
Computer Physics Communications 232 (2018) 84–97

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Enabling rootless Linux Containers in multi-user environments:
The udocker tool
Jorge Gomes a,*, Emanuele Bagnaschi b, Isabel Campos c, Mario David a, Luís Alves a,
João Martins a, João Pina a, Alvaro López-García c, Pablo Orviz c

a Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal
b Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
c IFCA, Consejo Superior de Investigaciones Científicas-CSIC, Santander, Spain

a r t i c l e i n f o

Article history:
Received 25 January 2018
Received in revised form 28 May 2018
Accepted 31 May 2018
Available online 6 June 2018

Keywords:
Linux containers
HPC on cloud
Virtualization
Phenomenology
QCD
Biophysics

a b s t r a c t

Containers are increasingly used as means to distribute and run Linux services and applications. In this
paper we describe the architectural design and implementation of udocker, a tool which enables the user
to execute Linux containers in user mode. We also present a few practical applications, using a range
of scientific codes characterized by different requirements: from single core execution to MPI parallel
execution and execution on GPGPUs.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Technologies based on Linux containers have become very popular among software developers and system administrators. The main
reason behind this success is the flexibility and efficiency that containers offer when it comes to packing, deploying and running software.

A given software can be containerized together with all its dependencies in such a way that it can be seamlessly executed regardless of
the Linuxdistributionusedby the designatedhost systems. This is achievedbyusing advanced features ofmodern Linux kernels [1], namely
control groups and namespaces isolation [2,3]. Using both features, a set of processes can be placed in a fully isolated environment (using
namespaces isolation), with a given amount of resources, such as CPU or RAM, allocated to it (using control groups). We call ‘‘container’’ this
encapsulated group of processes.

Containers do not need to boot an operating system kernel, instead they share the one of the host system. Therefore they can be seen
as a lightweight approach to virtualization, when compared with conventional Virtual Machines (VM) such as the ones provided using
para-virtualization or hardware virtual machines.

As a consequence, a given physical system may host many more containers than virtual machines, as the first ones use less hardware
resources (notably memory). Moreover, transferring, starting and shutting down containers is usually much faster than performing the
same operations on a conventional virtual machine.

The idea of operating-system-level virtualization is not new. The origin can be traced back to the chroot systemcall (introduced in 1979),
which enables changing the root directory for a given process and its children. The concept was further extended with the introduction of
the jailed systems of BSD [4] (released in 1998). However the developments required at the level of the Linux kernel to have a consistent
and robust implementation have taken a few yearsmore to crystallize. The Control groups technology, also known as cgroups, is present in
the Linux kernels since version 2.6.24 (released in 2008). Support for namespaces was first introduced in the Linux kernel 2.4.19 (released
in 2002), with additional namespaces and enhancements being added since. However it was only with the introduction of Docker [5] that
containers gained widespread adoption in Linux.

* Corresponding author.
E-mail address: jorge@lip.pt (J. Gomes).

https://doi.org/10.1016/j.cpc.2018.05.021
0010-4655/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2018.05.021
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.05.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jorge@lip.pt
https://doi.org/10.1016/j.cpc.2018.05.021
http://creativecommons.org/licenses/by/4.0/

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 85

Docker simplifies the creation, distribution and execution of Linux containers. Besides providing the tools to build containers and
execute them, it also supports container repositories (such as the Dockerhub [6]), enabling the upload and the download of container
images.

Docker container images make use of a layered filesystem where changes are added as new layers. Using this approach, a new Docker
image can be created from an existing one simply by reusing and sharing its layers. Sharing layers among images saves storage space and
minimizes downloads.

Because of these very appealing features described above, Docker is now widely used to containerize both services and applications.
However Docker presents limitations especially when it comes to deploy containers in multi-user systems. In Docker, processes within
the container are normally executed with root privileges under the Docker daemon process tree, thus escaping to resource usage policies,
accounting controls, and process controls that are imposed to normal users. In addition, users authorized to access the Docker remote API
can easily gain privileged access to the host system. Due to these limitations Docker is not generally available in multi-user systems.

Unfortunately most scientific computing resources such as High Performance Computing (HPC) systems, Linux clusters or grid
infrastructures are multi-user systems. Therefore the adoption of Docker in these infrastructures has been very restricted.

Another limitation of Docker concerns the support for parallel applications that require network communication across multiple hosts.
For security reasons Docker uses network namespaces, making direct communication between containers across different hosts more
difficult with respect to normal processes. The use of network namespaces can be disabled but, opting for this solution, results in a system
security issue, as privileged processes runningwithin the containermay interfere with the host network stack. Access to host devices from
within the container is similarly problematic for the same reasons.

The Docker layered filesystem has many advantages but it is also slower than accessing the host filesystem directly. Furthermore files
in existing layers cannot be deleted or changed, instead they are hidden or overridden by an upper layer. Consequently container images
grow in size when modified and the only way to keep their size at acceptable level is to rebuild them from scratch.

The applicability of Docker to scientific computing has been hampered by the limitations we have highlighted in the prevision
paragraphs. As a consequence, alternative solutions such as Singularity [7] or Shifter [8] have been developed. However these solutions
also have their own limitations. They generally require administrator privileges both for installation and execution, or alternatively require
recent Linux kernel features such as unprivileged namespaces which are still not widely available in scientific computing systems.

In thisworkwe address the problematic of executing Docker containers in user space, i.e. without installing additional system software,
without requiring any administrative privileges and in a way that respects resource usage policies, accounting and process controls. Our
aim is to empower users to execute applications encapsulated inDocker containers easily in any Linux system including computing clusters
without system administrator intervention and regardless of Docker being locally available.

In Section 2 we will describe the architectural elements of the tool we have developed to address the above mentioned problems and
shortfalls. The remaining of the paper is devoted to describe the practical applicability of this middleware. We describe how our solution
can be applied to three very different use cases which we believe are representative of the current scientific-computing landscape.

The first use case describes an application highly complex due to the interplay of library dependencies, legacy code, library and software
requirements. The second case addresses the usage of containers in MPI parallel applications using Infiniband and/or TCP/IP. Finally we
also show how to target specialized hardware accelerators such as GPGPUs.

All the tools presented here are open-source and may be downloaded from our public repository [9].

2. Architectural design

To overcome the limitations mentioned in Section 1 we have explored the possibilities available to run applications encapsulated in
Docker containers in user space in a portable way. Our technical analysis is as follows.

2.1. Technical analysis

Most scientific applications do not require the full set of Docker features. These applications are usually developed to be executed
in multi-user shared environments by unprivileged users. Therefore features such as isolation are not strictly needed as long as the
applications are executed without privileges. The fundamental features that make Docker appealing as a means to execute scientific
applications are thus the following:

• the ability to provide a separate directory tree where the application with all its dependencies can execute independently from the
target host;

• possibility of mounting host directories inside the container directory tree, which is convenient for data access;
• easy software packaging with Dockerfiles;
• reuse of previously created images;
• easy sharing and distribution of images via Docker repositories such as Docker Hub and many others;
• simple command line and REST interfaces.

