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ABSTRACT 

The work describes hardware layer of the universal, parameterized communication interface 

for application in the FPGA chips. The interface is called in this work as the „Internal Interface” or 

in short the “II”. The paper shows how to automatically create the address and data space, 

according to the user declarations. The methods to standardize the I/O communication with 

FPGA chips are described. The communication uses library functions and standardized, 

parametric components in VHDL. Theoretical background and technical description of the 

Internal Interface are illustrated with a few easy examples of simple interfaces.  

 The name of „Internal Interface” is used by the author and the Warsaw ELHEP Research 

Group since 2000 for the description of then newly introduced I/O communication standard 

between the user and the FPGA chip. The Internal Interface communication standard has been 

applied since its first introduction in:  

 Muon and Energy Trigger for Backing Calorimeter (BAC) in ZEUS experiment  (AHDL 

version) [11], 

 RPC Muon Trajectory Pattern Comparator Electronics for Compact Muon Solenoid (CMS) in 

CERN [15], 

 TESLA Low Level RF Control electronics for TTF II and VUV FEL, as well as for X-Ray 

FEL studies [17-22],  

 Warsaw ELHEP Laboratory on Electronics for High Energy Physics Experiments for 

teaching purposes and FPGA electronics development  [10] in WUT, 

 WARSAW CMS Laboratory, for CMS electronics development [14] in the Institute of 

Experimental Physics, WU,  

 

Keywords:  FPGA, FPGA I/O, VHDL, Altera, Xilinx, communication interface, behavioral 

programming, FPGA systems parameterization and standardization, FPGA based systems for 

HEP experiments, multi-FPGA systems. 
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1 INTRODUCTION 

Up-to-the-date FPGA circuit technology [1-5] enables effective implementation of 

millions of reconfigurable logical blocks (LCELLs ), hundreds of fast numerical calculations 

blocks (DSP) [6], a number of embedded microprocessors, multi-gigabit optical transmission 

lines [7,8] etc. This implementation may done in distributed, multi-channel electronic systems 

[9,10]. Usage of tens or even thousands of FPGA chips in large measurement-control systems 

is turning now to an industrial standard. It is possible to realize functional modifications in 

such modern systems in a faster and much easier way. There is no need to do any changes in 

the existing hardware structure. There is neither the need to realize a new version of the 

network or particular devices [12]. The systems of this kind are equipped in extended 

communication interfaces. These interfaces support full, detailed, remote monitoring, 

management and diagnostics of particular networked devices [13]. This capability stems from 

mutual and strong inter-relations between hardware and software layers of the systems. 

Changes in the hardware layer have to be imaged in the communication layer at the level of 

hardware (mainly in the FPGA chips) and management software.  

This paper presents an idea and examples of applications of a communication interface 

for FPGA chips called the “Internal Interface”. This interface simplifies considerably the 

design process of multi-FPGA chip systems. The interface is automatically implemented in 

the FPGA chips and in the programming layer of computer based control system. This 

document is a full theoretical and technical documentation of the II communication standard 

and its implementation. Basing on this documentation the designer may use the II technology 

to build own systems.  

The Internal Interface communication standard (referred in short to as the II) was 

designed originally in 2000-2001 for the electronic system of the RPC Muon Trigger, in the 

CMS experiment at the LHC accelerator in CERN [14]. Early version of the interface was 

implemented in the trial PCBs for the TRIDAQ system of BAC detector at ZEUS. The idea of 

II bases on providing automating of design of the local communication interface. The process 

Fig. 1. General structure of the design environment for the Internal Interface. 
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is automatic in the hardware (VHDL) layer and in software (C++, MATLAB) layer. A 

parametric algorithm was implemented to build the address and data areas.  This allows for 

usage optimization of the information exchange area. The method is independent from the 

communication platform (hardware – PCI, VME, VXI, Ethernet, optical gigalink, etc.).  

The usage of the II technology is as follows. The project is described in the standardized 

II form using a strictly defined scripting language. The IID file is subject to parallel 

transformation into the VHDL code and the header file for C++ or MATLAB. This process 

was shown schematically in fig. 1. The imaging (projection) of the communication layer for 

hardware functional blocks, implemented in the FPGA chip, is done automatically in the 

hardware and software layers. This method minimizes the realization time of the project, 

number of possible errors. It allows for structuring and parameterization of particular 

functional blocks used in the project.  

There are presented the basics of description method for the communication area. These 

methods are used in the Internal Interface technology. The process of building the II 

description is showed from the user point of view and from the side of automatic 

implementation in the FPGA chip. There are described the following components of the II 

technology:  

 the structure of the main IID header file, 

 user access library functions, 

 standard implementation in VHDL language.  

There are presented the following examples of the application of II library function for:  

 single bits, 

 registers, 

 memory areas, 

 project parameterization.  

The presented stable release version of the described Internal Interface technology is 

numbered as 1.0 for the following date: 27.11.2005. The II interface is under continuous 

development and the version 2.0 ( to be released in mid 2006) will have the component 

communication sub-interfaces. In the trial versions it is called the Component Internal Interface 

(CII) technology.  
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2  PARAMETRIC HARDWARE BUS 

The Internal Interface hardware communication bus is divided to three groups of signals:  

 address bus lines II_addr of the width II_addr_width. The address lines are 

numbered in the range from 0 to II_addr_width –1. The youngest line is addressed 

with the value of 0, 

 data bus lines, II_data of the width II_data_width. The data lines are numbered in 

the range from 0 to II_data_width –1. The youngest line is indexed by the value of 0. 

The bused for the input and output data are separated inside the FPGA chip II_data_in 

and II_data_out. 

 control lines, realize the access operations and initialization: 

 II_resetN - the low level forces asynchronous process of the interface initialization,  

 II_operN - the low level means performing an operation toward the interface,  

 II_writeN - the low level means the write operation, while high level means the read 

operation,  

 II_strobeN - the falling edge means important address in the (address) bus inside the 

FPGA; the rising edge means important data in the (data) bus during the write operation.  
 

The choice of a peripheral circuit is done by decoding of particular memory area, in many 

practical system solutions. In such a case, activation of the control line II_operN has to be 

preceded by (combined with) the decoding of the address space.  
 

 

 

Typical solutions of hardware communication buses use bidirectional data bus. Bidirectional 

buffers have to be used to connect the buses II_data_in and II_data_out into a 

common bus II_data. The direction of data flow is determined by the control line 

II_written. Buffer opening is determined by the signal II_operN.  

 

A general time sequence for a single bus operation in the Internal Interface for a 

peripheral FPGA chip is presented in fig. 2. 

 

Fig 2. General time sequence of single operation in the Internal Interface. 
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A basic access cycle in the II consists of eight intermediate steps:  

1. The II controller, before the access cycle begins, sets the value of local address to the 

address bus II_addr. The control signal II_writeN determines the direction of data 

distribution. For the read cycle, i.e. for low level of logical state of II_writeN, the 

value of sent data is set to the data bus II_data_in. For the write cycle, i.e. for high 

logical state of II_writeN, the content of II_data_in bus may be arbitrary, because 

it is ignored.  

2. Low level of the control line II_operN activates the access cycle for a peripheral 

device. Time period T1-2 may be omitted. Beginning of the access cycle in time moment 

T2 has to be preceded by earlier setting of the transmission direction in the buses buffers, 

in order to omit the state switching hazards. The activation of low level signal  

II_operN has to be done after the address bus value is stabilized inside the receiving 

FPGA chip. Suggested delay time  T1-2 is approximately 20-25ns. 

3. The falling edge of signal II_strobeN is a timing clock for synchronous addressing in 

the SRAM memories of FPGA chips for the read (i.e. for high logical state of 

II_writeN). It is requested that, during time moment T3, the state of address lines 

inside FPGA is stable. The suggested delay time T2-3 is approximately 15-20ns. 

4. Input of data onto the  II_data_out bus is done during the read cycle, i.e. for high 

logical level of II_writeN. For synchronous reading of the memory, the time range T3-4 

stems form the internal speed of FPGA chip, and typically equals to 20-40ns. For 

asynchronous reading of static registers, the time range T2-4 is 15-20ns. 

5. Rising edge of signal II_strobeN is a timing clock for synchronous writing of data in 

SRAM memories or static registers in FPGA (i.e. for low logical state of II_writeN). It 

is requested that, in time moment T5, status of data lines from the bus II_data_in 

inside FPGA is stable. The suggested delay time T3-5 is approximately 20-30ns. 

6. Transition of the control line II_operN to high logical state ends (or interrupts) the 

access cycle. The buffers of data bus should immediately release the control in the reading 

cycle (i.e. for high logical state of  II_writeN). It is assumed that the controller II 

performed data reading from the bus II_data_out. A typical delay time T5-6 equals to 

20-25ns. 

7. Setting of the control line II_operN to the high logical state releases control of the 

output data bus II_data_out. The delay time T6-7 originates from internal speed of the 

FPGA chip and is typically 15-20ns. 

8. Ending of the access cycle by the II controller releases the address bus II_addr,  the 

input data bus II_data_in and sets the control signal II_writeN in high state. The 

time period T6-8 may be omitted. It is suggested that, the ending of the access cycle in time 

moment T8 is preceded by earlier switching off of the bus buffers, in order to avoid the 

switching hazards. Suggested delay time T6-8 is 10-20ns. 
 

