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AGT-correspondences give profound relations between certain families of N = 2 supersym-

metric gauge theories in four dimensions and conformal �eld theories in two dimensions.

Subsequent investigations of the AGT-correspondences revealed a new type of topological

�eld theory associated to these theories that captures completely the dependence of im-

portant physical quantities on the gauge coupling constants, including perturbative and

non-perturbative corrections.

The topological �eld theories and chiral data associated to N = 2 supersymmetric �eld

theories are the central objects of study in this project. We present �rst steps towards

a precise mathematical framework for them in which loop and surface operators play a

particularly important role.

1 Introduction

Progress made in the recent years has seen several instances where topological quantum �eld
theories (TQFT) served as powerful tools for the study of the non-perturbative dynamics of
usual quantum �eld theories (QFT). At the same time it has developed into an active area
of mathematical research, characterised by a profound interplay between various structures of
algebraic nature, category theory, and topology.

A striking example for the relevance of TQFT for the study of non-perturbative phenomena
in QFT is the work of Kapustin and Witten [1] relating the S-duality conjecture in N = 4
supersymmetric Yang�Mills (SYM) theory to the geometric Langlands program. Mathematical
work on the geometric Langlands program thereby provides checks of the S-duality conjecture,
and helps to elaborate its quantum �eld theoretical consequences. Ideas and methods of TQFT
play an important role in the approach of Kapustin and Witten.

Even more recent work by Nekrasov and Witten [2] has proposed a reinterpretation of
the famous AGT-correspondence (after Alday, Gaiotto and Tachikawa) in terms of TQFT (or
some generalisation thereof). The AGT-correspondence relates partition functions of certain
four-dimensional N = 2 supersymmetric quantum �eld theories to correlation functions in
two-dimensional conformal �eld theories. This gives exact results for partition functions and
expectation values of certain observables encoding detailed information on the non-perturbative
dynamics of these four-dimensional quantum �eld theories. The work of Nekrasov and Witten
reinterprets the partition functions appearing in the AGT-correspondence in terms of objects
in a modi�ed version of the four-dimensional N = 2-supersymmetric quantum �eld theories
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which are expected to possess topological invariance while capturing crucial information on the
original QFT.

It should be noted that the term TQFT has been used above in a rather loose sense.
Important mathematical work has led to precise de�nitions of certain classes of TQFT, see [3]
for a review. The modi�ed versions of QFT mentioned above, often called topologically twisted
QFT, are in many cases expected to represent generalisations of TQFT in a sense which remains
to be clari�ed.

The progress achieved within our project has on the one hand shed some light on the
relations between the approach to the geometric Langlands correspondence of Beilinson and
Drinfeld, Kapustin and Witten, and the AGT-correspondence [4]. On the other hand, within
a PhD project, we have developed algebraic tools towards an explicit description of the chiral
data associated to N = 2 gauge theories.

2 TQFT in two and four dimensions

In this section we will brie�y describe the relations between four- and two-dimensional TQFT
which play a basic role in both [1] and [2].

2.1 Two-dimensional topological sigma models

Nonlinear two-dimensional sigma models with N = (2, 2) supersymmetry can be modi�ed in
basically two natural ways to get two-dimensional �eld theories which are topologically invariant
in the sense that they depend only on the topology of the two-dimensional surfaces on which
these theories are de�ned. The modi�cation is called a topological twist. It modi�es the
Lagrangian of the theory in such a way that the twisted theory coincides with an important
subsector of the untwisted theory on surfaces with trivial canonical bundle. From a given two-
dimensional sigma model with N = (2, 2) supersymmetry one can obtain two TQFT in this
way, called A- and B-model respectively.

Considering two-dimensional surfaces with boundaries one gets the so-called open topolog-
ical sigma models. In many cases these sigma models are expected to be examples of two-
dimensional TQFT as axiomatised in the mathematical literature, or generalisations thereof.
Two-dimensional TQFT are characterised by the collection of boundary conditions A,B, . . .
which can be associated to the boundary components of two-dimensional surfaces, and by the
vector spaces VAB associated to intervals I ' [0, π] decorated with particular boundary con-
ditions A and B at the two ends 0 and π, respectively. A TQFT furthermore associates to
two-dimensional surfaces having boundaries with �xed choices of boundary conditions a num-
ber called the partition function.

It turns out to be useful to regard the collection of de�ning data as a category having the
boundary conditions as its objects, and the spaces VAB as the spaces of morphisms Hom(A,B).
The strip I × R can be mapped to the punctured half-plane, de�ning a variant of the state-
operator correspondence relating elements of VAB to boundary-changing operators OAB, as
depicted in Fig. 1 below. The composition of morphism thereby gets related to the product of
boundary-changing operators, see Fig. 2.
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Figure 1: Morphisms in the category of boundary conditions correspond to boundary-changing
operators in two-dimensional TQFT. Figure taken from Ref. [5].