Several of these features such as creating containers and pushing them into repositories can be accomplished from the user desktop
or portable computer using Docker directly. Therefore we assume that Docker can be used to prepare the containers and that the focus
should rather be put on enabling the execution of the created containers in systems where Docker is unavailable.

The most complex aspect is to provide a chroot-like functionality so that Docker containers can be executed without conflicting with
the host operating system environment. The chroot system call requires privileges and thereforewould collidewith our objective of having
a tool that would not require privileges or installation by the system administrator. Three alternative approaches to implement chroot-like
functionality without privileges were identified:

• use unprivileged User Namespaces;
• use PTRACE to intercept calls that handle pathnames;
• use LD_PRELOAD to intercept calls that handle pathnames.

86 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

The use of unprivileged User Namespaces allows a non-privileged user to take advantage of the Linux namespaces mechanism. This
approach is only usable since kernel 3.19. Unfortunately the implementation of unprivileged User Namespaces exposes the processes
running inside the container to limitations especially in terms of mappings of group identifiers. Furthermore this approach does not work
on certain distributions such as CentOS6 andCentOS7,whichdonot provide kernels having the necessary features. Due to these limitations
this approach was initially discarded.

The PTRACE mechanism enables tracing of system calls making possible to change their calling parameters in run time. System calls
that use pathnames can be traced and dynamically changed so that references to pathnames within the container can be dynamically
expanded into host pathnames prior to the system calls and upon their return. The biggest drawback of using PTRACE to implement
chroot-like functionality is the impact on performance. An external process needs to trace the execution of the application, stop it before
each system call, change its parameters when they reference pathnames, and continue from the same point. If the system call returns
pathnames a second stop must be performed when the call returns to perform the required changes. In older kernels (such as in CentOS
6) all system calls need to be traced. In more recent kernels is possible to use PTRACE with SECCOMP filtering to perform selective system
call tracing thus allowing to restrict interception only to the set of calls that manipulate pathnames. The impact of using PTRACE depends
on the availability of SECCOMP and on how frequently the application invokes system calls.

The LD_PRELOAD mechanism allows overriding of shared libraries. In practice this approach allows to call wrapping functions where
the pathnames can be changed before and after invoking the actual system functions. The LD_PRELOADmechanism is implemented by the
dynamic loader ld.so. The dynamic loader is an executable that finds and loads shared libraries and prepares programs for execution. The
dynamic loader also provides a set of calls that enable applications to load further dynamic libraries in run time. When a shared library
pathname does not contain a slash the dynamic loader searches for the library in the directory locations provided by:

• DT_RPATH dynamic section attribute of the ELF executable;
• LD_LIBRARY_PATH environment variable;
• DT_RUNPATH dynamic section attribute of the ELF executable;
• cache file /etc/ld.so.cache;
• default paths such as /lib64, /usr/lib64, /lib, /usr/lib.

Due to this behavior, libraries from the host system may end-up being loaded instead of the libraries within the chroot-environment.
Furthermore the following limitations apply:

• this approach depends on dynamic linking and does not work with statically linked executables;
• the absolute pathname to the dynamic loader is encoded in the executables, leading to the invocation of the host dynamic loader

instead of the dynamic loader provided in the container;
• dynamic executables and shared libraries may also reference other shared libraries, if they have absolute pathnames then theymay

be loaded from locations outside of the container.

2.2. The udocker tool

To validate the concept we developed a tool called udocker that combines the pulling, extraction and execution of Docker containers
without privileges. udocker is an integration tool that incorporates several execution methods giving the user the best possible options to
execute their containers according to the target host capabilities. udocker is written in Python and aims to be portable. udocker has eight
main blocks:

• user command line interface;
• self installation;
• interface with Docker Hub repositories;
• local repository of images;
• creation of containers from images;
• local repository of containers;
• containers execution;
• specific execution methods.

udocker provides a command line interface similar to Docker and provides a subset of its commands aimed at searching, pulling and
executing containers in a Docker like manner.

The self installation allows a user to transfer the udocker Python script and upon the first invocation pull any additional required tools
and libraries which are then stored in the user directory. This allows udocker to be easily deployed and upgraded by the user himself.
udocker can also be installed from a previously downloaded tarball.

The Docker images are composed of filesystem layers. Each layer has metadata and a directory tree that must be stacked by the layered
filesystem to obtain the complete image. TheDocker layered filesystem is based onUnionFS [10]. InUnionFS file deletion is implemented by
signaling the hiding of files in the lower layers via additional files that act as markerswhite-outs. We therefore implemented the pulling of
images by downloading the corresponding layers andmetadata using the Docker Hub REST API. A simple repository has been implemented
where layers and metadata are stored. Layers are shared across the images to save space. The repository is by default placed in the user
home directory. To prepare a container directory tree, the several layers are sequentially extracted over the previous ones respecting
the white-outs. File protections are then adjusted so that the user can access all container files and directories. The container directory
tree is also stored in the local repository. The container execution is achieved with a chroot-like operation using the previously prepared
container directory tree.

udocker implements the parsing of Docker container metadata and supports a subset of metadata options namely: the command to be
invoked when the container is started, mount of host directories, setting of environment variables, and the initial working directory.

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 87

The PTRACE execution method was implemented using PRoot [11], a tool that provides chroot-like functionality using PTRACE. PRoot
also provides mapping of host files and directories into the container enabling access from the container to host locations. We had to
develop fixes for PROOT to make SECCOMP filtering work together with PTRACE due to changes introduced in the Linux kernel 3.8 and
above. A fix for proper clean-up of temporary files was also added.

The LD_PRELOAD method is based on Fakechroot [12] a library that provides chroot-like functionality using this mechanism, and is
commonly used in Debian to install a base system in a subdirectory. Fakechroot provides most of the wrapping functions that are needed.
However due to the previously described behavior of the dynamic loader, applications running under Fakechroot may unwillingly load
shared libraries from the host. udocker implements several strategies to address these shortcomings.

• Replacement of the dynamic loader pathname in the executables header, thus forcing the execution of the loader provided with the
container.

• Replacement of DT_RPATH and DT_RUNPATH in the executables, forcing the search paths to container locations.
• Replacement of shared library names within the headers of executables and libraries, forcing them to container locations.
• Extraction of shared libraries pathnames from ld.so.cache which are then modified and added to LD_LIBRARY_PATH.
• Interception of changes to LD_LIBRARY_PATH forcing the paths to container locations.
• Prevent the dynamic loader from accessing the host ld.so.cache
• Prevent the dynamic loader from loading libraries from the host /lib64, /usr/lib64, /lib, /usr/lib.