 

The signal II_resetN should be activated with the low level only during the time moment 

of FPGA chip initialization.  
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3 DECLARATION OF RECORD LIST FOR INTERFACE 

The Internal Interface is declared by the list of records. A single record of the list consists 

of ordered components. Parameters of a single component are divided to the following 

categories:  

 identifying, enabling precise differentiation of the record (type, name),  

 scaling, defining physical dimensions of the record,  

 binding, enabling realization of grouping operations,  

 access, determining the access rights to the record in write and read modes,  

 description, containing information used in programming layer,  

Table 1 gathers a list of parameters for particulars components of Internal Interface. The 

parameters must appear obligatory, even in the case when their value will be not interpreted 

for particular component. Thus, the real level of interpretation was marked in table 1 in the 

following way: 

 O - required parameter, always interpreted, 

 F - parameter for physical components (VII_BIT, VII_WORD, VII_AREA), 

 P - parameter for bound components (VII_VECT, VII_BITS, VII_WORD, 

VII_AREA), 

 S - information parameter of programming (ignored during the VHDL analysis), 

component parameter description, interpretation remarks 

VII_PAGE record  of common addressing area 

VII_VECT record of common bit vector 

VII_BITS record of bit description (i.e. status bit) 

VII_WORD record of word description (i.e. data register) 

ItemType 

VII_AREA record of area description (i.e. memory) 

O see chapt. 3.1 

ItemID natural number non repeated record identifier O see chapt. 3.2 

ItemWidth natural number data width in record [in bits] F 

ItemNumber natural number 
number of record repetitions (indexing), 

(i.e. for VII_AREA number of memory cells) 
F 

see chapt. 3.3 

ItemParentID natural number 

binding identifier ItemID for: 

VII_BITS is bound to VII_VECT, 

the rest are bound to VII_PAGE 

P see chapt. 3.4 

VII_WNOACCESS component has no write rights from II 
ItemWrType 

VII_WACCESS component has write right from II 
F 

VII_RNOACCESS component has no read rights to II  

VII_REXTERNAL component allows for external reading to II ItemRdType 

VII_RINTERNAL Component allows for internal reading to II  

F 

see chapt. 3.5 

ItemName text formal name of component S 

VII_FUN_UNDEF no identified functional type of component 

VII_FUN_HIST functional type of component - histogram ItemFun 

VII_FUN_RATE 
functional type of component – frequency 

counting 

S 

ItemDescr text component description S 

see chapt. 3.6 

Tab. 1. List of parameters for a component in the Internal Interface 



- 9/63 - 

3.1 Record type – ItemType 

Structure of the interface is defined by set of records in the list of declarations. The 

component ItemType determines type of a single record. It binds the record to one of two 

type groups: 

 physical, defining real objects of the interface: 

 VII_AREA – unified address area of memory type,  

 VII_WORD – autonomous bit vector of data word register, 

 VII_BITS – set of bits requiring grouping operation VII_VECT, 

 grouping, building common areas (address, data) of respective physical component groups:  

 VII_VECT – combines to a common vector the components of type VII_BITS, 

 VII_PAGE – combines components of type VII_AREA, VII_WORD, VII_BITS 

(ordered previously in VII_VECT) into a common address area (possessing a unified 

prefix). 
 

 

Component ItemType precisely determines the rest of parameters of a chosen record. 

Detailed usage of parameters was described in par. 3.2-3.6. 
 

3.2 Record identifier – ItemID 

The formal identifier of a record is ItemID component. The value of component is 

arbitrary natural number.  
 

 

The values of identifiers must not be repeated inside the area of list declaration.  
 

 

 

To obtain more readable description, it is suggested that, the identifiers are separate 

SYMBOLIC CONSTANTS, defined by the user. 

Its usage should univocally indicate the subscribed component.  
 

3.3 Scaling parameters – ItemWidth, ItemNumber 

The scaling parameters describe physical record  VII_BITS, VII_WORD, 
VII_AREA (see chapter 3.1) in two dimensions: 

 ItemWidth – determines width of the record, expressed in BITS. This parameter is 

equivalent to a physical number of bits in the data vector std_logic_vector. The most 

significant bit of the vector (MSB) is the bit of the oldest index,  

 ItemNumber – determines the number of identical, ordered components of the record. The 

component is chosen by the index from 0 to  ItemNumber – 1. 
 

 

The records VII_BITS and VII_WORD are interpreted as indexed tables. 

If the component is used one time only (ItemNumber =1), the index of value 0 is used. 
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For record VII_AREA, the range of addressing is determined (i.e. the number of memory 

cells). The addressing range should not be mistaken with the number of addressing lines.   
 

 

 

It is suggested to use 0 in the case when these parameters in the record are ignored.  

 

3.4 Records grouping – ItemParentID 

The grouping relies on adding to a component ItemParentID a physical record, 

which is subject to grouping (see chapter 3.1), the component value ItemType respective 

grouping recode (VII_PAGE or VII_VECT). 
 

 

The grouping record has to be declared earlier.  
 

The grouping of physical records is subject to the following rules: 

 VII_VECT groups only VII_BITS components in a common data vector. The 

constructed vector is treated in a similar way as a single element one VII_WORD. 

 VII_PAGE groups components VII_BITS, VII_WORD, VII_AREA in a common 

address area – a common prefix will be assigned.  
 

 

It is suggested for the grouping records (containing components VII_VECT and  

VII_PAGE), to use as the grouping parameter their own identifiers.  
 

3.5 Access rights to record – ItemWrType, ItemRdType 

The access parameters to the physical record determine write right (component 

ItemWrType) or read right (component ItemRdType) of its data via the physical bus II.  
 

 

The direction of data flow is determined by the signal state II_writeN (comp. chapter 2). 

Low signal state II_writeN means write cycle, i.e. data transfer from the II controller to 

the peripheral FPGA chip. High signal state II_writeN means read cycle, i.e. transfer of 

data from the peripheral FPGA chip to the II controller.  
 

The access laws are determined for all physical records (i.e. containing components 

VII_VECT and  VII_PAGE)  in a unified way. The access parameters are determined 

individually by these components:  

 ItemWrType for the write cycle: 

 VII_WNOACCESS – no write right, 

 VII_WACCESS – write right, 

 ItemRdType for the read cycle: 

 VII_RNOACCESS – no right to read, 

 VII_REXTERNAL – right to read data from external objects. It was assumed, that in 

this case, the write right (i.e. ItemWrType= VII_WACCESS) concerns also data from 

the external objects.  
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 VII_RINTERNAL – right to read data registered internally, on condition that there is 

assigned the write right (i.e. ItemWrType= VII_WACCESS). This kind of registering 

makes accessible only current data for external objects.  
 

 

Periphery module II is only a data retransmitter for external object.  

It makes the data accessible, on condition the object is addressed on the bus II_addr. 

The data registration process and data accessibility is done by external object.  
 

 

 

It is suggested that the parameters VII_WNOACCESS and VII_RNOACCESS  

are assigned to the grouping records VII_PAGE and VII_VECT, for  which these 

parameters are ignored. 
 

3.6 Record description – ItemName, ItemFun, ItemDescr 

The components of record description (ItemName, ItemFun, ItemDescr) are for 

information purposes. They are designed for the layer of monitoring software (like C++ or 

MATLAB) in order to facilitate accessibility and service of particular II records.  
 

 

Description components are ignored at the level of VHDL processing.  
 

The record description components fulfill the following functions: 

 ItemName - contains a TEXT displayed as a name of the component, 

 ItemFun - represents a list of functional types of external object: 

 VII_FUN_UNDEF -  no functional type defined, 

 VII_FUN_HIST - concerns only VII_AREA record. It is assumed that the record 

represents value distribution included in successive words, from 0 

to ItemNumber–1, and the counter has the width of the word, or 

in the range from 0 to 2ItemWidth –1, 

 VII_FUN_RATE - concerns only the record VII_AREA. It is assumed that the record 

contains the result of frequency counting of ItemNumber signals, 

and the counter has the width of a word, or the range from 0 to 

2ItemWidth-1, 

 ItemDescr - contains TEXT displayed as description of the component. 
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4 THE BASICS OF INTERFACE IMPLEMENTATION 

Building of physical implementation of the Internal Interface in FPGA chip is done 

automatically in the VHDL language, basing on the declaration of interface record list (see 

chapter 3). This chapter presents basics of II building concerning: grouping, fitting to the 

physical parameters of the communication bus, filling the address area, splitting of data 

vectors, etc. The final effect of the building process is physical implementation of the 

interface, i.e. mapping of the addresses, including the grouping requirements, splitting data to 

parts, when the width is to big for the interface communication bus, etc.  An interface 

implementation table is created as a result of the process. The table contains all necessary data 

on the implementation.  

4.1 Physical parameters of interface - II_addr_width, 
II_data_width 

The physical area of II 
is defined by two basic parameters (see chapter 2): 

 II_addr_width - the address area is expressed in the number of address lines. It was 

assumed that the address lines are indexed from 0 to 

II_addr_width-1, or the whole address area covers 2II_addr_width 

address positions calculated from 0 to 2II_addr_width –1, 

 II_data_width - the width of data vector is expressed in bits. It was assumed that the 

data lines are indexed from 0 to 0 to II_data_width-1, or the 

value of sent data are included in the range from 0 to 2II_data_width
 
–1. 

4.2 Splitting of address area for physical records  

The address area for physical records is determined by component type (VII_AREA, 

VII_WORD, VII_BITS - see. chapter. 3.1) and by scaling parameters (see chapter 3.3). This 

chapter presents the rules of assigning of address area for particular physical components. 

4.2.1 Partitioning of VII_WORD 

The parameters defining VII_WORD determine word length (ItemWidth) and 

number of components (ItemNumber). Determination of their physical positioning in the II 

space is realized in two steps:  

1. The number of address positions is determined which are necessary to split the word to 

partitions, which are not bigger than the width of data bus (II_data_width). 

Successive word partitions are positioned from the most significant for increasing 

addresses. The last partition of the word may be not full. There is no requirement that the 

parameter ItemWidth is a multiplication of II_data_width. 

2. The above structural partitioning of a single word is repeated ItemNumber times. The 

words are positioned in the address area one after the other, according to the increasing 

indexes. 