2.2 Two-dimensional reductions of four-dimensional TQFT

TQFT in higher dimensions have a much richer structure. Precise mathematical de�nitions
have been given only fairly recently, based on the mathematical framework of higher categories,
see [3] for a review. A very readably discussion of the physical motivation for considering higher
categories can be found in [5].

There exist higher-dimensional analogs of the topological twisting procedure expected to
turn supersymmetric quantum �eld theories into TQFT, or generalisations thereof. Topological
twists of the four-dimensional, N = 4 supersymmetric Yang�Mills theory (SYM) have been
investigated in [1]. There is a one-parameter family of such theories labelled by a parameter t.

A key idea in the work of Kapustin and Witten is to use e�ective representations of the
topologically twisted four-dimensional SYM on space-times of the form Σ×C, with C being a
Riemann surface, provided by two-dimensional topologically twisted sigma models on Σ = R×I.
These sigma models are related to the original four-dimensional theory by a variant of the
Kaluza�Klein reduction described in [1], leading to sigma models which have the Hitchin moduli
spacesMH(C,G) as target spaces. The spaceMH(C,G) can be described as the moduli space
of pairs (E , ϕ), where E = (E, ∂̄E) is a holomorphic structure on a smooth G-bundle E on C,
and ϕ ∈ H0(C,End(E) ⊗ K) can be locally represented as a matrix-valued one-form. In the
following we will freely use several standard de�nitions and results concerning Hitchin's moduli
spaces. A very brief summary is collected in Appendix A in the form of a glossary. If a glossary
entry exists for a term, its �rst occurrence will appear with a superscript as in termg).

The two-dimensional description is not expected to capture all of the structures of the four-
dimensional theory, but it is believed to represent correctly an important part of its structure.

Similar ideas are used in the work of Nekrasov and Witten, where the starting points are
theories from a class of four-dimensional N = 2-supersymmetric theories often referred to as
class S in the literature [6, 7]. The members of this class are labelled by the pair of data
(C, g), where C is a Riemann surface and g is a semi-simple Lie algebra of ADE-type. On
four-dimensional spacetimes which can locally be described in the form R × I × S1 × S1 one
preserves enough of the supersymmetries of the theory to de�ne topologically twisted versions
of the class S theories depending on two parameters ε1 and ε2. One may furthermore argue

SFB 676 � Particles, Strings and the Early Universe 91



Christoph Schweigert, Jörg Teschner

A

B

C

OAB

OBC

A

C

OAB · OBC

Figure 2: The composition of morphisms corresponds to the product of boundary-changing
operators. Figure taken from Ref. [5].

that the resulting four-dimensional theories with topological invariance can be described by an
e�ective two-dimensional topological sigma model on R× I.

This means that in the both cases one ends up with sigma models having the same target
spaces MH(C,G). It should be noted, however, that such sigma models have N = (4, 4)
supersymmetry related to the fact that the spaces MH(C,G) admit hyperkähler structures.
Instead of getting just one A-model and one B-model one may now de�ne a one-parameter
family of A- and B-models depending on which part of the supersymmetries are preserved by
the topological twist. The relevant parameter can be identi�ed with the hyperkähler parameter
determining a particular complex stucture onMH(C,G).

It therefore depends sensitively on the precise reduction procedure which particular topolog-
ical sigma model is ultimately found as an e�ective description of the original four-dimensional
QFT. And indeed, it turns out that the sigma models appearing in the works [1] and [2] are
not identical, despite the fact that they have the same target space. Yet, there are reasons to
expect that these sigma models should be more closely related than it may appear.

3 What is the geometric Langlands correspondence?

The geometric Langlands correspondence can be schematically formulated as a correspondence
between two types of geometric objects naturally assigned to a Riemann surface C and a simple
complex Lie group G,

D-modules on BunG ↔ LG-local systems (3.1)

The following objects appear in this correspondence:
BunG is the moduli space of holomorphic G-bundles on C. The D-modules on BunG appear-

ing in this context can be described more concretely as systems of partial di�erential equations
taking the form of eigenvalue equations Dif = Eif for a family of commuting global di�erential
operators Di on BunG. The di�erential operators Di can be regarded as quantum counterparts
of the Hamiltonians of Hitchin's integrable system. The representation of the D-modules as
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eigenvalue equations Dif = Eif is not canonical, it depends on additional choices. Part of the
content of the geometric Langlands correspondence describes the eigenvalues Ei geometrically
as coordinates on a suitable parameter space, parameterising the objects on the right side of
(3.1), which will be explained next.

The group LG is the Langlands dual of G which has as Dynkin diagram the transpose
of the Dynkin diagram of G. The LG local systemsg) appearing in this correspondence can
be represented by pairs (E ,∇′) composed of a holomorphic LG-bundle E with a holomorphic
connection ∇′, or equivalently by the representations ρ of the fundamental group π1(C) de�ned
from the holonomies of (E ,∇′).