Changes to executables and libraries are performed using PatchELF [13]. PatchELF was enhanced to manage the pathname prefixes
of: the dynamic loader within executables, library dependencies and their paths in executables and shared libraries. The ld.so executable
within the container can also be modified by udocker to prevent the loading of shared libraries from the host. All the above changes are
performed automatically by udocker depending on the execution mode selected. The Fakechroot library was heavily modified to address
multiple limitations, change executables and libraries in run time, and to provide better mapping of host directories and files inside the
container.

The support for unprivileged User Namespaces and rootless containers was implemented using runC [14], a tool for spawning
and running containers according to the Open Containers Initiative OCI [15] specification. udocker translates Docker metadata and the
command line arguments to build a matching OCI configuration spec that enables the container execution in unprivileged mode.

All external tools including PRoot, PatchELF, runC and Fakechroot are provided together with udocker. The binary executables are
statically compiled to be used across multiple Linux distributions unchanged and increasing portability. udocker itself has a minimal set of
Python dependencies and can be executed in a wide range of Linux systems. udocker can be either deployed and managed entirely by the
end-user or centrally deployed by a system administrator. The udocker execution takes place under the regular userid without requiring
any additional privilege.

3. Description of basic capabilities

In this section we provide a description of themain capabilities of udocker. As previously stated, it mimics a subset of the Docker syntax
to facilitate its adoption and use by those already familiar with Docker tools. As pointed out in Sections 1 and 2, it does not make use
of Docker nor requires its presence. The current implementation is limited to the pulling and execution of Docker containers. The actual
containers should be built using Docker and Dockerfiles. udocker does not provide all the Docker features since it is not intended as a
Docker replacement but oriented to providing a run-time environment for containers execution in user space. The following is a list of
examples, see [9] for a complete list.

• Pulling containers from Docker Hub or from private Docker repositories.

udocker pull docker.io/repo_name/container_name

The image of the container with its layers is downloaded to the directory specified by the user. The location of that directory is
controlled by an environment variable $UDOCKER_DIR that can be defined by the user. It should point to a directory in a filesystem
where there is enough capacity to unroll the image. The default location is $HOME/.udocker.

• Once the image is downloaded, the container directory tree can be obtained from the container layers using the option create.
Upon exit udocker displays the identifier of the newly created container, a more understandable name can be associated to the
container identifier using the option name. In the example below, the content of the ROOT directory of a given container is shown.
The ROOT is a subdirectory below the container directory.

$shell> udocker create docker.io/repo_name/container_name
95c22b84-1868-332b-9bf0-2e056beafb00

$shell> udocker name 95c22b84-1868-332b-9bf0-2e056beafb00 \
my_container

$shell> ls $HOME/.udocker
bin containers layers lib repos

$shell> ls .udocker/containers/my_container/ROOT/
bin dev home lib64 media opt root sbin sys usr
boot etc lib lost+found mnt proc run srv tmp var

88 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

Table 1
Execution modes.

Mode Engine Characteristics

P1 PRoot Uses SECCOMP filtering (default mode)
P2 PRoot Without SECCOMP filtering
F1 Fakechroot Uses loader as 1st argument and LD_LIBRARY_PATH
F2 Fakechroot Uses modified loader to prevent loading from host
F3 Fakechroot ELF headers of executables and libraries are modified
F4 Fakechroot ELF headers are modified dynamically if needed
R1 runC Uses namespaces
S1 Singularity If locally installed, executes in sandbox mode

• Install software inside the container.

udocker run --user=root container_name \
yum install -y firefox pulseaudio gnash-plugin

In this example we used the capability to partially emulate root in order to use yum to install software packages in the container. No
root privileges are involved in this operation. Other tools that make use of user namespaces are not capable of installing software
in this way.

• Share hosts directories, files and devices with the container.
Execute making host directories visible inside the container.

udocker run -v /var -v /tmp -v /home/x/user:/mnt \
container_name /bin/bash

In this example we executed a container with the host directories /var and /tmp visible inside the container. The host directory
/home/x/user is also mapped into the container directory /mnt. Existing files in the container directories acting as mount points
will be obfuscated by the content of the host directories.

• Accessing the network as a host application. Contrary to the default Docker behavior udocker does not deploy an additional network
environment, and uses the host network environment unchanged.

udocker run container_name /usr/sbin/ifconfig

• Run graphics natively accessing the desktop X-Windows server directly.

udocker run --bindhome --hostauth --hostenv \
-v /sys -v /proc -v /var/run -v /dev --user=jorge \
--dri container_name /usr/bin/xeyes

Since udocker is running inside the user environment it can transparently access devices and functionality available to the parent
user process such as the X Windows System.

3.1. Execution modes

The execution modes described in Table 1 correspond to the different approaches implemented using PRoot, Fakechroot, runC and
Singularity. All modes are interchangeable, the execution mode of a given container can be changed as needed.

The Pmodes are the most interoperable, they support older and newer Linux kernels.
The F modes can be faster than P if the application makes heavy use of system calls. The F modes require libraries that are provided

with udocker for specific distributions such as CentOS 6 and 7, Ubuntu 14 and 16 among others.
The R mode requires a recent Linux kernel and currently only offers access to a very limited set of host devices which unfortunately

prevents its usage with GPGPUs and low latency interconnects.
The Smode uses Singularity if locally installed.
The selection of a given execution mode is accomplished with the setup command as in the following example.

udocker setup --execmode=F3 container_name

3.2. Security

Since root privileges are not involved, any operation that requires such privileges will not be possible. The following are examples of
operations that are not possible:

• Accessing host protected devices and files.
• Listening on TCP/IP privileged ports (range below 1024).
• Mount file-systems.
• Change userid or groupid.
• Change the system time.
• Change routing tables, firewall rules, or network interfaces.

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 89

The P and F modes do not provide isolation features such as the ones offered by Docker. If the containers content is not trusted then
they should not be executed with these modes, as they will be executed inside the user environment and can easily access host files and
devices. The mode R1 provides better isolation by using namespaces.

The containers data is unpacked and stored in the user home directory or other location of choice. Therefore the containers data will
be subjected to the same filesystem protections as other files owned by the user. If the containers have sensitive information the files and
directories should be adequately protected by the user.

In the following sections we describe three advanced scientific applications, widely used by the respective communities, in which the
applicability of the developed solution is demonstrated.

4. Complex library dependencies: MasterCode

The current pattern of research activity in particle physics requires in many cases the use of complex computational frameworks, often
characterized by being composed of different programs and libraries developed by independent groups.

Moreover, in the past twenty years the average complexity of the standalone computational tools, which are part of these frameworks,
has increased significantly and nowadays they usually depend on a complex network of external libraries and dependencies.

At the same time, the computational resources required by physics studies have noticeably increased in comparison with the past
and the use of computer clusters composed of hundreds, if not thousands, of nodes is now common. To address this issue, scientific
collaborations split the computational load across different sites, whose operating system and software environment usually differs.

As such, we investigate how the use of udocker could ease the deployment of complex scientific applications, allowing for an easy and
fast setup across heterogeneous systems. As an added value, we also observe that the use of exactly the same execution environment,
where the application has supposedly been validated, protects against possible unexpected issues when moving between different sites
with different compilers and libraries.