Example: Distribution of three 18-bit words, designed as W0, W1, W2 (ItemWidth=18, 

ItemNumber=3) in II area of 8-bit data width (II_data_width=8). For 

simplification, it was assumed that the addressing is initialized from the position 0. 
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address D7 D6 D5 D4 D3 D2 D1 D0 remarks 

0 W0-7 W0-6 W0-5 W0-4 W0-3 W0-2 W0-1 W0-0 

1 W0-15 W0-14 W0-13 W0-12 W0-11 W0-10 W0-9 W0-8 

2       W0-17 W0-16 

word for 

index 0 

3 W1-7 W1-6 W1-5 W1-4 W1-3 W1-2 W1-1 W1-0 

4 W1-15 W1-14 W1-13 W1-12 W1-11 W1-10 W1-9 W1-8 

5       W1-17 W1-16 

word for 

index 1 

6 W2-7 W2-6 W2-5 W2-4 W2-3 W2-2 W2-1 W2-0 

7 W2-15 W2-14 W2-13 W2-12 W2-11 W2-10 W2-9 W2-8 

8       W2-17 W2-16 

word for 

index 2 

designations: gray fields mean non used data bits. 

comment: partitioning of a 18-bit indexed word to 8-bit partitions requires reservation 

of three successive address positions in the II area.    

4.2.2 Partition of VII_BITS for vector VII_VECT 

The parameters defining VII_BITS determine number of bits (ItemWidth) and 

components (ItemNumber). The record of type VII_BITS is treated as a unity, of the 

total dimension ItemWidth*ItemNumber in bits. It is assumed that the indexed positions 

are stored successively in the direction of more significant bits. Determination of physical 

positioning of records VII_BITS, combined with a single group VII_VECT (comp. 

chapter. 3.4), is realized in two steps: 

1. Calculation of a common bit vector basing on the group VII_VECT. The records 

VII_BITS are positioned in a common vector, in the same succession as their grouping 

(i.e. according to the succession in the record declaration list), successively from the least 

significant bits, 

2. Partitioning of the common vector stems from the real width of the data bus 

(II_data_width). The successive records VII_BITS are placed one after another 

and partitioned to the next address word, when the data bus dimension is crossed over 

(II_data_width). 
 

 

Crossing the data bus width II_data_width by a single record VII_BIT is a critical 

error and the II implementation is not realized.  
 

Example: Positioning in the II area of the 8-bit data bus (II_data_width=8), for 

addressing initiated from position 0:  

 a table of three bit positions of 2-bit width designated as A0, A1 and A2  

(ItemWidth=2, ItemNumber=3), 

 a single bit designated as B  (ItemWidth=1, ItemNumber=1), 

 a table of two positions of 4-bit width designated as C0 and C1 (ItemWidth=4, 

ItemNumber=2). 

address D7 D6 D5 D4 D3 D2 D1 D0 remarks 

0  B A2-1 A2-0 A1-1 A1-0 A0-1 A0-0 bits A and B

1 C1-3 C1-2 C1-1 C1-0 C0-3 C0-2 C0-1 C0-0 bit C 

designation: gray fields mean unused bits of data. 

comment: bit records A and B were placed in a single word. Partitioning to the next 

word had to be done in the record C.  
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4.2.3 Partition of VII_AREA 

Parameters defining VII_AREA determine number of cell bits (ItemWidth) and 

number of cells (ItemNumber). Record of type VII_AREA is dedicated for implementation 

of internal SRAM memory blocks in the FPGA. Determination of the physical positioning in 

the II area is done in two steps: 

1. The number of partitions is determined for the data word width of a cell (ItemWidth) to 

partitions not bigger than the data bus width (II_data_width). Each of calculated 

partitions of the word is treated nondependently as a memory sub-area, of the number of 

cells expressed by ItemNumber. 

2. Memory sub-areas are positioned in the II area starting with the least significant toward 

the most significant partition of data word. Calculation of the base addresses of memory 

sub-areas fulfills the following criteria: 

 Internal addressing of each memory sub-area is done through the least significant lines 

of the II address bus. The address area is from 0 to ItemNumber-1, 

 Address lines above the area ItemNumber-1 are indexing the successive memory sub-

areas,  

 Prefix of the record VII_AREA indicates of data cell of 0 index for the least significant 

memory sub-area,  

 Total addressing area of a single record VII_AREA reserves the address lines required 

for internal addressing and indexing of memory sub-areas.  

Example: Positioning of three memory cells of the word width 20-bits (ItemWidth=20, 

ItemNumber=3) in the area of II of 8-bit data bus (II_data_width=8). It 

was assumed, that the addressing was initiated from the position 7.  

 

Address D7 D6 D5 D4 D3 D2 D1 D0 remarks 

7-15         reservation 

16 A0-7 A0-6 A0-5 A0-4 A0-3 A0-2 A0-1 A0-0 

17 A1-7 A1-6 A1-5 A1-4 A1-3 A1-2 A1-1 A1-0 

18 A2-7 A2-6 A2-5 A2-4 A2-3 A2-2 A2-1 A2-0 

19         

address 

memory 

sub-area A 

20 B0-7 B0-6 B0-5 B0-4 B0-3 B0-2 B0-1 B0-0 

21 B1-7 B1-6 B1-5 B1-4 B1-3 B1-2 B1-1 B1-0 

22 B2-7 B2-6 B2-5 B2-4 B2-3 B2-2 B2-1 B2-0 

23         

address 

memory 

sub-area B 

24     C0-3 C0-2 C0-1 C0-0 

25     C1-3 C1-2 C1-1 C1-0 

26     C2-3 C2-2 C2-1 C2-0 

27         

address 

memory 

sub-area C 

28-31         not used 

designations: gray fields mean non-used data bits. 

Comment 1: Partitioning of 20-bit memory word into 8-bit parts requires reservation 

of two address blocks in the II area. Separated memory sub-areas were 

designated as A, B and C. 



- 15/63 - 

comment 2: three memory cells (ItemNumber=3) require reservation of two the 

youngest (least significant) address lines A0 and  A1, thus, the last 

addressing position of each memory sub-area is remains not used.  

Comment 3: Choice of a single from three memory sub-areas is done through address 

lines A2 and  A3, thus, the last addressing position of memory sub-area is 

reserved, but is not unused.  

Comment 4: memory prefix was set to 16, because there were reserved addresses up to 

7 and it has to indicate to the youngest cell for the youngest memory sub-

area (i.e. addresses A3-0=0). The address position 7 remains unused. 

4.3 Paging of the address area - VII_PAGE 

Paging of the address area is done through the record binding VII_AREA, VII_WORD 

and VII_VECT via parameter ItemParentID with respective records of type VII_PAGE 

(comp. chapter 3.4). Determination of a physical situation of the pages in the II area is 

realized in two steps: 

1. Finding of the biggest address area used by a single page, in order to reserve the required 

number of the youngest bits in the II bus. Determination of the addressing range for each 

page is referenced to the 0 address.  

2. Assigning the pages, in the succession of their declarations in the record list, numbered 

indexes from value 0. Assigning of an index for a page is realized by address lines above 

the area of page addressing.  

Example: Distribution in the II area for 8-bit address bus (II_addr_width=8): 

 Page P1 possessing 5 address positions, 

 Page P2 occupying 12 address positions, 

 Page P3 possessing 9 address positions. 

 

Page indexing Addressing inside page  Page 

index A7 A6 A5 A4 A3 A2 A1 A0 
remarks 

0 0 0 0 0 addresses range 0 - 4 Page P1 

1 0 0 0 1 addresses range 0 - 11 Page P2 

2 0 0 1 0 addresses range 0 - 8 page P3 

Comment 1: The biggest address area occupies 12 positions, what requires reservation 

of 4 the youngest address bits A0-3. 

Comment 2: The rest of the addressing lines were used to index the pages A4-7. 

4.4 Interface implementation table  

The required structure of Internal Interface is declared via the list of records (comp. 

chapter 3). The real image of II implementation in FPGA is calculated from the interface 

implementation table on the basis of the physical parameters of the II bus (comp. chapter 4.1). 
 

 

Change of the II physical bus (i.e. parameters II_addr_width and II_data_width) 

does not require redefinition of the user list record.  

The physical image of interface is built automatically for new parameters of the bus.  
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Single record of the interface implementation table are ordered components, gathered in 

table 2: 

The components, with the meaning not changed are only rewritten from the interface record 

list to the interface implementation table. Table 2 presents references to respective chapters. 

The implementation process of Internal Interface requires: 

  Calculation of addresses values and positioning data for particular physical records, 

 Building of interface communication vector for particular physical records,  

 Calculation of record parameters for initialization of physical interface implementation.  

4.4.1 Address parameters – ItemAddrPos, ItemAddrLen 

Addressing parameters (ItemAddrPos, ItemAddrLen) for particular physical 

records (VII_AREA, VII_WORD and VII_BITS) are determined in agreement with the 

rules of record partitioning (see chapter 4.2) and paging (see chapter 4.3). Partitioning of the 

address area is performed basing on real parameters of the communication bus 

(II_addr_width and II_data_width). Particular addressing components contain: 

 ItemAddrPos - indicates base address of physical record, i.e. the zero indexed 

component of this record (see chapter 3.3). 

