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In this report we summarize the research in mathematics and theoretical physics done in
project A6 of the SFB 676. The main research directions include the study of internal
spaces of string compacti�cations, geometry of scalar manifolds and moduli spaces, het-
erotic/type II string duality, partial breaking of supersymmetry and supersymmetric AdS
backgrounds. Typical results are the construction of a wealth of new inhomogeneous com-
plete quaternionic Kähler manifolds based on a combination of ideas from supergravity and
perturbative string theory with new mathematical tools and the derivation of low energy
e�ective actions in physically relevant situations, among other examples.

1 Geometry of compacti�cation spaces

One of the strands of this project has been the study of G-structures of the type occurring on
internal spaces of string compacti�cations. From a mathematical point of view we were specially
interested in Einstein metrics and, in particular, in metrics of special holonomy. From a physics
point of view the study of manifolds with G-structures are of interest for two reasons. Firstly
they correspond to backgrounds which can exhibit spontaneous supersymmetry breaking. This
is a necessary ingredient in order to make contact with experimental observations in particle
physics and cosmology where no sign of supersymmetry is so far manifest. Secondly, they appear
as the mirror duals of string backgrounds with �uxes. Indeed in [1] the speci�c class of manifolds
with SU(3)× SU(3) structure where identi�ed as mirror duals of type II compacti�cations on
Calabi�Yau manifolds with magnetic �uxes.

An example of the G-structures we have investigated are half-�at SU(3)-structures on six-
dimensional manifolds, which are related to Ricci-�at metrics of holonomy a subgroup of G2

on seven-dimensional manifolds. In fact, a half-�at SU(3)-structure is precisely the structure
induced on a hypersurface in a manifold with a parallel G2-structure. By considering a family of
equidistant hypersurfaces one arrives at a system of evolution equations for the SU(3)-structure
known as Hitchin's �ow equations. Similar �ow equations are obtained by considering foliations
by equidistant hypersurfaces in ambient manifolds with a parallel SU(3)- or Spin(7)-structure.
It was shown by Hitchin [2] that for a given initial half-�at SU(3)-structure the system has
a unique maximal solution on every compact 6-manifold M by exhibiting it as a Hamiltonian
system. The solution is a Riemannian metric of holonomy contained in G2. It is de�ned on the
product M × I, where I is an interval. The Hamiltonian is de�ned by integration of a certain
invariant over the compact manifold. Based on a di�erent approach, in [3] we extend this theory
allowing for non-compact manifolds and non-compact structure groups. When dimM = 6, this
includes half-�at G-structures on possibly non-compact manifolds M as initial data for metrics
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of holonomy contained in the compact or in the non-compact form of G2, depending on whether
the structure group G ∈ {SU(3), SU(1, 2), SL(3,R)} is compact or non-compact.

Lie groups admitting a left-invariant half-�at SU(3)-structure have been classi�ed in [4�6].
For some of these groups we have determined all left-invariant half-�at SU(3)-structures and
have solved the Hitchin �ow equations with these structures as initial data [3, 7] obtaining
metrics with holonomy group G2 or its noncompact form G∗2. A particularly interesting case
analysed in [7] is the classi�cation of all left-invariant half-�at SU(3)-structures on S3×S3. This
includes nontrivial deformations of the nearly Kähler structure and Einstein half-�at SU(3)-
structures. Classi�cation results for certain types left-invariant G2-structures have been ob-
tained in [8, 9]. Solving the Hitchin �ow with some of these structures as initial data, metrics
with holonomy group SU(4) ⊂ Spin(7) have been constructed in [10].

The Ricci-�at Riemannian manifolds of special holonomy obtained by solving the �ow equa-
tions are in general incomplete, even if the initial manifold M is compact or homogeneous.
In [11] we study under which conditions a maximal incomplete solution of the �ow equations
with homogeneous initial data can be completed to a complete Riemannian manifold of special
holonomy. We restrict to the case when M admits a simply transitive action of a solvable Lie
group preserving the initial G-structure, where G ∈ {SU(2), SU(3), G2} and dimM = 5, 6, 7
respectively. We prove under certain natural assumptions in this setting that a completion as
above does not exist. As a consequence, the classes of solvable Lie groups considered in our work
cannot act with co-homogeneity one on a complete and non-�at Riemannian manifold with a
parallel SU(3)-, G2-, or Spin(7)-structure. These results do not apply to semi-simple Lie groups,
such as SL(2,C). For the latter group we classify all left-invariant half-�at SU(3)-structures
which are also right-invariant under the maximal compact subgroup SU(2) ⊂ SL(2,C) and
solve the Hitchin �ow with these structures as initial data. The solutions are G2-holonomy
metrics de�ned on SL(2,C)× (a, b), where −∞ < a < b <∞. Some of them can be completed
at one boundary point of the interval (a, b) but never at both.