A prime example ofmodern complex applications is given by the frameworks used to perform global studies of particle physicsmodels.
The role of these applications, is to compare the theoretical predictions from hypothetical models with the observations performed by
experiments, through probabilistic studies (either frequentist or Bayesian), of the parameters that enter in the definition of these new
models.

All should be done by thoroughly covering as many different measurements and observations as possible. Since new physics can
manifest itself with different effects according to the specific experiment (or observation), it is not consistent to perform independent
studies for each one separately.

On the computational side, this translates in the practical requirement of interfacing a plethora of different codes, each usually
developed with the aim of computing the theoretical prediction of at most a few observables, with a framework that performs the
comparison with experimental data and that manages the sampling of the parameter space.

Several groups in the particle physics community have developed their own independent frameworks [16–19]. As a concrete example,
for our studies, we consider MasterCode [16].

4.1. Code structure

As explained in the previous section, MasterCode depends on a wide range of external tools and libraries, which are tightly integrated
into the main code-base. The full list of direct dependencies is the following:

• GNU autotools and GNU make.
• GNU toolchain (C/C++, Fortran77/90 compiler, linker, assembler).
• wget, tar, find, patch.
• Python 2.7 or Python ≥ 3.3.
• Cython ≥ 0.23 [20].
• ROOT ≥ 5 [21] and its dependencies.
• numpy and its dependencies [22].
• Matplotlib [23] and its dependencies.
• SQLite3.
• SLHAlib [24].
• MultiNest [25].

Moreover, it includes the following codes and their dependencies:

• SoftSUSY [26].
• FeynWZ [27].
• FeynHiggs [28], HiggsBounds [29] and HiggsSignals [30].
• micrOMEGAs [31].
• SSDARD [32].
• SDECAY [33].
• SuFla [34].

TheGNU toolchain is requirednot only at compile-timebut at run-time aswell. Someof the applications used to compute the theoretical
predictions are meta-codes that generate new code to be compiled and executed according to the parameter space point under analysis.

The capability of udocker in easing the use of MasterCode was tested, by building a Docker image based on Fedora 23, with all
required libraries and tools installed. After, the image was deployed successfully at three different sites, where the physics analyses are
usually run. We also successfully interfaced the execution of udocker with the local batch-systems.

To evaluate the performance impact of using udocker, we compared the compilation time of MasterCode with different setups, on a
local workstation (see Table 2 for machine specifications and Table 3 for software specifications).

90 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

Table 2
Test machine specifications.

OS Fedora 23
CPU Intel Core i5 650
RAM 8 GB
File system ext4

Table 3
Software version of the most important tools and libraries used in
our MasterCode benchmarks.

gcc Red Hat 5.3.1-6
Python 3.4.3
Cython 0.23.4
ROOT 5.34/36

Fig. 1. MasterCode execution flow during the sampling phase.

4.2. Execution flow

The execution of a full analysis in MasterCode consists of three different stages.
The first – and most complex – is the sampling of the parameter space of the model. In this phase of the execution, the MultiNest

algorithm is used to sample the parameter space of the model. For each point in the parameter space, a call is made to each of the external
codes used to compute the theoretical predictions. The predictions are then comparedwith the experimental constraints and the likelihood
of the point under analysis is computed. All the computed information is stored on the disk in an SQLite database for further analysis.

The main executable consists of a Python script that loads, through the ctypes interface, the MultiNest library, while Cython
interfaces are used to call the theory codes. Cython is also used to load an internal library, written in C++, that computes the likelihood
(i.e. the χ2) of the point under scrutiny. Important computational, I/O and storage resources are required for a fast execution of the
sampling.

In practice, the parameter space of new physics models is usually too large to be sampled by a single instance of MasterCode. To
overcome this obstacle, it is usually segmented in sub-spaces, for each one of which a separate sampling campaign is run. The execution
flow is schematically depicted in Fig. 1.

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 91

Fig. 2. Compilation time for the MasterCode framework using the different setups we considered in our benchmark, averaged over ten repetitions of the benchmark and
then shown as a ratio over the result obtained on the host. The black bars show the standard mean deviation. The color coding is the following: in gray we show the result
obtained on the host machine. In orange we show the compilation time using different udocker setups. Red is used to show the Docker result, while blue and green are used
to plot the performances of KVM and VirtualBox respectively.

The second phase proceeds after the end of the sampling campaigns. The results of the various parameter-space sub-segments, stored
in a large number of SQLite databases, are merged through the use of dedicated Python scripts. To reduce the total size of the dataset
and ease the analysis phase a selection filter is applied to the sampled points. This step involves only I/O facilities and very often the
performance limiting factor is the underlying file system.

The last stage is the physics analysis. In this step, one and two-dimensional ROOT histograms, defined for various physics observables
and/or parameters, are filled with the likelihood information. From the computational perspective, it involves reading the databases
produced in the previous step, whose size is commonly of the order of 10–50 GB (but can reach the terabyte for complex models), plus
some lightweight computations to update the likelihood if needed.

4.3. Benchmarking udocker with MasterCode

To verify if the use of udocker has any significant performance impact on MasterCode, two benchmarks were performed in different
environments:

• The compilation time of MasterCode.
• Comparison for a fixed pseudo-random number sequence, the running time for a restricted sampling of the so-called Constraint

Minimal Supersymmetric Standard Model (CMSSM).

The environments that we considered for our comparison are: the bare host, three different versions of udocker, Docker, KVM and
VirtualBox VMs.

Fig. 2 shows the average compilation time of MasterCode over ten repetitions of the benchmark normalized to the native host result.
The standard mean deviation is shown in black on the top of each bar. The baseline host result is roughly ∼923 s. We notice that the first
execution of the test is always the slowest, for all environments. This is due to I/O caching effects that disappear from the second iteration
onward, where on the other hand we find a good stability. Indeed the standard deviation is small in all cases. From the results, we observe
that udocker 1.0 and udocker 1.0.2 take a performance hit of about 30% with respect to the native host. Both these versions were run using
the standard PROOT model without SECCOMP filtering. On the other hand, the newest udocker release, used with the SECCOMP filtering
enabled, is only about 5% slower than the host and very close to the timing obtained in a KVM environment. The VirtualBox environment
has a compilation time between the KVM and the old versions of udocker, with a performance hit of about 15%. The Docker environment
is the very close to the native performance.

The results of the sampling-benchmark are shown in Fig. 3, with the same format used for the compilation case.We performed the same
sampling three times to avoid caching biases and statistical oscillations due to other background processes. The average running time for
the native host is of ∼31187 s. We observe that all the different setups yield running times that are at most about 2.5% slower than the
hostmachine. In this case, the slowest environment is the KVM one, whileDocker is the fastest, with udocker (P2mode) and KVM following
very closely. The striking difference in the observed pattern with respect to the compilation–test case, is due to the fact that the sampling-
phase ismostly CPU-bound,while the compilation-phase ismostly dependent on the I/O performances of the environment/system. Indeed,
udocker, even in its default PROOT mode (without SECCOMP filtering), shows a negligible performance hit with respect to the native host.