We will mostly be interested in the case of irreducible LG local systems. A more ambitious
version of the geometric Langlands correspondence has been formulated in [8] extending it to
certain classes of reducible local systems.

Some of the original approaches to the geometric Langlands correspondence start from the
cases where the LG-local systems are opersg), pairs (E ,∇′) in which ∇′ is gauge-equivalent to
a certain standard form. The space of opers forms a Lagrangian subspace in the moduli space
of all local systems.

The CFT-based approach of Beilinson and Drinfeld constructs for each oper an object in the
category of D-modules on BunG as conformal blocks of the a�ne Lie algebra ĝk at the critical
level k = −h∨. The Ward-identities characterising the conformal blocks equip the sheaves of
conformal blocks with a D-module structure. The universal enveloping algebra U(ĝk) has a
large center at k = −h∨, isomorphic to the space of Lg-opers on the formal disc [9]. This can
be used to show that the D-module structure coming from the Ward identities can be described
by the system of eigenvalue equations Dif = Eif for the quantised Hitchin Hamiltonians, with
eigenvalues Ei parameterising the choices of opers [10].

There exists an extension of the Beilinson�Drinfeld construction of the geometric Langlands
correspondence described in [10, Section 9.6] from the case of opers to general irreducible local
systems. It is based on the fact that such local systems are always gauge-equivalent to opers
with certain extra singularities [11]. The construction of Beilinson and Drinfeld associates to
such opers conformal blocks of ĝ−h∨ with certain degenerate representations induced from the
�nite-dimensional representations of g inserted at the extra singularities.

We may in this sense regard the geometric Langlands correspondence for general irreducible
local systems as an extension of the correspondence that exists for ordinary, non-singular opers.
Let us remark that the construction of Beilinson�Drinfeld plays an important role in the outline
given in [12] for a proof of the strengthened geometric Langlands conjecture formulated in [8].

4 TQFT interpretation of the Langlands correspondence

The variant of the geometric Langlands correspondence proposed by Kapustin and Witten [1]
is based on the consideration of N = 4 SYM theory with gauge group Gc, a compact real form
of G, on four-manifolds of the form Σ × C, where C is a Riemann surface. Compacti�cation
on C allows one to represent the topologically twisted version of N = 4 SYM e�ectively by a
topologically twisted 2d sigma-model with target being the Hitchin moduli space MH(G) on Σ.
The complete integrabilityg) of the Hitchin moduli space, as is manifest in the description of
MH(G) as a torus �bration, allows one to describe the consequences of the S-duality of N = 4
SYM theory as the SYZ mirror symmetry relating the 2d sigma-models with target MH(G)
and MH(LG), respectively.
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In order to relate this to the geometric Langlands correspondence, Kapustin and Witten
consider the cases when Σ = R × I, I = [0, π]. Supersymmetric boundary condition of N = 4
SYM theory will upon compacti�cation on C de�ne boundary conditions of the N=(4,4) sigma
model with targetMH(G) on Σ. Let B be the category having as objects boundary conditions
B called branes preserving the maximal number of supersymmetries, with morphisms being the
spaces HomMH(G)(B1,B2) of the sigma model on the strip R× I, having associated boundary
conditions B1 and B2 to the boundaries R× {0} and R× {π}, respectively.

A distinguished role is played by the so-called canonical coisotropic brane Bcc [1,2]. The vec-
tor space Acc = HomMH(G)(Bcc,Bcc) has a natural algebra structure with product correspond-
ing to the composition of morphisms depicted in Fig. 2. The spaces H(B) = HomMH(G)(Bcc,B)
are left modules over the algebraAcc with action corresponding to the composition of morphisms
HomMH(G)(Bcc,Bcc)× HomMH(G)(Bcc,B)→ HomMH(G)(Bcc,B). Kapustin and Witten argue
that the algebra Acc contains the algebra of global di�erential operators on BunG. It follows
that the spaces H(B) represent D-modules on BunG.

In order to describe the dimensional reduction of topologically twisted N = 4 SYM on
R × I × C one may �nd it natural to consider boundary conditions that are purely topologi-
cal, not depending on the complex structure on C. This point of view motivated Ben-Zvi and
Nadler [13] to propose the Betti geometric Langlands conjecture as a purely topological vari-
ant of the geometric Langlands correspondence formulated in [8] that captures some aspects
of the approach of Kapustin and Witten while having good chances to be realised within a
mathematically precise framework for TQFT.

5 TQFT interpretation of the AGT-correspondence

Alday, Gaiotto and Tachikawa discovered a relation between the instanton partition functions of
certain N = 2 supersymmetric gauge theories and conformal blocks of the Virasoro algebra [14].
This discovery has stimulated a lot of work leading in particular to various generalisations of
such relations. We will now brie�y outline the role of topological sigma models in the approach
of Nekrasov and Witten to the AGT-correspondence.