 ItemLenPos - for record type VII_WORD, indicates the number of addresses of a 

single indexed component (comp. chapter  4.2.1), 

- for record type VII_AREA, indicates the number of memory sub-areas  

(comp. chapter 4.2.3), 

- for record type VII_BITS, indicates the position of the youngest bit of 

record (comp. chapter 4.2.2). 

component parameter description, interpretation description 

VII_PAGE Parameter record for interface initialization in this chapter 

VII_BITS Bit description record 

VII_WORD Bit description record 
ItemType 

VII_AREA Area description record 

see chapter 3.1 

ItemID natural number Non-repeatable record identifier see chapter 3.2 

ItemParentID natural number Parameter value is not valid omitted 

ItemWidth natural number Record data width [in bits] 

ItemNumber natural number Number of record repetitions (indexing), 
see chapter 3.3 

VII_WNOACCESS component has no write right from II 
ItemWrType 

VII_WACCESS Component has write right from II 
see chapter 3.5 

ItemWrPos natural number Basic position in interface vector for writing in this chapter 

VII_RNOACCESS Component has no read right to II 

VII_REXTERNAL Component allows for external read to II ItemRdType 

VII_RINTERNAL Component allows for internal read to II 

see chapter 3.5 

ItemRdPos natural number Basic position in interface vector for reading 

ItemAddrPos natural number Basic position of record address 

ItemAddrLen 
natural number Number of address positions of a component in record 

types II_AREA and VII_WORD, position of the 

youngest bit for record type VII_BITS 

in this chapter 

Tab. 2. List of parameters of component of Internal Interface 
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4.4.2 Interface vector parameters – ItemWrPos, ItemRdPos 

The interface vector parameters (ItemWrPos, ItemRdPos) made accessible for 

particular physical records (VII_AREA, VII_WORD and VII_BITS) separated 

communication buses tailored to their dimensions and type. Application of the 

communication vector plays a role of logical converter between physical parameters of the 

communication bus (II_addr_width and II_data_width), and particular physical 

records defined by parameters ItemWidth and ItemNumber. 

The process of building of the physical interface requires calculation of the structure of  

a common communication vector. For the successive physical records (VII_AREA, 

VII_WORD and VII_BITS) positioned on the list, there are reserved vector partitions 

according to their types (see chapter 3.1) and the access rights (see chapter 3.5) respectively 

for the components type ItemWrPos and ItemRdPos: 

 ItemWrPos - for record type VII_WORD or VII_BITS there is reserved a bit range 

ItemWidth*ItemNumber, 

- for record type VII_AREA there is reserved a bit range ItemWidth, 

 ItemRdPos - for record type VII_WORD or VII_BITS during the read mode from the 

external block (ItemRdPos=VII_RINTERNAL) there is reserved a bit 

range ItemWidth*ItemNumber. For the mode of internal reading 

(ItemRdPos=VII_RINTERNAL) the vector is the same as the write 

vector,  

- for record type VII_AREA there is reserved a bit range ItemWidth, 
 

 

ItemWrPos and ItemRdPos indicate the youngest bits of the reserved vectors. 

When there is no reservation of a given vector, the value –1 is inserted to the component.  
 

4.4.3 Record of parameters initializing the interface 

The record of initializing parameters for the interface is located on the last position in 

the interface initialization table and is of type VII_PAGE. The next components of record 

are gathered in table 2 and contain important parameters: 

 ItemWidth – data bus width (parameter II_data_width), 

 ItemNumber – address bus width (parameter II_addr_width), 

 ItemAddrPos – total length of interface vector (comp. chapter 4.4.2), 

 ItemAddrLen – the highest physical address used in interface (comp. chapter 4.4.1). 
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5  INTERFACE IMPLEMENTATION 

Implementation of the Internal Interface bases on placing in the code standardized service 

blocks (like building, initialization, control of communication bus, etc.) and usage of library 

functions and procedures enabling the user a cooperation with the interface. 
 

 

Further part of the chapter assumes, that the dimension of address bus is determined by the 

parameter II_addr_width, and  the data bus is determined by II_data_width. 
 

 

 

The abbreviations and types of the variables used in declarations and functions are gathered 

and explained in appendix A.I. 
 

5.1 Library functions 

 Library functions of interface: (all declarations are gathered in appendix A.II.6):  

VIINameConv ( _NAME_ :TS) return TS 

where: 

 _NAME_  is a description name of record (see chapt. 3.6) 

Function returns type TS of the length VII_ITEM_NAME_LEN (see appendix A.II.3). 

VIIDescrConv ( _DESCR_ :TS) return TS 

where: 

 _ DESCR _  is description of component (see chapt. 3.6) 

Function returns type TS of the length VII_ITEM_DESCR_LEN (see appendix A.II.3). 

 requested library functions: (all declarations are gathered in app. A.I.4): 

pow2 (_VAL_ :TN) return TN 

where: 

 _VAL_  is a value of natural number type, 

Function returns the result of: 2
_VAL_

 as natural value. 

Caution: This function has to be used instead of power operator ^. 

TVLcreate (_VAL_ :TN) return TVL 

where: 

 _VAL_ is a value of natural type. 

Function returns a minimal number of bits necessary to write the value of  _VAL_. 

Caution: The result of function has to be interpreted as a length of vector TSLV 

SLVMax (_VAL_ :TN) return TN 

where: 

 _VAL_ is a value of natural type 

Function returns maximal natural value which can be obtained from vector of the length 

_VAL_ bits. 

Caution: Formally, the function returns the result of expression: 2
_VAL_

 -1. 
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5.2 Standard initialization of interface 

Standard initialization of the Internal Interface requires performing of the following steps: 

 Processing of record declaration list (comp. chapt. 3) to the physical implementation with 

the function TVIICreate to obtain the form of interface implementation table (comp. 

chapt.4.4). The table contains all necessary implementation data for the interface.  

 Building, with the aid of function TVII, of three intermediate vectors IIVecInt, 

IIVecAll and IIVecEna type TSLV enabling communication with the II: 

example: 

constant IIPar :TVII := TVIICreate(VIIItemDeclList, II_addr_width, II_data_width); 
signal IIVecInt, IIVecAll, IIVecEna :TSLV(VII(IIPar)'high downto VEC_INDEX_MIN); 

Caution: - VIIItemDeclList is a name of a declaration list (comp. chapt. 3), 

- Constant IIPar is an interface implementation table (comp.chapt.4.4). 

The intermediate vectors are designed to forward the following information: 

 IIVecInt: stores internal states of II registers (see chapt. 3.5), 

 IIVecAll: contains all states of II signals, 

 IIVecEna: value ‘1’ denotes that particular signal is made accessible by the II  

respectively in the write or read mode.  

Caution: information of writing to the  internal register of the II  is not accessible.  

 Library functions: (all declarations are gathered in append. A.II.7): 

TVIICreate ( _LISTA_ :TVIIItemDeclList; _ADDR_WIDTH_, _DATA_WIDTH_ :TVL) return TVII 

where: 

 _LISTA_  is created list of II components declarations, 

 _ADDR_WIDTH_ determines number of bits for interface address bus, 

 _DATA_WIDTH_ determines number of bits for interface data bus,  

Function returns physical implementation of interface as table type TVII (comp. 

chapt.4.4). 

VII ( _IIPAR_ :TVII) return TSLV 

where:  

 _IIPAR_  is a list of physical implementation of interface, 

Function returns an empty intermediate vector type TSLV of dimension originating from 

current implementation. 

5.3 Standard service of interface 

Standard service of Internal Interface  requires the following actions: 

 Service process of internal registers stored in vector IIVecInt,  

 Current actualization of vector IIVecAll originating from current state of data 

distribution via the II  bus from internal blocks and data stored in vector IIVecInt, 

 Current actualization of vector IIVecEna originating from current state of data 

distribution via the II bus, 

  Calculation of output data from the II  via the bus II_data_out. 
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example: 

process ( II_resetN, II_strobeN ) 
begin 
 if ( II_resetN = '0' ) then 
  IIVecInt <= IIReset ( IIVecInt, IIPar ); 
 elsif ( II_strobeN'event and II_strobeN = '1' ) then 
  if ( II_operN = '0'  and II_writeN = ’0’ ) then 
   IIVecInt <= IISave( IIVecInt, IIPar, II_addr, II_data_in ); 
  end if; 
 end if; 
end process; 
 

IIVecEna <= IIEnable( IIPar, II_operN, II_writeN, II_addr ); 
 

IIVecAll <= IIWrite( IIVecInt, IIPar, II_addr, II_data_in ) 
  or IIConnPutWordData( IIVecInt, IIPar, …. ) 
  or IIConnPutWordtab( IIVecInt, IIPar, …. ) 
  or IIConnPutBitsData( IIVecInt, IIPar, …. ) 
  or IIConnPutBitsTab( IIVecInt, IIPar, …. ) 
  or IIConnPutAreaData( IIVecInt, IIPar, …. ) 
  or IIConnPutAreaMData( IIVecInt, IIPar, …. ) 
  or ……..; 
 

II_data_out <= IIRead( IIVecAll, IIPar, II_addr ); 

Vector IIVecAll is calculated in common by standard service operations of the 

interface and by the user. The user, via successive OR operations connects all data from 

external objects (declared as VII_REXTERNAL). 

Caution: Connection to vector IIVecAll of data from external objects is done 

ONLY with the aid of library functions respectively to the type of object.  

 Library functions of interface service: (declarations were included in append. A.II.8):  

IIReset ( _VEC_ : TSLV; _IIPAR_ :TVII) return TSLV 

where: 

 _VEC_  represents interface IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt 5.2), 

Function returns vector _VEC_ with zeroed internal registers. 

IISave ( _VEC_ : TSLV; _IIPAR_ :TVII; _ADDR_, _DATA_IN_ :TSLV) return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ADDR_  is interface address bus, 

 _DATA_IN_  is interface input data bus. 

Function returns actualization of the internal registers vector  _VEC_. 

IIEnable ( _IIPAR_ :TVII;  _ENABLE_,  _WRITE_ :TSL; _ADDR _ :TSLV) return TSLV 

where: 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ENABLE_  low level enable signal (see chapt. 2), 

 _WRITE_  is interface data direction signal (see chapt. 2), 

 _ADDR_  is interface address bus. 