5. MPI parallel execution: openQCD

In this section we describe how to use udocker to run MPI jobs in HPC systems. The process described applies both to interactive and
batch-style job submission, following the philosophy of udocker; it does not require any special user privileges, nor system administration
intervention to setup.

We have chosen openQCD [35] to investigate both the applicability of our solutions and the effects of containerizing MPI processes on
the performance of the code. The reason to choose this application stems from its high impact and the code features.

92 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

Fig. 3. Running time for a test MasterCode CMSSM sampling campaign, on our test machine, using different setups. Line colors and styling as in Fig. 2.

Regarding impact, Lattice QCD simulations spend every year hundreds of millions of CPU hours in HPC centers in Europe, USA and
Japan. Current competitive simulations spread over thousands of processor cores. From the point of view of parallelization it requires only
communication to nearest neighbors and thus, presents nice properties regarding scalability. OpenQCD is one of themost optimized codes
available to run Lattice simulations and therefore, is widely distributed.

It is implemented using only open source software, may be downloaded and used under the license terms of the GPLmodel. Therefore
it is an excellent laboratory for us to investigate with the required clarity the performance and applicability of our solution.

Competitive QCD simulations require latencies on the order of one microsecond, and Intranet bandwidths on the range 10–20 Gb/s
in terms of effective throughput. This is currently achieved only by the most modern Infiniband fabric interconnects (from QDR on). In
what follows, we describe the steps to execute openQCD using udocker in a HPC system using Infiniband as low-latency interconnect. An
analogous procedure can be followed for other MPI applications, also via simpler TCP/IP interconnects.

A container image of openQCD can be downloaded from the publicDocker Hub repository.1 From this image a container can be extracted
to the filesystem with udocker create, as described before.

In the udocker approach the mpiexec of the Host machine is used to submit npMPI process instances as containers, in such a way that
the containers are able to communicate via the Intranet fabric network (Infiniband in the case at hand).

For this approach to work, the code in the container needs to be compiled with the same version of MPI that is available in the HPC
system. This is necessary because the Open MPI versions of mpiexec and orted available in the host system need to match with the
compiled program. This limitation has to do with incompatibilities of the OpenMPI libraries across different versions as well as with tight
integration of Open MPI with the batch system.

The MPI job submission to the HPC cluster succeeds by issuing the following command:

$HOST_OPENMPI_BIN/mpiexec -np 128 udocker run \
--hostenv --hostauth --user=$USERID \
--workdir=$OPENQCD_CONTAINER_DIR \
openqcd \
$OPENQCD_CONTAINER_DIR/ym1 -i ym1.in

where the environment variable HOST_OPENMPI_BIN points to the location of the host MPI installation directory.
Depending on the application and host operating system, a variable performance degradation may occur when using the default

execution mode (Pn). In this situation other execution modes (such as Fn) may provide a significant higher performance

5.1. Scaling tests

In Fig. 4 we plot the (weak) scaling performance of themost common operation in QCD, that is, applying the so called Dirac Operator to
a spinor field [36]. This operation can be seen as a sparse matrix–vector multiplication across the whole Lattice, of a matrix of dimension
proportional to the Volume of the Lattice (12 × T × L3) times a vector of the same length.

The scaling properties have been measured in two different HPC systems: Altamira and CESGA.2
As can be observed the performance using udocker to run the MPI jobs is at the very least equal to the native performance. There are

however a couple of observations to be made:

• At CESGAwe observe that the performance of udocker is substantially better than the native performance when using 8 and 16MPI
processes, i.e., when the MPI processes span only within one single node (the nodes at CESGA have 24 cores).
The hostmachine is running a CentOS 6.7 OS,while the container has a CentOS 7.3.We have checked, by running also the application
with udocker in a CentOS 6.9 container, that this improvement is due to the improvement in the libraries of newer versions of
CentOS. We actually observe that the performance increases smoothly when increasing the version of CentOS.

1 https://hub.docker.com/r/iscampos/openqcd.
2 See Appendix for a hardware/software description of both machines.

https://hub.docker.com/r/iscampos/openqcd

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 93

Fig. 4. Weak scaling analysis of the performance of the Lattice Dirac Operator (local lattice 324) using a containerized version of the application with udocker, compared
with the performance of the code used in the classical way (native performance). In these tests we have used P1 as execution mode. The results do not vary using F1.

More advanced versions of the libraries in the Operating System are able to make a more efficient usage of the shared memory
capabilities of the CESGA nodes. We do not observe such improvement when the run is distributed over more than one node, in this
case the effects of the intra-network communication overheads are likely dominating the performance.
It is interesting to observe how the usage of containers can improve the applications performance when the underlying system has
a somewhat older Operating System. This fact is specially relevant in most HPC centers that, for stability reasons, tend to have a
very conservative policy when it comes to upgrading the underlying operating system and software.

• In Altamira we observe a large dispersion in the performance results using 256 cores in native mode. The performance is much
more stable using udocker. This can be traced down to local GPFS filesystem issues, which are more visible in the native run, as the
system needs to look for the openMPI libraries across the filesystem, while with udocker the container has everything included in
the $UDOCKER_DIR directory.

Besides the scaling tests we also run openQCD for various settings of Lattice size and parameters, encountering no impact in
performance in the time employed for each Hybrid MonteCarlo trajectory. This is of no surprise as I/O is not particularly intensive and
frequent in Lattice QCD simulations: the usual checkpoints generate only Kbytes of data, while configurations, which in our Lattice sizes
reached up to 1GB in size, are written in intervals of a few hours. For such I/O rates using udocker implies no penalty in performance.

Related to the above is the fact that in all the tests performed we have observed no performance difference between using P1 or F1
execution modes.

In summary, exploiting low-latency computing facilities using containers technology appears as an appealing possibility to maximize
the efficiency on the use of resources, while guaranteeing researchers autonomy in profiting from modern system software capabilities.

6. Accessing GPGPUs: Modeling of biomolecular complexes

DisVis [37] and PowerFit [38] are two software packages for modeling biomolecular complexes. A detailed description of both software
packages can be found in [39].

These software packages are coded in Python and are open source under theMIT license, published in github [40]. They leverage the use
of GPGPUs through the OpenCL framework (PyOpenCL Python package) since the modeling uses the evaluation of Fast Fourier Transforms
(FFTs), it uses the packages clFFT3 and gpyfft.4

Gromacs [41] is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian equations of motion for systems with
hundreds tomillions of particles. It is primarily designed for biochemicalmolecules like proteins, lipids andnucleic acids that have complex
bonded interactions, but since Gromacs is extremely fast at calculating the non- bonded interactions (that usually dominate simulations)
many researchers are also using it for non-biological systems, such as polymers.