We have mentioned above the class of half-�at SU(3)-structures. The manifolds carrying
these structures can be considered as generalizations of the well known Calabi�Yau three-folds,
which are Ricci-�at and Kähler. The di�erential system satis�ed by a half-�at SU(3)-structure
does not imply the Einstein equations for the metric on the underlying 6-dimensional (real)
manifold. Examples of half-�at SU(3)-structures which are Einstein include the so-called nearly
Kähler structures. Until recently, the only known complete nearly Kähler manifolds were the
homogeneous ones, classi�ed by Butruille [12]. In [13] we show that inhomogeneous, locally
homogeneous examples exist in abundance. These are obtained as quotients by a �nite group
of automorphisms acting freely on the simply connected 3-symmetric space

(SU(2)× SU(2)× SU(2))/SU(2) ∼= S3 × S3,

where the isotropy group SU(2) is diagonally embedded. These quotients include co-homogeneity
one examples. Simply connected examples of co-homogeneity one (di�eomorphic to S3 × S3)
were later constructed by Foscolo and Haskins [14].

The nearly Kähler metric on S3 × S3 has the special property of being a left-invariant
Einstein metric, a property shared by the product metric. The simply connected homogeneous
Einstein manifolds in dimension 6 have been completely classi�ed with exception of the case of
left-invariant Einstein metrics on S3 × S3, see [15] for the state of the art. In [16] we classify
left-invariant Einstein metrics on S3 × S3 under the additional assumption that the stabilizer
in the group of proper isometries is neither trivial nor Z2. Under this assumption we �nd that
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the metric is either the left-invariant nearly Kähler metric or the product metric, which have
the stabilizer SU(2) and SU(2)× SU(2) respectively.

The relation of string theory with particle physics and cosmology is facilitated via the
low-energy e�ective action which consists only of the light modes of string theory while all
heavy excitations have been integrated out. String backgrounds with spontaneously broken
supersymmetry correspond to a supersymmetric e�ective action with a scalar potential whose
minimum breaks (part of the) supersymmetry. Apart from the scalar potential the metric of
the scalar �elds in the low-energy e�ective action is of prime importance. Via supersymmetry
it �xes many other physical interesting terms in the action. This metric is the metric on
the moduli space of the string compacti�cations at hand. Thus not only the compacti�cation
manifolds but almost more importantly its moduli space contains vital physical information.

Manifolds with SU(2)× SU(2) structure of dimension four, �ve and six have been investi-
gated in [17,18]. Such compacti�cations correspond to backgrounds with spontaneously broken
N = 4 supersymmetry. In these cases we determined the moduli space and established the
consistency with N = 4 supergravity. Depending on the structure of the intrinsic torsion, anti-
symmetric tensor �elds can become massive in some of these cases. N = 2 orientifolds of these
background were studied in detail in [19]. Massive tensor �elds and their coupling to three-forms
were studied in [20]. (These research projects were also part of the three PhD-theses [21�23]
and the Master-thesis [24].)

Furthermore, we studied type II backgrounds with spontaneously brokenN = 2 supergravity
in [1,25,26]. In [25] we showed that the low-energy e�ective action of such backgrounds displays
the U-duality group E7(7). In particular we derived E7(7)-invariant expressions for the Kähler
and hyper-Kähler potentials describing the moduli space of vector and hypermultiplets together
with the Killing prepotentials de�ning the scalar potential. In [26] we incorporated perturbative
quantum correction in this formalism.

In collaboration with project A1 we also studied heterotic backgrounds with G-structure.
This is summarized in the PhD-thesis [27]. M-theory backgrounds withG-structure were studied
in [28].