5.1 The approach of Nekrasov and Witten

In an attempt to explain the relations discovered in [14] using TQFT-methods Nekrasov and
Witten [2] considered four-dimensional N = 2 supersymmetric gauge theories of class S ob-
tained from the maximally supersymmetric six-dimensional QFT on manifolds of the form
M4 × C by compacti�cation on the Riemann surface C. For the case associated to the Lie
algebra g = sl2 one has weakly coupled Lagrangian descriptions of the resulting theory associ-
ated to the choice of a pants decomposition σ of C [6]. For four-manifolds M4 which can be
represented as a �bered product locally of the form R × I × S1 × S1 it is argued in [2] that
(i) an Ω-deformation with parameters ε1, ε2 can be de�ned, and (ii) an e�ective representation
is obtained by compacti�cation on S1 × S1 in terms of a sigma-model with targetMH(G) on
R× I. The coupling parameter of this sigma model is ε1/ε2.

The end points of the interval I in the representation M4 ' R × I × S1 × S1 correspond
to points where M4 is perfectly regular. One must therefore have distinguished boundary
condition in the sigma-model with targetMH(G) on R × I describing the compacti�cation of
a class S theory onM4. When the compacti�cation yields a sigma model with targetMH(G),
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it is argued in [2] that the corresponding boundary conditions are described by a variant Bcc

of the canonical coisotropic brane at R × {0}, and a new type of brane called the �brane of
opers�, here denoted by Bop, respectively.

1 The brane Bop is the mirror dual of Bcc, and it
is proposed in [2] that the brane Bop is a Lagrangian brane supported on the variety of opers
within MH(G).

In [2] it is furthermore proposed that the space H = HomMH(G)(Bcc,Bop) can be identi�ed
with the space of Virasoro conformal blocks. In order to motivate this identi�cation, Nekrasov
and Witten note that the algebra A~

cc(G) = HomMH(G)(Bcc,Bcc) with ~ = ε1/ε2 is isomorphic
to the algebra of Verlinde line operators acting on the space of Virasoro conformal blocks. Mirror
symmetry produces a dual description of H(G) ' H(LG) as the space HomMH(LG)(B

′
op,B

′
cc),

with B′op and B′cc being close relatives of Bop and Bcc, respectively, with modi�ed SUSY in-
variance properties. In the dual representation one has an obvious right action of the algebra

Ǎ1/~
cc (LG) = HomMH(LG)(B

′
cc,B

′
cc) with action related to the composition of morphisms

HomMH(LG)(B
′
op,B

′
cc)×HomMH(LG)(B

′
cc,B

′
cc)→ HomMH(LG)(B

′
op,B

′
cc).

The existence of (almost) commuting actions of A~
cc(G) and Ǎ1/~

cc (LG) is a characteristic feature
of the space of Virasoro conformal blocks.

5.2 The other way around

It is no accident that the work of Nekrasov and Witten [2] has many elements in common
with the approach Kapustin and Witten [1]. A common root can be found in the fact that
both the class S-theories and N = 4 SYM [15] can be obtained as compacti�cations of the six-
dimensional (2, 0)-theory on six-manifoldsM6 =M4 × C, where C is a Riemann surface, and
M4 is a four-manifold locally represented as a circle �bration locally of the form R×I×S1×S1.
Compacti�cation on C yields class S-theories [7], while compacti�cation on S1×S1 yieldsN = 4
SYM on R× I × C, the set-up considered in [1] as was further discussed in [15].

One should note, however, that di�erent topological twists are used in the two compacti�ca-
tions, making the comparison of the results somewhat subtle. This fact can nevertheless be used
to relate supersymmetric boundary conditions in the 2d sigma model with targetMH arising
from compacti�cation of class S-theories to boundary conditions in N = 4 SYM on C. These
boundary conditions have been classi�ed in the work of Gaiotto and Witten [16]. The canonical
coisotropic brane is related to the pure Neumann boundary conditions in N = 4 SYM by the
compacti�cation described above [1, 17]. Exchanging the two circles in S1 × S1 gets related to
the S-duality of N = 4 SYM which implies relations between its boundary conditions studied
in [18]. This led [17] to relate the brane Bop, the mirror dual of the canonical coisotropic brane
in [2], to the boundary condition descending from the so-called Nahm pole boundary conditions
in N = 4 SYM.

6 Towards a uni�ed picture

One of the goals in our project has been to clarify the relations between the gauge-theoretic
approach to the geometric Langlands correspondence, the CFT-based approach of Beilinson

1The branes denoted Bcc in this context are similar but not identical with the brane considered in [1]. The
paper [2] used the notation BN′ for the brane denoted Bop here.
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and Drinfeld, and the AGT-correspondence. The results have been announced in [4], with more
detailed descriptions being in preparation. In a parallel development [19,20], similar ingredients
have been used to outline a large web of relations between N = 4 SYM, vertex algebras, and
braided tensor categories.