6.1. Setup and deployment

The physical host used to benchmark udocker with the DisVis and Gromacs applications using GPGPUs was made available by the
Portuguese National Distributed Computing Infrastructure (INCD). It is hosted at the INCDmain datacenter in Lisbon and its characteristics
are described in the Appendix.

The applications DisVis v2.0.0 and Gromacs 2016.3 were used. Docker images were built from Dockerfiles for both applications and for
two operating systems: CentOS 7.3 (Python 2.7.5, gcc 4.8.5) and Ubuntu 16.04 (Python 2.7.12, gcc 5.4.0), the versions of the applications
in the Docker images are the same as in the physical host.

The applications in the Docker images were built with GPGPU support and the NVIDIA software that matches the same version of the
NVIDIA driver deployed in the physical host system.

3 https://github.com/clMathLibraries/clFFT.
4 https://github.com/geggo/gpyfft.

https://github.com/clMathLibraries/clFFT
https://github.com/geggo/gpyfft

94 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

Table 4
Execution environments for the DisVis and Gromacs applications.

Tag OS Type of machine

Phys-C7-QK5200 CentOS 7 Physical
Dock-C7-QK5200 CentOS 7 Docker
Dock-U16-QK5200 Ubuntu 16 Docker
UDockP1-C7-QK5200 CentOS 7 Udocker mode P1
UDockP1-U16-QK5200 Ubuntu 16 Udocker mode P1
UDockF3-C7-QK5200 CentOS 7 Udocker mode F3
UDockF3-U16-QK5200 Ubuntu 16 Udocker mode F3

Fig. 5. Ratio between runtime values of Docker or udocker and the physical host of the DisVis use case. Lower values indicate better performance.

Those same imageswere then used to perform the benchmarks using both Docker and udocker. In particular, udocker has severalmodes
of execution (c.f. the user manual hosted at [9]), available through the setup --execmode option. Two such options have been chosen
for Gromacs execution, namely: P1 corresponding to PRoot with SECCOMP filtering and F3 corresponding to Fakechroot with maximum
isolation from the host system. For DisVis we only used the P1 execution mode.

Table 4 summarizes the different execution environments used in the benchmarks in terms of operating system and type of machine:
physical (the host), Docker or udocker. The tags UDockP1 and UDockF3 correspond to the two chosen execution modes of udocker
mentioned above.

6.2. Benchmark results

The DisVis use case was executed with input molecule PRE5-PUP2 complex. The application is executed with one GPU (the option
-g selects the GPU execution mode), using the following command:

$shell> disvis O14250.pdb \
Q9UT97.pdb \
restraints.dat \
--angle 5.0 \
--voxelspacing 1 \
-g \
-d ${OUT_DIR}

The Gromacs gmx mdrunwas executed with an input file of the amyloid beta peptide molecule. The application is executed with one
GPU and 8 OpenMP threads (per MPI rank), using the following command:

$shell> gmx mdrun -s md.tpr \
-ntomp 8 \
-gpu_id 0

For each case, 20 runs have been executed for statistical purposes. The run time of each execution is recorded and a statistical analysis is
done as follows: The outliers are detected andmasked from the sample of 20 points, then the average and standard deviation are calculated
for each case and environment option (physical host, Docker or udocker). The ratio between the average run time of each docker or udocker
environmentwith the average run time in the physical host is plotted in Figs. 5 and 6. Typical execution times for both cases range between
20 and 30 min.

The first ratio (column) in each figure is 1 since the baseline is the physical host, the standard deviation of the ratio is calculated based
on the statistical formula for the ratio of two variables:

∆R = ti/thost ×

√
(∆ti/ti)2 + (∆thost/thost)2 (1)

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 95

Fig. 6. Ratio between runtime values of Docker or udocker and the physical machine of the Gromacs use case. Lower values indicate better performance.

where: ti is the average runtime in a given environment, thost is the average runtime in the physical host,∆thost and∆ti are the corresponded
standard deviations.

Fig. 5 corresponds to the benchmark of the DisVis use case. It can be seen that the execution of both Docker and udocker in CentOS
7.3 containers although 1%–2% smaller than 1 is still compatible with this value. This shows that executing the application in this type of
virtualized environment has the same performance as executing it in the physical host. On the other hand executing the application in the
Ubuntu 16.04 containers (both Docker and udocker cases) the execution time is around 5% better than in the physical host.

Fig. 6 corresponds to the benchmark of the Gromacs use case. It can be seen that the execution in CentOS 7.3 containers for Docker
(second bar) and udocker with executionmode F3 (Fakechroot withmaximum isolation from the host system, sixth bar), are 3%–5%worse
than the execution in the physical host although still compatible with one due to the statistical error. Also in the case of execution in
Ubuntu 16.04 containers (third and seventh bars) the ratios are compatible with one, i.e. the containerized application execution has the
same performance as in the physical host. In the case of executing the application in udocker containers with execution mode P1 (PRoot
with SECCOMP filtering, forth and fifth bars), a penalty in performance of up to 22% is observed.

The difference in performance between udocker execution modes F3 and P1 for the Gromacs use case can be explained by the
computational model itself, since Gromacs is using the GPGPU and 8 OpenMP threads (corresponding to 8 CPU cores) frequent exchanges
of data between the GPGPU and the CPU threads and possible context change between CPU tasks translate into a performance penalty in
the P1 execution mode that does not occur in the F3 execution mode. This is partially confirmed by comparing to the DisVis use case that
uses almost exclusively the GPGPU (and at most only 1 CPU) where the P1 execution mode does not have any impact on performance.

7. Conclusions

In this paper we have described a middleware suite that provides full autonomy to the user when it comes to execute applications
in Docker container format. We have shown that our solution provides a complete encapsulation of the software, without significantly
impacting performance.

In this paper we have analyzed a number of differently oriented use cases, and got clear evidence that compute intensive applications
pay practically no performance penalty when executed as udocker containers. Regarding I/O bounded applications, the udocker execution
modes Pn introduce a penalty that can be largely minimized by using the Fn execution modes. The small penalty still observed with the Fn
modes is introduced by the filename translation, the data access itself is unaffected. Other tools such as Singularity or Shifter can mount
container images as file systems keeping many file system calls local. Mounting the images may yield better performance especially when
using a shared network file system, however this has the disadvantage of requiring privileges. All OpenQCD performance measurements
in this paper were performed with the container image placed in Lustre file systems without any noticeable impact in comparison with
native execution.

Tools like udocker are essential when it comes to access external computing resources with different execution environments. It is
particularly so when accessing cloud infrastructures and shared computing infrastructures such as HPC clusters, where running software
with encapsulation is a necessity to remain independent of the host computing environment. Users of DisVis and PowerFit have been
running these applications in the EGI Grid infrastructure at sites offering GPGPU resources, using udocker and performing grid job
submission as any other application. udocker empowers users to execute applications encapsulated in Docker containers in such systems
in a fully autonomous way.