2 Special geometry

Another strand of this project has been the study of the scalar geometry of the low energy limit
of string theory. The relevant geometries for type II string theory are governed by N = 2 super-
gravity and its quantum corrections. They occur in three basic variants: projective special real
geometry, projective special Kähler geometry, and quaternionic Kähler geometry. Quaternionic
Kähler manifolds are examples of Einstein manifolds and have therefore been intensively stud-
ied in mathematics. Despite this fact, there are many open questions in this area and examples
are scarce. The three special geometries mentioned above are intimately related by geometric
constructions known as the r- and the c-map originating from the dimensional reduction of
supergravity theories, respectively from 5 to 4 and from 4 to 3 space-time dimensions [29, 30].
We show in [31] that the supergravity r-map and the supergravity c-map do both preserve the
completeness of the underlying metrics. As a consequence, every complete projective special
real manifold of dimension n gives rise (by the r-map) to a complete projective special Kähler
manifold of (real) dimension 2n + 2 and every complete projective special Kähler manifold of
dimension 2n gives rise (by the c-map) to a complete quaternionic Kähler manifold of dimension
4n+4. The scalar curvature of the resulting quaternionic Kähler manifolds is always negative.
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A projective special real manifold of dimension n is by de�nition a hypersurface H ⊂ Rn+1

such that there exists a homogeneous cubic polynomial h on Rn+1 with the following properties:

(i) H ⊂ {h = 1} and

(ii) the Hessian ∂2h is negative de�nite on TH.

The manifold H is endowed with the canonical Riemannian metric gH induced by the tensor
�eld − 1

3∂
2h. Projective special real manifolds can be intrinsically characterized by a partial

di�erential equation satis�ed by their underlying centro-a�ne structure [32, Theorem 2.3]. We
show in [32, Theorem 2.5] that the projective special real manifolds H for which the metric gH
is complete are precisely those for which the subset H ⊂ Rn+1 is closed. As a corollary, we proof
that every locally strictly convex component of the level set {h = 1} ⊂ Rn+1 of a homogeneous
cubic polynomial de�nes an explicit complete quaternionic Kähler metric on R4n+8. Complete
projective special real manifolds and the corresponding complete quaternionic Kähler manifolds
are classi�ed in low dimensions in [31,33] and in the case of reducible polynomials h in [34]. The
examples which we obtain by this method include complete quaternionic Kähler manifolds of co-
homogeneity one in all dimensions ≥ 12. Further inhomogeneous complete examples (including
the dimensions 4 and 8) were obtained in [35] by combining the above methods with a one-
parameter deformation of the metric known as the one-loop quantum correction [36]. In fact, it
is shown in [35, Theorem 27] that every quaternionic Kähler manifold associated with a complete
projective special real manifold admits a canonical deformation by complete quaternionic Kähler
manifolds depending on a parameter c ≥ 0. The same is true for quaternionic Kähler manifolds
associated with projective special Kähler manifolds, provided that the special Kähler manifold
has regular boundary behaviour [35, Theorem 13]. These two results imply, in particular,
the existence of this type of explicit deformation for all the known homogeneous quaternionic
Kähler manifolds of negative Ricci curvature with exception of the simplest such homogeneous
spaces, the quaternionic hyperbolic spaces. The fact that the metrics obtained by the one-loop
deformation of the supergravity c-map are quaternionic Kähler was proven in [37,38] based on
a geometric construction which allows to reduce the supergravity c-map to the much simpler
rigid c-map. (This work was also part of the PhD project [39].) A similar construction allows
to reduce the supergravity r-map to its rigid version [40]. (This work was also part of the PhD
project [41].) A geometric description of the rigid r-map is given in [42].

The moduli space of complete projective special real manifolds has been systematically
studied in the PhD thesis [43]. One of the main results is that the set of normal forms describing
these manifolds can be parametrized by a compact convex neighborhood of zero in a �nite-
dimensional vector space. In particular, any two complete projective special real manifolds
can be connected by connecting their normal forms in the convex set. Another important
consequence are uniform curvature bounds depending only on the dimension.

In the above geometric constructions pseudo-Riemannian cones play an important role. This
is due to the fact that a projective special Kähler manifold is the base of a C∗-bundle the total
space of which is a conical a�ne special Kähler manifold with inde�nite metric of index 2.
Similarly, quaternionic Kähler manifolds of negative scalar curvature are the base of a bundle
the total space of which has a conical hyper-Kähler structure of index 4 (the Swann bundle).
In [44] we study pseudo-Riemannian cones and their holonomy. In the Riemannian setting, a
metric cone over a complete manifold is either �at or irreducible, by Gallot's theorem [45]. This
is no longer true in the in the pseudo-Riemannian setting and we describe the properties of the
holonomy representation of the cone and how it relates to the geometry of the base manifold.
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In the spirit of Gallot's theorem, we prove that a metric cone over a compact and complete
pseudo-Riemannian manifold is either �at or indecomposable. Matveev and Mounoud have
later given another proof, which does also apply to incomplete compact manifolds [46].