Function returns access vector (accessing is denoted by  ‘1’). 



- 21/63 - 

IIWrite (_VEC_ : TSLV; _IIPAR_ :TVII;  _ADDR_, _DATA_IN :TSLV) return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ADDR_  is interface address bus, 

 _DATA_IN_  is interface input data bus. 

Function returns vector  _VEC_ supplemented with information from interface bus. 

IIRead (_VEC_ : TSLV; _IIPAR_ :TVII;  _ADDR_ :TSLV) return TSLV 

where: 

 _VEC_  represents interface vector  IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ADDR_  is interface address bus. 

Function returns interface output data or the high state.  

 

 Library functions of object service: (declarations are presented in app. A.II.9- A.II.11): 

IIConnPutWordData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI; 
_VAL_ :TSLV) return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_ WORD (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

 _VAL_  transferred value of object component. 

Function returns vector  _VEC_ filled with the value of object component  _VAL_. 

IIConnPutWordTab (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _VAL_ :TSLV) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_ WORD (see chapt. 3.2), 

 _VAL_  transferred value of the whole object component in a form of vector.  

Function returns vector _VEC_ filled with the value of the whole object component  

_VAL_. 

IIConnPutBitsData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI; 
_VAL_ :TSLV) return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_BITS (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

 _VAL_  transferred value of object component. 

Function returns vector _VEC_ filled with the value of object component  _VAL_. 
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IIConnPutBitsTab (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _VAL_ :TSLV) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_BITS (see chapt. 3.2), 

 _VAL_  transferred value of the whole object component in a form of vector. 

Function returns vector  _VEC_ filled with the value of the whole object  _VAL_. 

IIConnPutAreaData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _VAL_ :TSLV) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_BITS (see chapt. 3.2), 

 _VAL_  transferred value of the memory cell in a form of vector. 

Function returns vector  _VEC_ filled with the value of the whole object  _VAL_. 

IIConnPutAreaMData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _VAL_ :TSLV) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_AREA (see chapt. 3.2), 

 _VAL_  transferred value of the memory cell in a form of vector. 

Function returns vector  _VEC_ filled with the content of object  _VAL_ in the dimension 

not smaller than the width of data bus (II_data_width). 

5.4 User functions  

User functions, for each type of physical object, enable the following operations (the character 

string Xxxx means respectively Word, Bits, Area): 

 IIConnGetXxxxData – accessing of current data of component.  

Caution: Does not concern type VII_AREA because this object is directly connected to the 

data and address bus in the range originating from the dimension of the 

component (see chapt. 4.2.3). 

Caution: The data of record internally registered may be accessed directly. The data of 

external object are important only during the moment of its writing by the II bus. 

They require confirmation of validity by the use of function 

IIConnGetXxxxWriteEna. 

 IIConnGetXxxxEnable – taking of information of accessibility (for write or read)  

Caution: Data of the record registered internally made accessible the information of the 

validity of data only for the read operation. 

 IIConnGetXxxxWriteEna – taking of information of accessibility during write.  

Caution: The data of registered record does not provide this information.  

 IIConnGetXxxxReadEna – taking of information of availability during write.  

 IIConnGetXxxxSave – taking of information of conditional write cycle status II_strobeN 
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 Library functions of data taking: (declarations included in appendix A.II.9- A.II.11): 

IIConnGetWordData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_WORD (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

Function returns actual value of object component.  

IIConnGetWordData (_DVEC_, _EVEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI; 
_DATA_ : TSLV) return TSLV 

where: 

 _DVEC_ represents interface vector IIVecInt (see chapt. 5.2), 

 _EVEC_  represents interface vector IIVecEna (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_WORD (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

 _DATA_  actual data of external object component, 

Function returns modified actual value of external object component. 

IIConnGetBitsData (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_BITS (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

Function returns actual value of object component.  

 Library functions of access: (declarations included in appendix A.II.9- A.II.11): 

IIConnGetWordEnable (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI; 
_WRITE_ :TSL) return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_WORD (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

 _WRITE_  is interface data direction signal (see chapt. 2), 

Function returns actual state of data accessibility to object component for both types of 

operations (write and read). When a chosen bit of object is accessible, then in the 

returned vector this bit has value ‘1’. 

Caution: Assumption of the above solution, stems from the partitioning possibility of 

record type VII_WORD to parts (comp. chapter 4.2.1). Then, only the chosen 

part of record will possess the bits set to ‘1’, and the rest of bits will remain 

set to ‘0’. 
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IIConnGetBitsEnable (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _WRITE_ :TSL) 
return TSL 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_BITS (see chapt. 3.2), 

 _WRITE_  is interface data direction signal (see chapt. 2), 

Function returns actual accessibility status of the component: ‘1’ – component is 

accessible. 

Caution: Assumed solution  stems from that the component type VII_BITS must not 

be divided to partitions (comp. chapter 4.2.2). Access concerns all positions 

of the object.  

IIConnGetAreaEnable (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _WRITE_ :TSL) 
return TSL 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_AREA (see chapt. 3.2), 

 _WRITE_  is interface data direction signal (see chapt. 2), 

Function returns actual accessibility status: ‘1’ – component is accessible. 

Caution: Assumed solution stems from that the component type AREA is treated as a 

unity not to be divided (comp. chapter 4.2.3).  

IIConnGetWordWriteEna 

IIConnGetWordReadEna (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI) 
return TSLV 

where: 

 _VEC_  represents interface vector IIVecInt (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_WORD (see chapt. 3.2), 

 _WRITE_  is interface data direction signal (see chapt. 2), 

Function acts identically as IIConnGetWordEnable, respectively for write operation 

(IIConnGetWordWriteEna) or read (IIConnGetWordReadEna). 

IIConnGetBitsWriteEna 

IIConnGetBitsReadEna (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN) return TSL 

where: 

 _VEC_  represents interface vector IIVecEna (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_AREA (see chapt. 3.2), 

Function acts identically as IIConnGetBitsEnable respectively for  write operation 

(IIConnGetBitsWriteEna) or read (IIConnGetBitsReadEna). 
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IIConnGetAreaWriteEna 

IIConnGetAreaReadEna (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN) return TSL 

where: 

 _VEC_  represents interface vector IIVecEna (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_AREA (see chapt. 3.2), 

Function acts identically as IIConnGetAreaEnable respectively for writing operation 

(IIConnGetAreaWriteEna) or reading (IIConnGetAreaReadEna). 

IIConnGetWordSave (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _POS_ :TVI; 
_SAVE_ :TSL) return TSLV 

where: 

 _VEC_  represents interface vector IIVecEna (see chapt. 5.2), 

 _IIPAR_  is interface implementation table (see chapt. 5.2), 

 _ITEM_ID_  is identifier of object type VII_AREA (see chapt. 3.2), 

 _POS_  index of object components (see chapt. 3.3), 

 _SAVE_  is signal II_strobeN (see chapter 2), 

Function returns ‘1’ for active state of the signal (i.e. low state)  _SAVE_ for these bits of 

object data vector, which are actually accessible for writing (comp. acting of function 

IIConnGetWordWriteEna). The rest of bits are set continuously for  ‘0’. 

IIConnGetBitsEnable (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _SAVE_ :TSL) 
return TSL 

where: 

 _VEC_  represents interface vector IIVecInt (see chapter 5.2), 

 _IIPAR_  is interface implementation table (see chapter 5.2), 

 _ITEM_ID_  is object identifier of type VII_BITS (see chapter  3.2), 

 _SAVE_  original II_strobeN signal (see chapter 2), 

Function returns ‘1’ for active (low) state of signal  _SAVE_ under the condition that the 

component was made accessible for writing (compare result of function 

IIConnGetBitsWriteEna). 

IIConnGetAreaEnable (_VEC_ : TSLV; _IIPAR_ :TVII;  _ITEM_ID_ :TN; _ SAVE _ :TSL) 
return TSL 

where: 

 _VEC_  represents interface vector IIVecInt (see chapter 5.2), 

 _IIPAR_  is interface implementation table (see chapter  5.2), 

 _ITEM_ID_  is object identifier of type VII_BITS (see chapter 3.2), 

 _SAVE_  original II_strobeN signal (see chapter 2), 

Function returns ‘1’ for active (low) state of signal  _SAVE_ under the condition that the 

component was made accessible for writing (compare result of function 

IIConnGetAreaWriteEna). 
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6 EXAMPLE OF INTERFACE IMPLEMENTATION  

An example of Internal Interface implementation was presented in this chapter. This 

example is considered from the point of view of several basic aspects:   

 Definition of declaration list of records for the tested interface (see chapter 3) 

 Area structure analysis of the II . The area structure is positioned in implementation table 

(see chapter 4) 

 Suggested structure of VHDL file and basics of usage of library functions  (see chapter 5) 

 Discussion of results of functional simulation 
 

 

To keep the implementation readable, the example was confined to a few components.  
 

6.1 Project of records for interface declaration list  

The test project assumes the following working parameters: 

 Interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4, 

 User bus parameters: TEST_WIDTH=8. 

Table 3 gathers record declarations for test interface (see tab. 1). There were presented shortly 

access rights. The description parameters were omitted (comp. chapter 3.6). Description 

parameters are not important for VHDL processing.  

comment 1: Records of type VII_WORD and VII_BITS are positioned in page 

PAGE_REG, record of type VII_AREA are positioned in page PAGE_AREA. 

comment 2: Records of type VII_WORD were declared with parameterized width 

parameters (ItemWidth), while records of type VII_BITS  have only 

constant dimensional parameters. 

comment 3: Record of type VII_WORD of identifier WORD_EXT and record of type 

VII_AREA of identifier AREA_EXT have the word width bigger than the 

data bus and, thus, require partitioning.  