Since its first release in June 2016 udocker expanded quickly in the open source community as can be seen from the github metrics
(number of stars, forks or number of external contributions). Since then it has been used in large international collaborations like the case
of MasterCode reported here.

The extra flexibility offered by udocker hasmade it a very appreciated tool, and has been already adopted by a number software projects
to complement Docker. Among them openmole,5 bioconda,6 common-workflow-language (cwl) [42] or SCAR — Serverless Container-aware
ARchitectures.7

5 https://www.openmole.org/api/index.html#org.openmole.plugin.task.udocker.package.
6 https://anaconda.org/bioconda/udocker.
7 https://github.com/grycap/scar.

https://www.openmole.org/api/index.html%23org.openmole.plugin.task.udocker.package
https://anaconda.org/bioconda/udocker
https://github.com/grycap/scar

96 J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97

Acknowledgments

This work has been performed in the framework of the H2020 project INDIGO-Datacloud (RIA 653549). The work of E.B. is supported
by the Collaborative Research Center SFB676 of the DFG, ‘‘Particles, Strings and the early Universe’’. The proofs of concept presented have
been performed at the FinisTerrae II machine provided by CESGA (funded by Xunta de Galicia and MINECO), at the Altamira machine
(funded by the University of Cantabria and MINECO) and at the INCD-Infraestrutura Nacional de Computação Distribuída (funded by FCT,
P2020, Lisboa2020, COMPETE and FEDER under the project number 22153-01/SAICT/2016).

We are indebted to the managers of these infrastructures for their generous support and constant encouragement.

Appendix. Hardware and Software setup

The images of the containers used in this work are publicly available in the Docker hub, at the following urls:

• OpenQCD: https://hub.docker.com/r/iscampos/openqcd/
• DISVIS: https://hub.docker.com/r/indigodatacloudapps/disvis
• POWERFIT: https://hub.docker.com/r/indigodatacloudapps/powerfit
• MASTERCODE:https://hub.docker.com/r/indigodatacloud/docker-mastercode/.

The proofs of concept presented have been carried out in the following infrastructures,with the followingHardware/OS/Software setup:

• Finisterrae-II - CESGA, Santiago de Compostela
https://www.cesga.es/es/infraestructuras/computacion/FinisTerrae2
Hardware Setup:

– Processor type Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz, with cache size 30 MB
– Node configuration 2 CPUs Haswell 2680v3, (2 × 12 = 24 cores/node) and 128 GB RAM/node
– Infiniband Network Mellanox Infiniband FDR@56 Gbps.

Software setup:

– Operating System CentOS 6
– Compilers GCC 6.3.0
– MPI libraries openmpi/2.0.2.

• Altamira - IFCA-CSIC, Santander
https://grid.ifca.es/wiki/Supercomputing/Userguide
Hardware Setup:

– Processor type Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz, with cache size 20 MB.
– Node configuration 2 CPUs E5-2670, (2 × 8 = 16 cores/node) and 64 GB RAM/node
– Infiniband Network Mellanox Infiniband FDR@56 Gbps.

Operating system and Software setup:

– Operating System CentOS 6
– Compilers GCC 5.3.0
– MPI libraries openMPI/1.8.3.

• INCD, Lisbon
https://www.incd.pt
Hardware Setup:

– Processor type Intel(R) Xeon(R) CPU E5-2650L v3 @ 1.80 GHz
– Node configuration 2 CPUs (2 × 12 = 24 cores/node × 2 = 48 in HiperThreading mode) and 192 GB RAM
– GPU model NVIDIA Quadro K5200.

Operating system and Software setup:

– Operating System CentOS 7.3
– NVIDIA driver 375.26
– CUDA 8.0.44
– docker-engine 1.9.0
– udocker 1.0.3.

References

[1] Linus Torvalds 2015. Linux Operating system. Can be retrieved from https://github.com/torvalds/linux/.
[2] P. Menage, https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.
[3] See https://en.wikipedia.org/wiki/Linux_namespaces.
[4] See eg. https://www.freebsd.org/doc/handbook/jails.html.
[5] S. Hykes, (Docker Inc) See software description and downloads in http://www.docker.com.
[6] Description of the cloud-based Docker repository service can be found in: https://www.docker.com/products/docker-hub.

https://hub.docker.com/r/iscampos/openqcd/
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/disvis
https://hub.docker.com/r/indigodatacloudapps/powerfit
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://hub.docker.com/r/indigodatacloud/docker-mastercode/
https://github.com/torvalds/linux/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://en.wikipedia.org/wiki/Linux_namespaces
https://www.freebsd.org/doc/handbook/jails.html
http://www.docker.com
https://www.docker.com/products/docker-hub

J. Gomes et al. / Computer Physics Communications 232 (2018) 84–97 97

[7] G.M. Kurtzer, V. Sochat, M.W. Bauer, PLoS One 12 (5) (2017) e0177459. http://dx.doi.org/10.1371/journal.pone.0177459.
[8] M.Jacobsen. Douglas, Richard Shane Canon, Contain This, Unleashing Docker for HPC. 2015.
[9] udocker can be downloaded from https://github.com/indigo-dc/udocker.

[10] David Quigley, et al. Unionfs: User- and Community-Oriented Development of a Unification File System. (2006).
[11] See https://proot-me.github.io/.
[12] See https://github.com/dex4er/fakechroot.
[13] See https://nixos.org/patchelf.html.
[14] See https://github.com/opencontainers/runc.
[15] See https://www.opencontainers.org.
[16] K.J. de Vries, (Ph.D. thesis), Global Fits of Supersymmetric Models after LHC Run 1 (2015), available on the Imperial College website: http://hdl.handle.net/10044/1/

27056.
[17] L. Roszkowski, R. Ruiz de Austri, J. Silk, R. Trotta, Phys. Lett. B 671 (2009) 10. http://dx.doi.org/10.1016/j.physletb.2008.11.061. arXiv:0707.0622 [astro-ph].
[18] P. Bechtle, K. Desch, P. Wienemann, Comput. Phys. Comm. 174 (2006) 47. http://dx.doi.org/10.1016/j.cpc.2005.09.002. [hep-ph/0412012].
[19] L. Roszkowski, R. Ruiz de Austri, J. Silk, R. Trotta, Phys. Lett. B 671 (2009) 10. http://dx.doi.org/10.1016/j.physletb.2008.11.061. arXiv:0707.0622 [astro-ph].
[20] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Comput. Sci. Eng. 13 (2) (2011) 31–39. http://dx.doi.org/10.1109/MCSE.2010.118.
[21] R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81. http://dx.doi.org/10.1016/S0168-9002(97)00048-X.
[22] S.V.D. Walt, S.C. Colbert, G. Varoquaux, Comput. Sci. Eng. 13 (2) (2011) 22–30.
[23] J.D. Hunter, Comput. Sci. Eng. 9 (3) (2007) 90–95.
[24] T. Hahn, Comput. Phys. Comm. 180 (2009) 1681. http://dx.doi.org/10.1016/j.cpc.2009.03.012.
[25] F. Feroz, M.P. Hobson, M. Bridges, Mon. Not. R. Astron. Soc. 398 (2009) 1601. http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x. arXiv:0809.3437 [astro-ph].
[26] B.C. Allanach, Comput. Phys. Comm. 143 (2002) 305. http://dx.doi.org/10.1016/S0010-4655(01)00460-X. [hep-ph/0104145].
[27] S. Heinemeyer, et al., J. High Energy Phys. 0608 (2006) 052. arXiv:hep-ph/0604147;