6.1 Dirichlet boundary condition and a�ne Lie algebra symmetry

As mentioned above, a key ingredient in the approach of Beilinson and Drinfeld to the geometric
Langlands correspondence is the current algebra of WZW conformal �eld theory at the critical
level. The approach of Kapustin and Witten does not by itself reveal the origin of this crucial
aspect of the geometric Langlands correspondence. The work of Nekrasov and Witten, on the
other hand, relates conformal blocks of the Virasoro algebra to states of an open topological
sigma model. A key ingredient has to be added also in this approach to understand the a�ne
Lie algebra symmetry in this context.

Gaiotto and Witten have classi�ed 1/2 BPS boundary conditions of N = 4 SYM in [16]
using the data (ρ,H, T ), where ρ : sl2 → g is an embedding of sl2 into the Lie algebra g of
the gauge group Gc, H is a subgroup of the commutant in Gc of the image of ρ, and T is a
three-dimensional SCFT with N = 4 supersymmetry and at least H global symmetry. We will
only need two of the simplest of these boundary conditions. In the following we will �rst brie�y
review the so-called Nahm pole boundary condition studied in [17] which is associated to a triple
(ρ, Id, T∅), where ρ is a principal sl2-embedding, and T∅ stands for the trivial three-dimensional
SCFT. We will then discuss the even simpler case where ρ is replaced by the trivial embedding
mapping sl2 to 0 ∈ g, which will be of particular interest for us.

It is for our purposes su�cient to describe the Nahm pole boundary conditions for the
solutions of the BPS-equations [1] characterising �eld con�guration in N = 4 SYM preserving
certain supersymmetries. Restricting attention to solutions to the BPS-equations on R×R+×C
which are invariant under translations along R, one gets a system of di�erential equations of
the form

[Dz , Dz̄ ] = 0 , [Dy , Dz ] = 0 , [Dy , Dz̄ ] = 0 , (6.2a)

3∑
i=1

[Di , D†i ] = 0 . , (6.2b)

where the notations z = x2 + ix3 and y = x1 have been used, and the di�erential operators Di
are of the form2

Dz = ζ∂z +Az ,
Dz̄ = ∂z̄ +Az̄ ,

Az = ζAz + φz ,

Az̄ = Az̄ + ζφz̄ ,
Dy = ∂y +Ay − iφy . (6.3)

The parameter ζ determines the supersymmetries that are preserved. It is proposed in [17]
that the space of solutions to (6.2) modulo compact gauge transformations is isomorphic to
the moduli space of the solutions to the �F-term� equations (6.2a) modulo complex gauge
transformations. Equations [Dz,Dz̄] = 0 determine a �at complex connection on C at each
�xed y. The remaining equations in (6.2a) imply that the y-dependence of this �at connection
is represented by complex gauge transformations.

2Our conventions di�er slightly from [17].
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Boundary conditions of Nahm pole type are de�ned in [17] by demanding that the solutions
to (6.2) have a singular behaviour of the form

Az ∼
y→0

t− y
−1 +O(y0) , Az̄ ∼

y→0
O(y0) , A1 ∼

y→0
t3 y
−1 +O(y0) , (6.4)

with t+ = t1 + it2, and ti, i = 1, 2, 3, being the generators of a principal sl2 subalgebra of
g. By a gauge transformation we may always set Az̄ to zero, allowing us to represent the �at
connection on C we get at each y as a local system (Ey,∇′y) consisting of a holomorphic bundle
and a holomorphic connection ∇′y = dz(∂z +Az(z; y)). In the case g = sl2, we may reformulate
the �rst condition in (6.4) as the condition that there exists a basis of sections s = {s1, s2} with
respect to which A has the form A = gÃg−1 + gdg−1, with

Ãz ∼
y→0

(
0 t
1 0

)
+O(y1) , g ∼

y→0

(
y1/2 0

0 y−1/2

)
+O(y0). (6.5)

Horizontal sections (d + A)s = 0 will then have a �rst component s1 vanishing as y1/2. As
explained in [17], this implies that the local system limy→0(Ẽy, ∇̃′y) on C is an oper.

The Nahm pole boundary condition has the feature that it breaks Gc maximally since the
commutant of the principal sl2-embedding is trivial. At the opposite extreme, associated to the
trivial sl2-embedding, one gets a similar boundary condition associated to a triple (0, Id, T∅) by
�xing the boundary value of the gauge �eld Az̄.

In the reduction to two dimensions having �xed Az̄ at the boundary of I implies having �xed
a holomorphic bundle on C, leaving the (1, 0) part of the complex gauge �eld unconstrained.
The moduli spaceMdR(G) of pairs (E ,∇′ζ) is isomorphic to the Hitchin moduli spaceMH(G)

via the non-abelian Hodge (NAH) correspondenceg). Fixing E therefore de�nes a submanifold
in MH(G) which is Lagrangian with respect to the holomorphic symplectic form Ωζ , and
holomorphic w.r.t. to the complex structure Iζ . For ζ = i one has Ωζ = ΩJ , Iζ = J , leading
to the identi�cation of the brane coming from the reduction of the zero Nahm pole boundary
condition as an (A,B,A)-brane in the A-model with the symplectic structure ωI used in [2].