Homogeneous pseudo-Riemannian manifolds of index 4 with a compatible almost hyper-
complex or almost quaternionic structure are classi�ed in [47, 48] in the case of H-irreducible
isotropy representation. (This work was also part of the PhD project [49].) We prove that the
resulting spaces are always locally symmetric if the dimension is at least 16 and give counterex-
amples in dimension 12. In [50] we classify homogeneous locally conformally Kähler manifolds
under the assumption that the normalizer of the isotropy group is compact.

The special geometry of Euclidean supersymmetry with eight real supercharges has been
systematically developed in a collaboration with Mohaupt and his group initiated in [51, 52].
A common feature is the appearance of para-complex and para-quaternionic structures replac-
ing the complex and quaternionic structures present in the standard Minkowskian theories.
Time-like and space-like reductions relating the scalar geometries of various Euclidean and
Minkowskian theories of supergravity in space-time dimensions d ∈ {3, 4, 5} have been worked
out in [53�55]. The twistor spaces of para-quaternionic Kähler manifolds are studied in [56].
Also the geometric construction of the c-map obtained in [37,38] admits a generalization to the
Euclidean setting, as shown in [57].

The rigid limit of N = 2 supergravity coupled to vector and hypermultiplets is somewhat
subtle. In [58] we showed how the respective scalar �eld spaces reduce to their global coun-
terparts. In the hypermultiplet sector we focused on the relation between the local and rigid
c-map.

For some further geometric aspects related to the themes discussed so far see [59�64].

3 Second quantized mirror symmetry

Apart from the standard perturbative mirror symmetry, which relates two Calabi�Yau manifolds
with reversed Hodge numbers, there also is a non-perturbative duality which relates type II
Calabi�Yau compacti�cations to heterotic K3 compacti�cations. This duality is fairly well
understood in the vector multiplet sector of N = 2 supergravity but poorly understood in the
hypermultiplet sector.

In [65] we revisited this duality and considered the heterotic string theory compacti�ed on
K3 ×T 2 and type IIA compacti�ed on a Calabi�Yau threefold X in the hypermultiplet sector.
We derived an explicit map between the �eld variables of the respective moduli spaces at the
level of the classical e�ective actions. We determined the parametrization of the K3 moduli
space consistent with the Ferrara�Sabharwal form. From the expression of the holomorphic
prepotential we were led to conjecture that both X and its mirror must be K3 �brations in
order for the type IIA theory to have an heterotic dual. We then focused on the region of
the moduli space where the metric is expressed in terms of a prepotential on both sides of
the duality. Applying the duality we derived the heterotic hypermultiplet metric for a gauge
bundle which is reduced to 24 point-like instantons. This result is con�rmed by using the duality
between the heterotic theory on T 3 and M-theory on K3. We �nally studied the hyper-Kähler
metric on the moduli space of an SU(2) bundle on K3.

In [66] we continued this investigation and predicted the form of the quaternion-Kähler
metric on hypermultiplet moduli space when K3 is elliptically �bered, in the limit of a large
�ber and even larger base. The result is in general agreement with expectations from Kaluza�
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Klein reduction, in particular the metric has a two-stage �bration structure, where the B-�eld
moduli are �bered over bundle and metric moduli, while bundle moduli are themselves �bered
over metric moduli.

A di�erent insight coming out of mirror symmetry has been suggested in [67]. Given a
maximally degenerating family of Calabi�Yau varieties of the general kind studied in [68, 69],
there is a canonical basis of sections (�generalized theta functions�) of the polarizing line bundle
of the family. Under homological mirror symmetry this basis of sections is dual to intersection
points of a pair of canonical isotopy classes of Lagrangian sections of the mirror SYZ �bration.
Generalized theta functions are built by counting tropical versions of holomorphic cylinders
connecting two SYZ �bres and in such a way capture tree-level information of the mirror SYZ
geometry. The general properties of generalized theta functions have been comprehensively
studied in [70]. By generalizing the monomial basis of toric local Calabi�Yaus in the crystal
melting picture, we expect that generalized theta functions actually also encode the higher
genus and non-perturbative information necessary for second-quantized mirror symmetry for
compact Calabi�Yaus. Work is currently under way to prove the mirror enumerative meaning
of theta functions [71,72].