Page Vector Type_Item Width Number Access Comment 

WORD_CHK II_DATA_WIDTH 1 Ext. RO 
Control sum 

readout 

WORD_STAT II_DATA_WIDTH 1 Ext. RO 
Constant value 

readout 

WORD_INT II_DATA_WIDTH 2 Int. RW 2 internal registers

 

WORD_EXT TEST_WIDTH 1 Ext. RW External register 

VECT_INT BITS_INT1 2 1 Int. RW 2 internal bits 

VECT_INT BITS_INT2 1 1 Int. RW 1 internal bit 

VECT_EXT BITS_EXT1 1 1 Ext. WO 1 external bit 

PAGE_REG 

VECT_EXT BITS_EXT2 2 1 Ext. RW 2 external bits 

PAGE_AREA  AREA_EXT TEST_WIDTH 3 Ext. RW 3 cell memory 

Tab. 3. Declaration set of records for test interface 

designations: - gray fields mean invalid parameters, 

- Ext. – external register, Int. – internal register, 

- RO- reading only WO – writing only, RW – full access. 
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6.2 Calculation of interface implementation table  

Calculation of the implementation table determines: 

 Required address area of interface together with its positioning inside particular records  and 

positioning of records inside the data bus,  

 Value and total length of the communication vector, i.e. positioning in its area the 

communication buses for particular records.  

Table 4 gathers calculated parameters of implementation table for test interface. Repeated 

parameters from interface record declaration were omitted (see. tab. 2). 

Table. 5 presents physical distribution of components in address area and data in the 

Internal Interface  communication bus.  

comment 1: The biggest address used in the implementation is 13. Calculation of 

addresses starts always from the position 0. 

comment 2: The width of interface vector is 48 bits. 

Type_Item Width Number Access ItemWrPos ItemRdPos ItemAddrPos ItemAddrLen

WORD_CHK 4 1 Ext. RO -1 0 0 1 

WORD_STAT 4 1 Ext. RO -1 4 1 1 

WORD_INT 4 2 Int. RW 8 8 2 1 

WORD_EXT 8 1 Ext. RW 16 24 4 2 

BITS_INT1 2 1 Int. RW 32 32 6 0 

BITS_INT2 1 1 Int. RW 34 34 6 2 

BITS_EXT1 1 1 Ext. WO 35 -1 7 0 

BITS_EXT2 2 1 Ext. RW 36 38 7 1 

AREA_EXT 8 3 Ext. RW 40 44 8 2 

Interface 4 4 - -1 -1 48 15 

Tab. 4. Collection of record declarations for test interface. 

designation: - gray fields denote initializing record of the interface (see. chapt. 4.4.3), 

- Ext. – external register, Int. – internal register, 

- RO- read only, WO – write only, RW – full access. 

II_Data component II_Addr 
(A3-A0) D3 D2 D1 D0 identifier index 

0 bit 3 bit 2 bit 1 bit 0 WORD_CHK 0 

1 bit 3 bit 2 bit 1 bit 0 WORD_STAT 0 

2 bit 3 bit 2 bit 1 bit 0 0 

3 bit 3 bit 2 bit 1 bit 0 
WORD_INT 

1 

4 bit 3 bit 2 bit 1 bit 0 

5 bit 7 bit 6 bit 5 bit 4 
WORD_EXT 0 

  bit 1 bit 0 BITS_INT1 
6 

 bit 0   BITS_INT2 
none 

   bit 0 BITS_EXT1 
7 

 bit 1 bit 0  BITS_EXT2 
none 

8-11 bit 3 bit 2 bit 1 bit 0 
AREA_EXT 
Sub-area 0 

12-15 bit 7 bit 6 bit 5 bit 4 
AREA_EXT 
Sub-area 1 

none 

Tab. 5. Collection of record declaration for test interface 

designations: - gray fields  denote  non used data bits, 
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Calculated structure of the bus vector is presented in table 6. 

6.3 Exemplary source code for interface implementation  
library ieee; 

use ieee.std_logic_1164.all; 

use work.std_logic_1164_.all; 

use work.VComponent.all; 

 

entity II_test is 
  generic ( 

    constant II_ADDR_WIDTH  :TVL  :=4; --"interface address bus size"   

    constant II_DATA_WIDTH  :TVL  :=4; --"interface data bus size"   

    constant TEST_WIDTH   :TVL  :=8  --"test bus size"   

  ); 

  port( 

    word_int0_data_out   :out TSLV(II_DATA_WIDTH-1 downto 0); 
    word_int0_enable_out  :out TSLV(II_DATA_WIDTH-1 downto 0); 
    word_int1_data_out   :out TSLV(II_DATA_WIDTH-1 downto 0); 
    word_int1_enable_out  :out TSLV(II_DATA_WIDTH-1 downto 0); 
    word_ext0_data_in   :in  TSLV(TEST_WIDTH-1 downto 0); 

    word_ext0_data_out   :out TSLV(TEST_WIDTH-1 downto 0); 

    word_ext0_enable_out  :out TSLV(TEST_WIDTH-1 downto 0); 

    word_ext0_read_ena_out  :out TSLV(TEST_WIDTH-1 downto 0); 

    word_ext0_write_ena_out  :out TSLV(TEST_WIDTH-1 downto 0); 

    word_ext0_save_out   :out TSLV(TEST_WIDTH-1 downto 0); 

    word_ext1_data_in   :in  TSLV(TEST_WIDTH-1 downto 0); 

    bits_int1_data_out   :out TSLV(1 downto 0); 

    bits_int1_enable_out  :out TSL; 

    bits_int2_data_out   :out TSLV(0 downto 0); 

    bits_int2_enable_out  :out TSL; 

    bits_ext1_data_out   :out TSLV(0 downto 0); 

    bits_ext2_data_in   :in  TSLV(1 downto 0); 

    bits_ext2_data_out   :out TSLV(1 downto 0); 

    bits_ext2_enable_out  :out TSL; 

    bits_ext2_read_ena_out  :out TSL; 

    bits_ext2_write_ena_out  :out TSL; 

    bits_ext2_save_out   :out TSL; 

    area_data_in   :in  TSLV(II_DATA_WIDTH-1 downto 0); 
    area_enable_out   :out TSL; 

    area_read_ena_out   :out TSL; 

    area_write_ena_out   :out TSL; 

    area_strobe_out   :out TSL; 

    -- internal bus interface 

    II_resetN    :in  TSL; 

    II_operN    :in  TSL; 

    II_writeN    :in  TSL; 

    II_strobeN    :in  TSL; 

    II_addr    :in  TSLV(II_ADDR_WIDTH-1 downto 0); 
    II_data_in    :in  TSLV(II_DATA_WIDTH-1 downto 0); 
    II_data_out    :out TSLV(II_DATA_WIDTH-1 downto 0) 
  ); 

end II_test; 
 

range [bits] component 
cycle 

MSL LSB identifier index 

Reading 3 0 WORD_CHK 0 

Reading 7 4 WORD_STAT 0 

11 8 0 
Writing and reading 

15 12 
WORD_INT 

1 

Writing 23 16 

Reading 31 24 
WORD_EXT 0 

Writing and reading 33 32 BITS_INT1 

Writing and reading 34 34 BITS_INT2 
none 

Writing 35 35 BITS_EXT1 

Writing 37 36 

Reading 39 38 
BITS_EXT2 

none 

Writing 43 40 

Reading 47 44 
AREA_EXT none 

Tab. 6. Structure of bus vector 
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architecture behaviour of II_test is 
 

  constant PAGE_REG    :TN   :=  1; --   "register page identifier"   

  constant PAGE_AREA     :TN   :=  2; --   "area page identifier"   

  constant WORD_CHK    :TN   :=  3; --   "internal register identifier"   

  constant WORD_STAT    :TN   :=  4; --   "internal register identifier"   

  constant WORD_INT    :TN   :=  5; --   "internal register identifier"   

  constant WORD_EXT    :TN   :=  6; --   "external register identifier"   

  constant VECT_INT    :TN   :=  7; --   "internal vector identifier"   

  constant BITS_INT1    :TN   :=  8; --   "internal bits1 identifier"   

  constant BITS_INT2    :TN   :=  9; --   "internal bits2 identifier"   

  constant VECT_EXT    :TN   := 10; --   "external vector identifier"   

  constant BITS_EXT1    :TN   := 11; --   "external bits1 identifier"   

  constant BITS_EXT2    :TN   := 12; --   "external bits2 identifier"   

  constant AREA_EXT    :TN   := 13; --   "area identifier"   

  -- 

  constant VIIItemDeclList   :TVIIItemDeclList :=(   

  --  item type,  item ID,             width, num, parent ID, write type,    read type,     …                  