One may then argue that the H(2)
x = HomMH(G)(Bcc, L

(2)
x ) can be identi�ed with the space

of conformal blocks of the a�ne Lie algebra ĝk at level k = −h∨− ε2
ε1

on C. Di�erent arguments
leading to this identi�cation have been presented in [4] and in [20], respectively.

From the point of view of class S-theories it has been pointed out in [4] that the zero Nahm
pole boundary condition corresponds to the presence of a surface operator of co-dimension two.
Indeed, as was argued in [21], the presence of a co-dimension two surface operator naturally
introduces additional background data which can be geometrically represented as the choice of
a holomorphic bundle on C.

6.2 Conformal blocks as triangle partition functions

We now describe yet another key extension of the TQFT formalism proposed in [4]. Using the
reduction of class S-theories to the two-dimensions we will in the following motivate a descrip-
tion of the four-dimensional partition functions of class S-theories within the two-dimensional
sigma model with target MH(G). This description will use yet another type of boundary
condition denoted L(1)

a .
Following [2] we will consider topologically twisted class S-theories on hemispheres B4

ε1ε2
with Omega-deformation. The topologically twisted class S-theory associates a vector space

SFB 676 � Particles, Strings and the Early Universe 97



Christoph Schweigert, Jörg Teschner

Htop = Z(M3
ε1ε2) to M3

ε1ε2 = ∂B4
ε1ε2 , here identi�ed with the cohomology of Q, the supercharge

that can be preserved on B4
ε1ε2 . One may use the path integral over the 4d hemisphere B4

ε1ε2
to de�ne a vector Ψ ∈ Htop. Wave-functions Ψ(a) of the vector Ψ may be identi�ed with the
partition functions Z(B4

ε1,ε2 ;Ba) de�ned by imposing suitable Q-invariant boundary conditions
Ba labelled by parameters a at M3

ε1ε2 . Such boundary conditions are determined by the bound-
ary conditions at the in�nity of R4

ε1ε2 used to de�ne the Nekrasov partition functions, �xing in
particular the zero modes of the scalars in the vector multiplets to have values collected in the
vector a = (a1, . . . , a3g−3+n). The boundary conditions Ba de�ne a family of boundary states
βa, allowing us to represent Z(B4

ε1,ε2 ;Ba) as an overlap 〈βa,Ψ〉.
In the reduction of the class S-theory to a 2d topological sigma model one should get the

following representation of the 4d TQFT data introduced above:

• The vector space Htop ' Z(S3
ε1,ε2)→ Z(I).

• The vector Ψ = Z(B4
ε1,ε2) → Z(Tε1,ε2) ∈ Htop, where Tε1,ε2 is the open triangle with

�upper� side removed, topologically equivalent to R−×I, partially compacti�ed by adding
a point at the in�nity of R−. The boundary of Tε1,ε2 is {0} × I.

• The partition function Z(B4
ε1,ε2 ;Ba) → Z(Tε1,ε2 ;Ba) gets associated to a triangle Tε1,ε2

with a boundary condition L(1)
a assigned to the upper side {0} × I. L(1)

a is de�ned from
the boundary condition Ba assigned to M3

ε1ε2 by the reduction to one dimension.

This means that the instanton partition functions Z(a;x; τ ; ε1, ε2) get represented by partition
functions of the sigma model on a triangle which has sides coloured by (Bcc, L

(1)
a , L

(2)
x ).

The two-dimensional description of the boundary conditions L(1)
a has been indenti�ed in [4]

as the family of Lagrangian submanifolds de�ned by identifying the parameters a with complex
Fenchel�Nielsen coordinates for Hitchin's moduli spacesg).

6.3 Geometric Langlands: CFT versus gauge theory

Having established the interpretation of conformal blocks in terms of TQFT prepares the
groundwork for understanding the relations between the Beilinson�Drinfeld approach to the
geometric Langlands correspondence and the work of Kapustin and Witten [4]. To understand
the full picture it is important, however, to note that the geometric Langlands correspondence
can be regarded as a limiting case of a one-parameter family of relations between D-modules
on BunG and D-modules on BunLG related to a generalisation of WZW conformal �eld theory
having a�ne Lie algebra symmetry ĝk with generic level k [22, 23]. This one-parameter gen-
eralisation of the geometric Langlands correspondence has a counterpart on the gauge theory
side discussed in [1, 24].

Part of our work in [4] is a careful discussion of how this continuation with respect to the
level can be understood from the point of view of the topological sigma model. The discussion
is based on the hyperkähler structure of the Hitchin moduli space. We refer to [4] for further
details.