4 Partial supersymmetry breaking

Spontaneous breaking of N = 2 supersymmetry is known to be possible only under very special
circumstances. In [73] we used the embedding tensor formalism to give the general conditions
for the existence of N = 1 vacua in spontaneously broken N = 2 supergravities. We indeed
con�rmed the necessity of having both electrically and magnetically charged multiplets in the
spectrum, but also showed that no further constraints on the special Kähler geometry of the
vector multiplets arise. The quaternionic �eld space of the hypermultiplets instead must have
two commuting isometries. As an example we discussed the special quaternionic-Kähler geome-
tries which appear in the low-energy limit of type II string theories. For these cases we found
the general solution for stable Minkowski and AdS N = 1 vacua, and determine the charges
in terms of the holomorphic prepotentials. We further found that the string theory realisation
of the N = 1 Minkowski vacua requires the presence of non-geometric �uxes, whereas they are
not needed for the AdS vacua.

In [74] we derived the low-energy e�ective action below the scale of partial supersymmetry
breaking and computed the N = 1 couplings in terms of the N = 2 input data. We then showed
that this e�ective action satis�es the constraints of N = 1 supergravity in that its sigma-model
metric is Kähler, while the superpotential and the gauge kinetic functions are holomorphic. As
an example we discussed the N = 1 e�ective supergravity of type II compacti�cations.

In [75] we made the construction of the e�ective N = 1 theory mathematically rigorous.
Speci�cally we proved that, given a certain isometric action of a two-dimensional Abelian group
A on a quaternionic Kähler manifold M which preserves a submanifold N ⊂ M , the quotient
M ′ = N/A has a natural Kähler structure. We veri�ed that the assumptions on the group
action and on the submanifold N ⊂M are satis�ed for a large class of examples obtained from
the supergravity c-map. In particular, we found that all quaternionic Kähler manifolds M in
the image of the c-map admit an integrable complex structure compatible with the quaternionic
structure, such that N ⊂M is a complex submanifold. Finally, we discussed how the existence
of the Kähler structure on M ′ is required by the consistency of spontaneous N = 2 to N = 1
supersymmetry breaking.

62 SFB 676 � Particles, Strings and the Early Universe



Mathematical Aspects of String Compactifications

In [76] we gave explicit examples of gauged N = 2 supergravities which arise in the low-
energy limit of type II string theories and which exhibit spontaneous partial supersymmetry
breaking. Speci�cally, for the so called quantum STU model we derived the scalar �eld space
and the scalar potential of the N = 1 supersymmetric low-energy e�ective action. We also
studied the properties of the Minkowskian N = 1 supersymmetric ground states for a broader
class of supergravities including the quantum STU model. (This project was also part of the
Master-thesis [77].)

In [78] we generalized the scope and studied N = 2 vacua in spontaneously broken N = 4
electrically gauged supergravities in four space-time dimensions. We argued that the classi�ca-
tion of all such solutions amounts to solving a system of purely algebraic equations. We then
explicitly constructed a special class of consistent N = 2 solutions and studied their properties.
In particular we found that the spectrum assembles in N = 2 massless or BPS supermultiplets.
We showed that (modulo U(1) factors) arbitrary unbroken gauge groups can be realized pro-
vided that the number of N = 4 vector multiplets is large enough. Below the scale of partial
supersymmetry breaking we calculated the relevant terms of the low-energy e�ective action and
argue that the special Kähler manifold for vector multiplets is completely determined, up to its
dimension, and lies in the unique series of special Kähler product manifolds. (This project was
also part of the PhD-thesis [79].)

5 Supersymmetric AdS backgrounds

Anti-de Sitter (AdS) backgrounds of string theory and supergravity are of interest for two
reasons. On the one hand that serve as an intermediate step in phenomenological investigations
before "uplifting" to a de Sitter background. On the other hand, AdS backgrounds feature
prominently in the AdS/CFT correspondence and determine properties of strongly coupled
gauge theory living on the boundary of the AdS space. In [80] we initiated the study of the
structure of the supersymmetric moduli spaces of AdS backgrounds in supergravity theories.
This was continued in all space-time dimensions with all possible supercharges in [81�86].

