, albeit one which
typically does not arise by integrating a conserved current. We can now ask the following
natural question:

Is it possible to deform the CFT and at the same time deform some of the conserved
charges Dx such that they remain conserved for the perturbed theory?

Let us start with the perturbation of the CFT. Fix a bulk field &, which we assume to spinless,
that is, of chiral/anti-chiral conformal weight (h, k) (so its total scaling dimension is 2h). We
assume P to be relevant or marginal (h < 1), so that the perturbation does not affect the UV
fixed point, which is our starting CFT. The perturbed Hamiltonian is

27
Hpert (1) = Horr + M/ ©(0)do
0

where the integral is around the cylinder, and where p € C is the strength of the perturbation.
On the defect X we consider a perturbation by a chiral defect field ¥ x and an anti-chiral defect
field ¢ x. We demand that their conformal weights are (h,0) and (0, h), respectively, with A
the same value as for the bulk perturbation. We perturb the defect X by the defect field

Mpx (0) + Mpx (0)

where A\, A € C give the strengths of the perturbations. Write Dx (A, 5\) for the perturbed defect
operator (defined by expanding an exponentiated integral of the above defect field, see [34,35]).
We would like to understand when

[DX(/\’ 5‘)7 Hpert (M)} =0,

that is, when DX()\,X) is a conserved charge for the perturbed Hamiltonian. In this setup,
there is a surprisingly simple sufficient condition, the commutation condition which has to hold
locally in correlators of the unperturbed CFT, and which guarantees the vanishing of the above
commutator to all orders in the perturbing parameters [34, 35]:

X

P(z) / \ _ A(z)
O i X

X

The left hand side is the difference between passing the topological defect line X above and
below the perturbing field ®. The defect field A(x) on the right hand side is the difference of
placing the two defect fields ¥ x and ¥ x in either order on the defect line,

A(z) = lim (x (z + e)px (z) — ¥x(z + )vx(x)) .

Finally, the perturbing parameters have to satisfy the relation (the constant depends on nor-
malisation choices and is conventional, see [35] for details):

w=—2i A\ .

This simple observation is the starting point of a host of interesting structural insights:
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e For a fixed value of p, so for a fixed perturbation of the CFT, a solution to the commu-
tation condition gives rise to a one-parameter-family of conserved charges, parametrised

by ¢ € C\ {0} via A= ¢, A = p/C.

e One important class of solutions to the commutation condition is the case u = 0, where
the CFT is not perturbed at all. Then the condition is A = 0, which in turn can be
guaranteed by simply choosing ¥x = 0 (or ©»x = 0). In this way, one can investigate the
integrable structure of a CFT.

e The commutation condition can be expressed in terms of representation theoretic data
obtained from the conformal field theory [35], and in examples can be related to repre-
sentations of certain quantum groups. This recovers results of [31,32].

e For example by using the relation to quantum groups, or by direct computation, one
can establish that for certain choices of perturbing defect fields and defect labels X, the
various conserved charges Dx (A, A\) commute with each other, for different values of X

and A, A, provided one keeps fixed the value of u. Furthermore, one finds in examples
that the Dx (A, \) satisfy functional relations of T-system type.

Since the Dx (A, 5\) mutually commute, they can be simultaneously diagonalised! on the
state space H, the same T-system functional relations are also satisfied by the eigenvalues.
One arrives at a question in complex analysis: given a system of functional relations between
functions which are analytic in a certain domain, what can we say about the solutions?

To address this question, it has turned out to be useful to rewrite T-system functional
equations as Y-system functional equations. In a simple variant, these look as follows:

N
Yo(z +is)Yn(z —is) = [] (1+ Y (2))% . (Y)

m=1

Here, s > 0 is a parameter, G is the adjacency matrix of a Dynkin diagram with N nodes,
and the equation has to hold for n = 1,..., N and all z € R. The functions Y;, are required
to be analytic in the strip R x (—is,is) and to have a continuous extension to the closure
R x [—is,is]. Note that this is the smallest connected domain on which one can make sense of
the above functional relation.