7 Boundary line operators

Part of the rich structure of an four-dimensional TQFT is the category of boundary line opera-
tors, one-dimensional extended objects supported on three-dimensional boundary components
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of the four-dimensional space-time. The category L~(B) of boundary line operators depends
on the choice of a boundary condition B and the parameter ~ = ε1/ε2. The structure of a
four-dimensional TQFT includes the structure of a braided tensor category on L~(B). For
TQFT like topologically twisted N = 4 SYM one may expect to �nd a rich family of categories
L~(B) when the boundary conditions are varied. The resulting picture remains largely unex-
plored. Very subtle are in particular the cases where ~ = ε1/ε2 is a rational number. In this
case one can see indications both from topologically twisted N = 4 SYM [20] and from the
representation theory of vertex algebras that the precise relation between the category L~(B)
and representation categories of suitable vertex algebras must be very interesting.

In the following we will brie�y describe results obtained within the project A10 that can
be regarded as �rst steps in this direction. These will be followed by a short description of
a result from [4] giving a dual interpretation of the boundary line operators representing the
Hecke functors in the geometric Langlands correspondence according to [1] in the context of
the AGT-correspondence.

7.1 Non semi-simple braided tensor categories

For special non-generic values of the quotient ε1/ε2, the analytic continuation of the usual 3-
point-functions becomes singular, as the representation theory becomes non-semisimple. It is
expected that the situation is related to certain logarithmic vertex algebra models, starting
with the triplet algebra Wp,p′ for g = sl2.

These vertex algebras are recently an intense subject of study, and their nonsemisimple
representation category is conjectured to be equivalent to the representation category of a
small quantum group [25�27], i.e. a �nite-dimensional quasi-triangular Hopf algebra.

However, this equivalence cannot be an equivalence of monoidal categories, as the respective
quantum groups may not even admit a braiding, if the deformation parameter is an even root
of unity. It was pointed out [28] for the example g = sl2, q = i that one should consider instead
a quasi-Hopf algebra related to uq(sl2) to get an equivalence of monoidal categories. The 3-
cocycle involved in this quasi-Hopf algebra also appears in the corresponding conformal �eld
theory.

Within this project, a PhD student has analyzed systematically [29] the existence and
nondegeneracy of braidings for quantum groups uq(g) at even order root of unity, which is
the case relevant for conformal �eld theory. This produces many braided tensor categories,
including examples that are de�nitely new. However, only few of them are modular tensor
categories, i.e. they obey a non-degeneracy condition on the braiding, and are thus candidates
for the chiral data of a conformal �eld theory. However, given the very explicit form of the
results in [29], it was possible [30] to construct explicitly a large family of quasi-Hopf algebra
relatives of uq(g), which have representation categories that are indeed modular categories. (In
fact, these categories appear as a non-semisimple variant of a modularization of the former
categories.)

At present, it is still out of reach to prove for a general reductive Lie algebra g that the
representation categories of these quasi-Hopf algebras are braided equivalent to representation
categories of vertex algebras and are thus realized in conformal �eld theory. Still, it has been
shown that the previously mentioned quasi-Hopf algebra is reproduced for g = sl2. Moreover,
for all g the 3-cocycle precisely coincides with the one on the CFT side. Put di�erently, both the
Hopf algebra and the vertex algebra admit a functor to the same quadratic space de�ned by the
root lattice of g. It is an even more challenging question at the time of writing to what extent
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these algebraic data appear in descriptions of four-dimensional supersymmetric �eld theories.

7.2 The Hecke eigenvalue property

A beautiful feature of the approach of Kapustin and Witten is an alternative derivation of
the so-called Hecke-eigenvalue property of the D-modules appearing the geometric Langlands
correspondence. Part of the work [4] was yet another interpretation of the Hecke-eigenvalue
property in relation to the AGT-correspondence, as we will now brie�y review.

The reduction of Wilson- and 't Hooft line operators in N = 4 SYM with support on
R × {x} × P , x ∈ I, P ∈ C, to the two dimensional TQFT de�nes natural functors on the
category of branes, inducing modi�cations of the spaces H(B). The functors de�ned in this way
are identi�ed in [1] with the Hecke functors in the geometric Langlands correspondence. For
some branes B one may represent for each �xed P ∈ C the resulting modi�cation as the tensor
product of H(B) with a �nite-dimensional representation V of LG. One says that the brane B
satis�es the Hecke eigenvalue property if the family of modi�cations obtained by varying the
point P ∈ C glues into a local system.

A family of branes Fµ is identi�ed in [1] having this property. The branes Fµ are supported
on �bers of Hitchin's torus �brationg). S-duality of N = 4 SYM gets represented within the
sigma model with targetMH(G) as a variant of SYZ mirror symmetry, relating the branes Fµ
to branes in the dual sigma model with targetMH(LG) represented by skyscraper sheaves F̌µ
having pointlike support at µ ∈MH(LG).