In [80] we studied the structure of the supersymmetric moduli spaces of N = 1 and N = 2
supergravity theories in AdS4 backgrounds. In the N = 1 case, the moduli space cannot be a
complex submanifold of the Kähler �eld space, but is instead real with respect to the inherited
complex structure. In N = 2 supergravity the same result holds for the vector multiplet moduli
space, while the hypermultiplet moduli space is a Kähler submanifold of the quaternionic-Kähler
�eld space. These �ndings are in agreement with AdS/CFT considerations.

In [81] we determined the supersymmetric AdS7 backgrounds of seven-dimensional half-
maximal gauged supergravities and showed that they do not admit any deformations that pre-
serve all 16 supercharges. We compared this result to the conformal manifold of the holograph-
ically dual (1, 0) superconformal �eld theories and showed that accordingly its representation
theory implies that no supersymmetric marginal operators exist.

In [82] we classi�ed the N = 4 supersymmetric AdS5 backgrounds that arise as solutions of
�ve-dimensional N = 4 gauged supergravity. We expressed our results in terms of the allowed
embedding tensor components and identify the structure of the associated gauge groups. We
showed that the moduli space of these AdS vacua is of the form SU(1,m)/(U(1) × SU(m))
and discussed our results regarding holographically dual N = 2 SCFTs and their conformal
manifolds.

In [83] we determined the conditions for maximally supersymmetric AdS5 vacua of �ve-
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dimensional gauged N = 2 supergravity coupled to vector-, tensor- and hypermultiplets charged
under an arbitrary gauge group. In particular, we showed that the unbroken gauge group of the
AdS5 vacua has to contain an U(1)R-factor. Moreover we proved that the scalar deformations
which preserve all supercharges form a Kähler submanifold of the ambient quaternionic Kähler
manifold spanned by the scalars in the hypermultiplets.

In [84] we studied maximally supersymmetric AdS backgrounds in consistent N = 2 trunca-
tions of type IIB supergravity compacti�ed on the Sasaki�Einstein manifold T 1,1. In particular,
we focused on truncations that contain �elds coming from the nontrivial second and third co-
homology forms on T 1,1. These give rise to N = 2 supergravity coupled to two vector- and
two hypermultiplets or one vector- and three hypermultiplets, respectively. We found that both
truncations admit AdS5 backgrounds with the gauge group always being broken but containing
at least an U(1)R factor. Moreover, in both cases we showed that the moduli space of AdS
vacua is nontrivial and of maximal dimension. Finally, we explicitly computed the metrics on
these moduli spaces.

In [85] we studied fully supersymmetric AdS6 vacua of half-maximal N = (1, 1) gauged
supergravity in six space-time dimensions coupled to n vector multiplets. We showed that the
existence of AdS6 backgrounds requires that the gauge group is of the form G′×G′′ ⊂ SO(4, n)
where G′ ⊂ SO(3,m) and G′′ ⊂ SO(1, n −m). In the AdS6 vacua this gauge group is broken
to its maximal compact subgroup SO(3)×H ′×H ′′ where H ′ ⊂ SO(m) and H ′′ ⊂ SO(n−m).
Furthermore, the SO(3) factor is the R-symmetry gauged by three of the four graviphotons.
We further showed that the AdS6 vacua have no moduli that preserve all supercharges. This
is precisely in agreement with the absence of supersymmetric marginal deformations in holo-
graphically dual �ve-dimensional superconformal �eld theories.

Finally, in [86] we studied maximally supersymmetric AdSD solutions of gauged supergrav-
ities in dimensions D ≥ 4. We showed that such solutions can only exist if the gauge group
after spontaneous symmetry breaking is a product of two reductive groups HR ×Hmat, where
HR is uniquely determined by the dimension D and the number of supersymmetries N while
Hmat is unconstrained. This resembles the structure of the global symmetry groups of the holo-
graphically dual SCFTs, where HR is interpreted as the R-symmetry and Hmat as the �avor
symmetry. Moreover, we discussed possible supersymmetry preserving continuous deforma-
tions, which correspond to the conformal manifolds of the dual SCFTs. Under the assumption
that the scalar manifold of the supergravity is a symmetric space we derived general group
theoretical conditions on these moduli. Using these results we determined the AdS solutions
of all gauged supergravities with more than 16 real supercharges. We found that almost all of
them do not have supersymmetry preserving deformations with the only exception being the
maximal supergravity in �ve dimensions with a moduli space given by SU(1, 1)/U(1). Further-
more, we determined the AdS solutions of four-dimensional N = 3 supergravities and showed
that they similarly do not admit supersymmetric moduli.
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