    ( VII_PAGE,   PAGE_REG,                0,   0, PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, … 
    (  VII_WORD,  WORD_CHK,    II_DATA_WIDTH,   1, PAGE_REG,  VII_WNOACCESS, VII_REXTERNAL, … 
    (  VII_WORD,  WORD_STAT,   II_DATA_WIDTH,   1, PAGE_REG,  VII_WNOACCESS, VII_REXTERNAL, … 
    (  VII_WORD,  WORD_INT,    II_DATA_WIDTH,   2, PAGE_REG,  VII_WACCESS,   VII_RINTERNAL, … 
    (  VII_WORD,  WORD_EXT,       TEST_WIDTH,   1, PAGE_REG,  VII_WACCESS,   VII_REXTERNAL, … 
    (  VII_VECT,  VECT_INT,                0,   0, PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, … 
    (   VII_BITS, BITS_INT1,               2,   1, VECT_INT,  VII_WACCESS,   VII_RINTERNAL, … 
    (   VII_BITS, BITS_INT2,               1,   1, VECT_INT,  VII_WACCESS,   VII_RINTERNAL, … 
    (  VII_VECT,  VECT_EXT,                0,   0, PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, … 
    (   VII_BITS, BITS_EXT1,               1,   1, VECT_EXT,  VII_WACCESS,   VII_RNOACCESS, … 
    (   VII_BITS, BITS_EXT2,               2,   1, VECT_EXT,  VII_WACCESS,   VII_REXTERNAL, … 
    ( VII_PAGE,   PAGE_AREA,               0,   0, PAGE_AREA, VII_WNOACCESS, VII_RNOACCESS, … 
    (  VII_AREA,  AREA_EXT,       TEST_WIDTH,   3, PAGE_AREA, VII_WACCESS,   VII_REXTERNAL, … 
  ); 

  constant IIPar :TVII := TVIICreate(VIIItemDeclList,II_ADDR_WIDTH,II_DATA_WIDTH); 
  signal   IIVecInt, IIVecAll, IIVecEna  :TSLV(TSLVhigh(VII(IIPar)) downto VEC_INDEX_MIN); 

         

begin  

 

  -- 

  -- Internal Interface implementation 
  -- 

  process(II_resetN, II_strobeN) 
  begin 

    if(II_resetN='0') then 
      IIVecInt <= IIReset(IIVecInt,IIPar); 

    elsif(II_strobeN'event and II_strobeN='1') then 
      if(II_operN='0' and II_writeN='0') then 
        IIVecInt <= IISave(IIVecInt,IIPar,II_addr,II_data_in); 
      end if; 

    end if; 

  end process; 

 

  IIVecEna <= IIEnable(IIPar,II_operN,II_writeN,II_addr); 
 

  IIVecAll <= (IIWrite(IIVecInt,IIPar,II_addr,II_data_in) 
          or IIConnPutWordData(IIVecInt, IIPar, WORD_CHK,  0, VIICheckCodeGet(IIPar)) 

          or IIConnPutWordData(IIVecInt, IIPar, WORD_STAT, 0, "0110") 

          or IIConnPutWordData(IIVecInt, IIPar, WORD_EXT,  0, word_ext0_data_in) 

          or IIConnPutBitsData(IIVecInt, IIPar, BITS_EXT2, 0, bits_ext2_data_in) 

          or IIConnPutAreaData(IIVecInt, IIPar, AREA_EXT,     area_data_in) 

   ); 

 

  II_data_out <= IIRead(IIVecAll,IIPar,II_addr); 
 

  -- 

  -- user connections 

  -- 

  word_int0_data_out      <= IIConnGetWordData(IIVecAll,IIPar,WORD_INT,0); 

  word_int0_enable_out    <= IIConnGetWordEnable(IIVecEna,IIPar,WORD_INT,0,II_writeN); 
  word_int1_data_out      <= IIConnGetWordData(IIVecAll,IIPar,WORD_INT,1); 

  word_int1_enable_out    <= IIConnGetWordEnable(IIVecEna,IIPar,WORD_INT,1,II_writeN); 
   

  word_ext0_data_out      <= IIConnGetWordData(IIVecAll,IIPar,WORD_EXT,0); 

  word_ext0_enable_out    <= IIConnGetWordEnable(IIVecEna,IIPar,WORD_EXT,0,II_writeN); 
  word_ext0_read_ena_out  <= IIConnGetWordReadEna(IIVecEna,IIPar,WORD_EXT,0); 

  word_ext0_write_ena_out <= IIConnGetWordWriteEna(IIVecEna,IIPar,WORD_EXT,0); 

  word_ext0_save_out      <= IIConnGetWordSave(IIVecEna,IIPar,WORD_EXT,0,II_strobeN); 
 

  bits_int1_data_out      <= IIConnGetBitsData(IIVecAll,IIPar,BITS_INT1,0); 

  bits_int1_enable_out    <= IIConnGetBitsEnable(IIVecEna,IIPar,BITS_INT1,II_writeN); 
  bits_int2_data_out      <= IIConnGetBitsData(IIVecAll,IIPar,BITS_INT2,0); 

  bits_int2_enable_out    <= IIConnGetBitsEnable(IIVecEna,IIPar,BITS_INT2,II_writeN); 
  bits_ext1_data_out      <= IIConnGetBitsData(IIVecAll,IIPar,BITS_EXT1,0); 
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  bits_ext2_data_out      <= IIConnGetBitsData(IIVecAll,IIPar,BITS_EXT2,0); 

  bits_ext2_enable_out    <= IIConnGetBitsEnable(IIVecEna,IIPar,BITS_EXT2,II_writeN); 
  bits_ext2_read_ena_out  <= IIConnGetBitsReadEna(IIVecEna,IIPar,BITS_EXT2);  

  bits_ext2_write_ena_out <= IIConnGetBitsWriteEna(IIVecEna,IIPar,BITS_EXT2);  

  bits_ext2_save_out      <= IIConnGetBitsSave(IIVecEna,IIPar,BITS_EXT2,II_strobeN);  
   

  area_enable_out         <= IIConnGetAreaEnable(IIVecEna,IIPar,AREA_EXT,II_writeN); 
  area_read_ena_out       <= IIConnGetAreaReadEna(IIVecEna,IIPar,AREA_EXT);  

  area_write_ena_out      <= IIConnGetAreaWriteEna(IIVecEna,IIPar,AREA_EXT);  

  area_strobe_out         <= IIConnGetAreaStrobe(IIVecEna,IIPar,AREA_EXT,II_strobeN);  
 

end behaviour; 

6.4 Functional simulation of signal time relations in interface 
implementation  

Fig. 3 presents exemplary functional simulation of interface implementation. 

 

Fig. 3. Results of functional simulation for the test implementation of interface.  
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comment 1: Bus II_data_out outputs data from interface without taking into 

account the state and type of operation (i.e. ignored line status 

ii_operN and ii_writeN). 

comment 2: Records without write rights ignore write cycle (for example record 

WORD_CHK). 

The simulation was conducted for full range of addressing (from 0 to 15), successively 

for write and read operations: 

 Write cycle of data from bus II_data_in was performed successively for the addresses: 

0 – writing of value D to record WORD_CHK is ignored, 

1 – writing of value 0 to record WORD_STAT is ignored, 

2 – writing to component of index 0 of record WORD_INT (internal register) value 3 

with the rising edge of signal II_strobeN, 

3 – writing to component of index 1 of record WORD_INT (internal register) value 6 

with the rising edge of signal II_strobeN, 

4 – writing to younger part (bits 0-3) of external register (record WORD_EXT) value 9. 

For the bits 0-3 of bus word_ext0_data_out this value remains output for the 

period of low signal status II_operN. Bits 0-3 of bus word_ext0_ena_out are 

set to ‘1’ for the same period (write cycle), 

5 – writing to older part (bits 4-7) of external register (record WORD_EXT) value C. For 

the bits 0-3 of bus word_ext0_data_out this value remains output  for the 

period of low signal status II_operN. Bits 4-7 of bus word_ext0_ena_out are 

set to ‘1’ for the same period  (write cycle), 

6 – writing to bits of records BITS_INT1 and  BITS_INT2 of value F with the rising 

edge of signal II_strobeN. For the bus bits_int1_data_out there is 

output value 3 registered in record BITS_INT1, and for the bus 

bits_int2_data_out the value 1 registered in record BITS_INT2, 

7 – writing to bits of the records BITS_EXT1 and BITS_EXT2 value 2. For the bus 

bits_ext1_data_out there is output value 0, and for the bus 

bits_ext2_data_out value 1. During the duration time of the period, bit states 

of the buses bits_ext2_enable_out and bits_ext2_write_ena_out 

are set to ‘1’. For the low signal status II_strobeN, bits of the bus 

bits_ext2_enable_out are set to  ‘1’, 

8-15 – writing to spare area for the memory record AREA_EXT. During the duration time of 

the access cycle there are activated to ‘1’ the signals area_enable_out and 

area_write_ena_out. For the period of low level signal state II_strobeN 

there is activated to ‘1’ the signal area_strobe_out.  

Caution: Data from the bus II_data_in are directly connected to memory 

block, similarly to the required, the youngest address lines from the bus 

II_addr. 

 Reading cycle on the bus II_data_out was performed successively for the following 

addresses: 

0 – reading from record WORD_CHK returns a unique control value D calculated by the 

function VIICheckCodeGet, 
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1 – reading from record WORD_CHK returns, previously stored value 6, 

2 – reading from component of index 0 of internal register (record WORD_INT) of 

registered value. For the period of low level signal state II_operN there are 

activated for ‘1’ bus signals word_int0_enable_out, 

3 – reading from component of index 1 of internal register (record WORD_INT) of 

registered value 6. For the period of low level signal state II_operN there are 

activated to ‘1’ the bus signals word_int1_enable_out, 

4 – reading from the younger part (bits 0-3) of the bus word_ext0_data_in of 

value 4 via the external register (record WORD_EXT). Respectively, the bits 0-3 of 

the bus word_ext0_enable_out are set to ‘1’ for the cycle duration time (low 

level state of signal II_operN), 

Caution: For the bits 0-3 of the bus word_ext0_data_out there is output 

value 9 from the bus II_data_in. The reading and writing channels 

are nondependent!  

5 – reading from the younger part (bits 4-7) of bus word_ext0_data_in of value 3 

via external register (record WORD_EXT). Respectively, the bits 4-7 of bus 

word_ext0_enable_out are set to ‘1’ for the cycle duration time (low state of 

signal II_operN), 

Caution: For the bits 4-7 of the bus word_ext0_data_out there is output 

value C from the bus II_data_in. The reading and writing 

channels are nondependent! 