Part of the results presented in [4] is a dual interpretation of the Hecke eigenvalue property
in the context of class S theories. The Wilson- and 't Hooft line operators have a dual rep-
resentation in this context as surface operators of a speci�c type de�ned by coupling certain
two-dimensional quantum �eld theories on a two-dimensional subspace to the four-dimensional
class S-theories. The relevant two-dimensional quantum �eld theories have (2, 2) supersymme-
try and can be described as gauged linear sigma models (GLSM). It was observed in [4] that the
tt∗ connection [31] of the GLSM turns in the limit ε2 → 0 into the oper connection appearing
on one side of the geometric Langlands correspondence. The limit ε2 → 0 furthermore implies a
factorisation of the partition functions into a four-dimensional part and a two-dimensional part.
This factorisation directly expresses the Hecke eigenvalue property of the geometric Langlands
correspondence in the dual picture in terms of class S theories [4].

A Hitchin's moduli spaces

We assume that G = SL(2), and that C is a Riemann surface with genus g and n punctures.
Hitchin moduli space MH(G) [32]. Moduli space of pairs (E , ϕ), where E = (E, ∂̄E) is a

holomorphic structure on a smooth vector bundle E, and ϕ ∈ H0(C,End(E)⊗K). The moduli
space of such pairs modulo natural gauge transformations is denoted byMH(G).

Hitchin's integrable system [32]. Given (E , ϕ) one constructs the spectral curve Σ =
{(u, v); v2 = 1

2 tr(ϕ2)} ⊂ T ∗C, and the line bundle L representing the cokernel of ϕ − v. One
may reconstruct (E , ϕ) from (Σ,L) as E = π∗(L) and ϕ = π∗(v). This describes MH(G,C)
as a torus �bration over the base B ' H0(C,K2), with �bres representing the choices of
L identi�ed with the Jacobian of Σ if G = GL(2), and with the Prym variety if G = SL(2).
Natural coordinates for the base B are provided by Hitchin's Hamiltonians, de�ned by expanding
1
2 tr(ϕ2) =

∑3g−3+n
r=1 ϑrHr, with {ϑr, r = 1, . . . , 3g − 3 + n} being a basis for H0(C,K2).
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Local systems. Pairs (E ,∇′ε), where E is a holomorphic vector bundle as above, and
∇′ε is a holomorphic ε-connection, satisfying ∇′ε(fs) = ε(∂f)s + f∇′εs for functions f and
smooth sections s of E. The moduli space of such pairs is denoted MdR(G). Local systems
are here often identi�ed with the corresponding �at bundles, systems of local trivialisations
with constant transitions functions, or the representations of the fundamental group (modulo
conjugation) obtained as holonomy of (F ,∇′ε), leading to the isomorphism between MdR(G)
and the

Character varietyMB(G): The space of representations of π1(C) into G, modulo overall
conjugation, as algebraic variety described as a GIT quotient C[Hom(π1(C), G]G.

Opers. Special local systems, where E = Eop, the unique extension 0 → K1/2 → Eop →
K−1/2 → 0 allowing a holomorphic connection ∇′ε of the form ∇′ε = dz

(
ε∂z +

(
0 u
1 0

))
.

Non-Abelian Hodge (NAH) correspondence [32,33]. Given a Higgs pair (E , ϕ), there
exists a unique harmonic metric h on E satisfying FE,h + R2[ϕ,ϕ†h ] = 0 where FE,h is the
curvature of the unique h-unitary connection DE,h having (0, 1)-part ∂̄E . One may then form
the corresponding two-parameter family of �at connections ∇ζ,R = ζ−1Rϕ + DE,h + Rζ ϕ†h .
Decomposing ∇ζ,R into the (1, 0) and (0, 1)-parts de�nes a pair (F ,∇′ε) consisting of F =
(E, ∂̄F ) and the ε-connection ∇′ε = ε∇′ = ε∂E,h +ϕ, with ε = ζ/R, holomorphic in the complex
structure de�ned by ∂̄F .

Hyperkähler structure [32]. There exists a P1 worth of complex structures Iζ and holo-
morphic symplectic structures Ωζ . The latter are de�ned as Ωζ = 1

2

∫
C

tr(δAζ∧δAζ). A triplet

of symplectic forms (ωI , ωJ , ωK) can be de�ned by expanding Ωζ as Ωζ = 1
2ζ (ωJ + iωK)+ iωI +

1
2ζ(ωJ − iωK). The corresponding complex structures are Iζ = 1

1+|ζ|2 ((1− |ζ|2)I − i(ζ − ζ̄)J −
(ζ + ζ̄)K).

Complex Fenchel�Nielsen coordinates [34]. Darboux coordinates for MB(G) as-
sociated to pants decompositions σ of C obtained by cutting along closed curves γi, i =
1, . . . , 3g−3+n. The complex length coordinates parameterise the trace functions Li = tr(ρ(γi))
as Lr = 2 cosh(ar/2). One may de�ne canonically conjugate coordinates κr such that the nat-
ural Poisson structure gets represented as {ar, κs} = δr,s, {ar, as} = 0 = {κr, κs}.
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