We have the following remarkable uniqueness and existence result, proven in [36], where
also numerous references to the physical literature can be found on which the method used in
the proof is based:

Theorem: Let aq,...,a, : R x [—is,is] — C be valid asymptotics (see below). Then there
exists a unique solution Y7,..., Yy to (Y) which satisfies the above analyticity conditions, as
well as, forn=1,..., N,
1. Y,(R) C Ry, (real & positive)
2. Y, (z) #0 for all z€ R x [—is,is] . (no roots)
3. logY,(z) — an(2) is bounded on R x [—is, is]. (asymptotics)

1n this exposition we ignore all question of convergence and existence of integrals in perturbative expansions,
as well as analytic questions such as discreetness of spectra — these points need a careful treatment in each
example.
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The notion of “valid asymptotics” is somewhat technical (see [36] for details), but the most
important examples are, forn =1,..., N,

a) an(2) =0 , b)an(z) =e**w, , ¢)an(z) = cosh(yz/s)w, ,

where w is the Perron—Frobenius eigenvector of G and v > 0 is related to the corresponding
eigenvalue by Guw = 2 cos(y)w.

The physical interpretation of this mathematical result is that the Y,, describe the ground
state eigenvalues of the corresponding conserved charges in (a) the unperturbed case (one proves
that the Y,,(z) are independent of = in this case); (b) the massless case y = 0; (c) for a massive
perturbation. Moreover, it is shown in [36] that the unique solution can be obtain by solving a
non-linear integral equation of TBA-type.

In summary, the above constructions and results indicate that a promising approach to
obtain non-perturbative information about a perturbed CFT is to first try to establish functional
relations satisfied by families of mutually commuting perturbed defect operators, and to then
try to prove existence and uniqueness statements for the functional equations satisfied by their
eigenvalues, similar to the theorem above.

6 Integrable lattice discretisation from the universal R-
matrix

Establishing that the integrability of the world-sheet sigma model for strings on AdS persists
at the quantum level is a hard probem that has remained elusive up to now. Most importantly,
one has to make sure that renormalisation of ultraviolet divergencies does not spoil integrability.
A promising strategy to reach this goal is based on the use of lattice regularisations for inte-
grable two-dimensional quantum field theories. There are some well-known examples including
the Sine-Gordon model where lattice regularisations have been constructed which manifestly
preserve integrability. However, up to now there does not exist a sufficiently general framework
to construct integrable lattice regularisations for all integrable models of our interest, and in
particular for the sigma models relevant for string theory on AdSs x S°.

In a part of our project, carried out jointly with the postdoc Carlo Meneghelli, we have
described a systematic approach for the construction of large families of integrable lattice reg-
ularisations [37]. This approach has been fully realised in the examples of affine Toda field
theories, prototypical examples of integrable quantum field theories sharing some qualitative
features with the sigma models relevant for the study of string theory on AdS spaces. The re-
sults of the recent paper [38] offer very encouraging hints that the generalisation of the approach
developed in [37] to integrable sigma models is getting within our reach.

The approach taken in [37] is based on two main ingredients.

(A) In all known examples one can view integrability as the consequence of powerful algebraic
structures organising the algebras of observables of the field theories in question. The
relevant algebraic structures are often referred to as quantum groups. It is in many cases
possible to identify the quantum group relevant for integrability of a given quantum field
theory from its Lagrangian description, or alternatively from its description as perturbed
conformal field theory [35,39].
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This step is performed in [39] by considering the light-cone representation of the dynamics.
The interaction terms generate a non-commutative algebra which can often be identified
with a subalgebra of the relevant quantum group from which the full quantum group can
be reconstructed by a standard construction (quantum double).

(B) The main proposal made in [37] is that the corresponding integrable lattice regularisation
can then be constructed by following a systematic procedure reducing the main steps to
problems in quantum group representation theory. The main ingredients are the so-called
Lax-Matrix, R-matrices and the Baxter Q-operators. The proposal of [37] offers a recipe
for the construction of these key ingredients by breaking it up into two steps: First finding
representations of the relevant quantum group organising the algebra of observables on
the lattice, and then evaluating the known universal R-matrix on these representations.
The power of this approach has been illustrated in [37] by working it out in full detail in
the example of the affine Toda field theories.