S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804 (2008) 039 arXiv:0710.2972 [hep-ph].
[28] S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Comm. 124 (2000) 76 arXiv:hep-ph/9812320;

S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9 (1999) 343. arXiv:hep-ph/9812472;
G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28 (2003) 133. arXiv:hep-ph/0212020;
M. Frank, et al., J. High Energy Phys. 0702 (2007) 047. arXiv:hep-ph/0611326;
T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180 (2009) 1426;
T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Rev. Lett. 112 (2014) 14 141801, arXiv:1312.4937 [hep-ph];
H. Bahl, W. Hollik, Eur. Phys. J. C 76 (2016) 499 arXiv:1608.01880 [hep-ph];
See http://www.feynhiggs.de..

[29] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Comm. 181 (2010) 138 arXiv:0811.4169 [hep-ph]; Comput. Phys. Commun. 182 (2011)
2605 arXiv:1102.1898 [hep-ph];
P. Bechtle, et al., Eur. Phys. J. C 74 (2014) 3 2693, arXiv:1311.0055 [hep-ph];
P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Eur. Phys. J. C 75 (9) (2015) 421 arXiv:1507.06706 [hep-ph].

[30] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Eur. Phys. J. C 74 (2) (2014) 2711 arXiv:1305.1933 [hep-ph]; J. High Energy Phys. 1411 (2014) 039
arXiv:1403.1582 [hep-ph].

[31] G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Comm. 185 (2014) 960 arXiv:1305.0237 [hep-ph], and references therein.
[32] Information about this code is available from K. A. Olive: it contains important contributions from J. Evans, T. Falk, A. Ferstl, G. Ganis, F. Luo, A. Mustafayev, J. McDonald,

F. Luo, K. A. Olive, P. Sandick, Y. Santoso, C. Savage, V. Spanos and M. Srednicki.
[33] M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Comm. 168 (2005) 46 [hep-ph/0311167].
[34] G. Isidori, P. Paradisi, Phys. Lett. B 639 (2006) 499. arXiv:hep-ph/0605012;

G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75 (2007) 115019 arXiv:hep-ph/0703035, and references therein.
[35] Martin Lüscher, Code available at: http://luscher.web.cern.ch/luscher/openQCD..
[36] Martin Lüscher, Lectures given at the Summer School onModern perspectives in lattice QCD, Les Houches, August 3-28 2009 Downloadable at arxiv.org/abs/1002.4232.
[37] G.C.P. Van Zundert, A.M.J.J. Bonvin, Bioinformatics 31 (2015) 3222–3224.
[38] G.C.P. Van Zundert, A.M.J.J. Bonvin, AIMS Biophys. 2 (2015) 73–87.
[39] G.C.P. van Zundert, et al., J. Mol. Biol. (2016). http://dx.doi.org/10.1016/j.jmb.2016.11.032.
[40] DisVis: https://github.com/haddocking/disvis, PowerFit: https://github.com/haddocking/powerfit.
[41] M.J. Abraham, et al., SoftwareX 1–2 (2015) 19–25. http://dx.doi.org/10.1016/j.softx.2015.06.001.
[42] Amstutz, Peter and Crusoe, Michael R. and Tijanić, Nebojša (editors), Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya

Nedeljkovich, Matt Scales, Stian Soiland-Reyes, Luka Stojanovic Common Workflow Language, v1.0. Specification, Common Workflow Language working group 2016.
https://w3id.org/cwl/v1.0/, 10.6084/m9.figshare.3115156.v2.

http://dx.doi.org/10.1371/journal.pone.0177459
https://github.com/indigo-dc/udocker
https://proot-me.github.io/
https://github.com/dex4er/fakechroot
https://nixos.org/patchelf.html
https://github.com/opencontainers/runc
https://www.opencontainers.org
http://hdl.handle.net/10044/1/27056
http://hdl.handle.net/10044/1/27056
http://hdl.handle.net/10044/1/27056
http://dx.doi.org/10.1016/j.physletb.2008.11.061
http://arxiv.org/0707.0622
http://dx.doi.org/10.1016/j.cpc.2005.09.002
http://dx.doi.org/10.1016/j.physletb.2008.11.061
http://arxiv.org/0707.0622
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://refhub.elsevier.com/S0010-4655(18)30204-2/sb22
http://refhub.elsevier.com/S0010-4655(18)30204-2/sb23
http://dx.doi.org/10.1016/j.cpc.2009.03.012
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/0809.3437
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg27a
http://arxiv.org/hep-ph/0604147
http://arxiv.org/0710.2972
http://arxiv.org/hep-ph/9812320
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg28b
http://arxiv.org/hep-ph/9812472
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg28c
http://arxiv.org/hep-ph/0212020
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg28d
http://arxiv.org/hep-ph/0611326
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg28e
http://arxiv.org/1312.4937
http://arxiv.org/1608.01880
http://www.feynhiggs.de
http://arxiv.org/0811.4169
http://arxiv.org/1102.1898
http://arxiv.org/1311.0055
http://arxiv.org/1507.06706
http://arxiv.org/1305.1933
http://arxiv.org/1403.1582
http://arxiv.org/1305.0237
http://refhub.elsevier.com/S0010-4655(18)30204-2/sb33
http://refhub.elsevier.com/S0010-4655(18)30204-2/rg34a
http://arxiv.org/hep-ph/0605012
http://arxiv.org/hep-ph/0703035
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://luscher.web.cern.ch/luscher/openQCD
http://arxiv.org/abs/1002.4232
http://refhub.elsevier.com/S0010-4655(18)30204-2/sb37
http://refhub.elsevier.com/S0010-4655(18)30204-2/sb38
http://dx.doi.org/10.1016/j.jmb.2016.11.032
https://github.com/haddocking/disvis
https://github.com/haddocking/powerfit
http://dx.doi.org/10.1016/j.softx.2015.06.001
https://w3id.org/cwl/v1.0/

	Enabling rootless Linux Containers in multi-user environments:The udocker tool
	Introduction
	Architectural design
	Technical analysis
	The udocker tool

	Description of basic capabilities
	Execution modes
	Security

	Complex library dependencies: MasterCode
	Code structure
	Execution flow
	Benchmarking udocker with MasterCode

	MPI parallel execution: openQCD
	Scaling tests

	Accessing GPGPUs: Modeling of biomolecular complexes
	Setup and deployment
	Benchmark results

	Conclusions
	Acknowledgments
	Hardware and Software setup
	References