In the following we will describe this approach in a bit more detail. The algebraic struc-
tures called quantum groups are characterised to a large extend by an algebra structure (non-
commutative product operation) and a co-product, essentially a rule for how to act with the
algebra on tensor products of its representations. The co-product will generically not be sym-
metric with respect to exchange of the tensor factors in a tensor product Ry ® Rs. A useful de-
scription of this asymmetry is provided by the R-matrices, operators Rg, r, : R1®R2 — R1®Ro
relating the quantum group action on Ry ® R to the one defined from the action on Ry ® Ry
by subsequent permutation of tensor factors. Basic results in quantum group theory assert the
existence of a universal object of the form R =) _; 2, ® y,, with {z,;2 € T} and {y,;2 € T}
being suitable sets of generators for the quantum group, such that

RR1R2 = (WRl Y ,’TR2)(R) = ZﬂRl (xl) & TR, (yl)a
1€T

with mr(z) being the operator representing the quantum group element x within the represen-
tation R.

Two types of quantum representations are relevant in the context of integrable lattice models.
Most basic is a representation 7, of the quantum group on the physical Hilbert space of the
lattice model, often referred to as quantum space. It then turns out to be useful to consider
one-parameter families of auxiliary representations 7, » allowing us to define useful generating
functions as

M) = (map ® 1) (R). (1)

If, for example, the auxiliary representations 7, x are finite-dimensional one may view M (X) as a
matrix having matrix elements which are operators acting on quantum space. The matrix M ()
turns out to be related to the monodromy matrix of the Lax connection in the corresponding
classically integrable model.

It is known that infinite-dimensional representations m, » can also be of interest in this
context. This requires in particular that it is possible to define a partial trace over the space
‘H, on which the representation m,_ » is realised

Q) = Try, (M(N)). (2)

Some choices for 7,  will produce particularly useful families of operators Q()), distinguished
by two main properties:
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e By specialising the parameter A one can obtain from Q(\) evolution operators generating
a lattice version of the physical time-evolution.

e The operators Q(A\) and Q(u) associated to any two values of the parameter always
commute with each other, [Q()), Q(r)] = 0.

This implies that Q(\) represents a generating function for the conserved quantities of the
integrable lattice model constructed in this framework.
Having identified the relevant quantum group in step (A) of this program, it remains to

1) find suitable representations 7, and m, », and
2) calculate Q(A) from (1) and (2).

It was shown in [37] in the example of the affine Toda theories that taking the first step 1)
is often very simple. It turns out that the relevant representations can be found among the
simplest possible representations the relevant quantum groups have. Given that the operators
mq(z) represent physical observables, one gets important constraints on the representation m,
from the requirement that the behavior of m4(z) under hermitian conjugation should reflect
the reality properties of the corresponding physical observable. It was found in [37] that such
requirements single out a unique choice for the representation 7, to be used for the models of
interest.

In order to complete this program it remains to perform step 2) above, the calculation of
Q(X). A possible starting point is provided by the known explicit formulae for the universal
R-matrices R, taking the form of infinite products. These formulae are very complicated.
Somewhat unexpectedly, it has turned out that the representations the 7, » and 7, we found
to be relevant in this context have very useful special features simplifying the evaluation of
M () via (1) enormously. As a result we have obtained fairly simple formulae representing the
operators () as integral operators with explicitly known kernels.

In this way one not only obtains all the key ingredients for the construction of integrable
lattice regularisation. The algebraic structures of the quantum group imply that Q()\) satisfies
a system of functional equations. The known representation of Q()) as an integral operator
enables us to determine the analytic properties of the eigenvalues of Q(\). Taken together,
functional equations and analytic properties lead to a complete mathematical characterisation
of the set of functions g(\) representing the possible eigenvalues of Q(A). This constitutes the
necessary groundwork for the solution of the spectral problem in these integrable quantum field
theories.

The models studied in [37] are not yet the models of our ultimate interest from the point of
view of applications to AdS/CFT. It was for a long time believed that the step to be taken to
treat integrable sigma models in a similar way is big, requiring to overcome the problem of non-
ultralocality of the Poisson brackets for the Lax matrices describing the integrable structures of
nonlinear sigma models on the classical level. More recently at least two possible ways out have
become visible. For some integrable nonlinear sigma models a modified zero curvature repre-
sentation of the classical equations of motion has been found leading to fully ultralocal Poisson
brackets [40]. It may be hoped that this approach can be generalised considerably. There
furthermore exist proposals for dual descriptions of various nonlinear sigma models (see [38,41]
for recent progress containing further references) which should be accessible with only a modest
generalisation of the approach in [37,39]. These observations give us hope that a full derivation
of the integrability of string theory on AdSs x S° and its deformations is getting within reach.
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