6 – simultaneous reading from record BITS_INT1 of value 3 and from record 

BITS_INT2 of value 1 in the form of a common value 7. For the period of low 

signal status II_operN there are activated to ‘1’ the buses signals 

wodr_int1_enable_out and wodr_int2_enable_out. 

7 – simultaneous reading from the record BITS_EXT1 of value 0 (record only for 

writing!) and from record BITS_EXT2 of value 1 from the bus 

bits_ext2_data_in in the form of a common value 2. The bit states of buses 

bits_ext2_enable_out and bits_ext2_read_ena_out are set to ‘1’ 

during the duration time of the cycle (i.e. for the low level of signal II_operN). 

8-15 – reading form memory record AREA_EXT of data via the bus area_data_in. 

During the duration time of access cycle the following signals are activated to ‘1’ 

area_enable_out and area_read_ena_out. For the duration of low level 

signal state II_strobeN there is activated to ‘1’ the signal area_strobe_out, 

Caution: Required, the youngest address lines from the bus II_addr are directly 

connected to the memory block. 



- 33/63 - 

7 IMPLEMENTATION OF PARAMETRIC, EXTERNAL, 
FUNCTIONAL COMPONENTS 

The Internal Interface possesses open structure and enables connection to the interface 

various external components. The functional layer of the interface is adjusted, in this way, by 

the system designer, to real implementation requirements in the FPGA chip. Applied common 

methods of parameterization in Internal Interface and for external components allow for 

considerable simplifications of mutual implementation.  

 This chapter presents examples of implementations of registers, counters and memories. 

They are the basic external functional components. They may be used directly in 

implementation or be composing blocks of more complex functional components.   

7.1 Implementation of external register for read buffering 

A lot of data is calculated by external components working with fast, synchronous 

clock. Data reading requires implementation of a buffering register. Registered data in the 

buffer are to be read by the  Internal Interface. Below, there is an example of component 

application KTP_LPM_REG as external data reading register. The dimensions of external 

data is set by nondependent parameter: REGISTER_WIDTH. 

library ieee; 

use ieee.std_logic_1164.all; 

use work.std_logic_1164_ktp.all; 

use work.ktpcomponent.all; 

use work.VComponent.all; 

 

entity II_test_ext_reg_read is 
 

  generic ( 

    constant II_ADDR_WIDTH  :TVL  :=4; --"interface address bus size"   

    constant II_DATA_WIDTH  :TVL  :=4; --"interface data bus size"   

    constant REGISTER_WIDTH  :TVL  :=8  --"external register bus size"   

  ); 

  port( 

    ext_reg_clk    :in  TSL; 

    ext_reg_ena    :in  TSL; 

    ext_reg_data_in   :in  TSLV(REGISTER_WIDTH-1 downto 0); 

    -- internal bus interface 

    II_resetN    :in  TSL; 

    II_operN    :in  TSL; 

    II_writeN    :in  TSL; 

    II_strobeN    :in  TSL; 

    II_addr    :in  TSLV(II_ADDR_WIDTH-1 downto 0); 
    II_data_in    :in  TSLV(II_DATA_WIDTH-1 downto 0); 
    II_data_out    :out TSLV(II_DATA_WIDTH-1 downto 0) 
  ); 

end II_test_ext_reg_read; 
 

architecture behaviour of II_test_ext_reg_read is 
 

  constant PAGE_REG   :TN   :=  1; --   "register page identifier"   

  constant WORD_EXT   :TN   :=  2; --   "external register identifier"   

  -- 

  constant VIIItemDeclList  :TVIIItemDeclList :=(   

  --  item type,  item ID,             width, num, parent ID, write type,    read type,     … 

    ( VII_PAGE,   PAGE_REG,                0,   0, PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, …  
    (  VII_WORD,  WORD_EXT,   REGISTER_WIDTH,   1, PAGE_REG,  VII_WACCESS,   VII_REXTERNAL, …  
  ); 

  -- 

  constant IIPar :TVII := TVIICreate(VIIItemDeclList,II_ADDR_WIDTH,II_DATA_WIDTH); 
  signal   IIVecInt, IIVecAll, IIVecEna  :TSLV(TSLVhigh(VII(IIPar)) downto VEC_INDEX_MIN); 

  -- 

  signal   H     :TSL; 

  signal   ExtRegDataOut   :TSLV(REGISTER_WIDTH-1 downto 0); 
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begin  

  H <= '1'; 

  -- 

  -- user connections 

  -- 

  ext_reg :KTP_LPM_REG 

    generic map ( 

      LPM_WIDTH => REGISTER_WIDTH 

    ) 

    port map( 

      resetN    => II_resetN, 
      setN      => H, 

      clk       => ext_reg_clk, 

      ena       => ext_reg_ena, 

      d         => ext_reg_data_in, 

      q         => ExtRegDataOut 

    ); 

  -- 

  -- Internal Interface implementation 
  -- 

  process(II_resetN, II_strobeN) 
  begin 

    if(II_resetN='0') then 
      IIVecInt <= IIReset(IIVecInt,IIPar); 

    elsif(II_strobeN'event and II_strobeN='1') then 
      if(II_operN='0' and II_writeN='0') then 
        IIVecInt <= IISave(IIVecInt,IIPar,II_addr,II_data_in); 
      end if; 

    end if; 

  end process; 

  -- 

  IIVecEna <= IIEnable(IIPar,II_operN,II_writeN,II_addr); 
  IIVecAll <= (IIWrite(IIVecInt,IIPar,II_addr,II_data_in) 
          or IIConnPutWordData(IIVecInt, IIPar, WORD_EXT,  0, ExtRegDataOut) 

   ); 

  II_data_out <= IIRead(IIVecAll,IIPar,II_addr); 
end behaviour; 

Table 7 presents physical distribution of components in the address area and data of 

communication bus Internal Interface for given project parameters: 

 interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4, 

 interface parameters for external register: REGISTER_WIDTH=8. 

Splitting of address and data area stems from automatic mechanism described in chapter 4.2): 

Exemplary result of functional simulation was presented in fig. 4. External data 

ext_reg_data_in are input synchronously with clock ext_reg_clk. Data readiness to 

write into the buffer is defined by high signal status ext_reg_ena, while data registration 

in the buffer KTP_LPM_REG is for rising edge of the clock signal ext_reg_clk. The AE 

value was registered for the analyzed example.  

II_Data component II_Addr 
(A3-A0) D3 D2 D1 D0 identifier access index 

0 bit 3 bit 2 bit 1 bit 0 

1 bit 7 bit 6 bit 5 bit 4 
WORD_EXT Ext. RO 0 

Tab. 7. Collection of declarations of records for test interface of register 

designations: - Ext. RO – external register only for reading. 

 

Fig. 4. Functional simulation results of implementation for external reading register.  
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The component of external register is connected to the Internal Interface via the signal 

bus ExtRegDataOut and function IIConnPutWordData. Buffered data reading (8-bits) 

is done in this implementation (4 bits of data bus) via two successive addresses (comp. chapt. 

4.2.1). For address 0, the youngest four values of buffered data are read (value E), and for 

address 1 the oldest half of data is read (value A). 

 

The way of implementation of buffering register KTP_LPM_REG 

does not depend on the real dimensions of buffered data  (parameter REGISTER_WIDTH), 

neither it depends on the bus dimensions  (parameters: II_addr_width, and 

II_data_width). 
 

7.2 Implementation of external parametric counter 

A component of synchronous counter is a commonly applied functional block in 

numerable FPGA implementations. The presented example uses component 

KTP_LPM_COUNT, which is fully controlled by the Internal Interface. The presented 

component implementation allows for:  

 Synchronous counting forward conditioned by the activation signal, 

 Asynchronous counter initialization to value 0, 

 Asynchronous setting of given initial value,  

 Asynchronous reading of currently read data.  

Counter data dimension is set by a nondependent parameter: COUNTER_WIDTH.  

 

The example is confined to counter usage KTP_LPM_COUNT only in the counting work mode 

from up to down and blocking of counting after reaching the maximum value. 
 

 
 

It is to be noticed, that data reading during counting via the Internal Interface  

requires application of a circuit which buffers the reading (see chapter 7.1). 
 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_misc.all; 

use work.std_logic_1164_ktp.all; 

use work.ktpcomponent.all; 

use work.VComponent.all; 

 

entity II_test_ext_counter is 
  generic ( 

    constant II_ADDR_WIDTH  :TVL  :=4; --"interface address bus size"   

    constant II_DATA_WIDTH  :TVL  :=4; --"interface data bus size"   

    constant COUNTER_WIDTH  :TVL  :=8  --"external register bus size"   

  ); 

  port( 

    ext_cnt_clk    :in  TSL; 

    ext_cnt_ena    :in  TSL; 

    -- internal bus interface 

    II_resetN    :in  TSL; 

    II_operN    :in  TSL; 

    II_writeN    :in  TSL; 

    II_strobeN    :in  TSL; 

    II_addr    :in  TSLV(II_ADDR_WIDTH-1 downto 0); 
    II_data_in    :in  TSLV(II_DATA_WIDTH-1 downto 0); 
    II_data_out    :out TSLV(II_DATA_WIDTH-1 downto 0) 
  ); 

end II_test_ext_counter; 
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architecture behaviour of II_test_ext_counter is 
 

  constant PAGE_REG    :TN   :=  1; --   "register page identifier"   

  constant VECT_CNT    :TN   :=  2; --   "vector identifier"   

  constant BITS_CNT_INIT   :TN   :=  3; --   "external bit identifier"   

  constant BITS_CNT_FINISH   :TN   :=  4; --   "external bit identifier"   

  constant WORD_CNT_DATA   :TN   :=  5; --   "internal register identifier"   

  -- 

  constant VIIItemDeclList   :TVIIItemDeclList :=(   

  --  item type,  item ID,                 width, num, parent ID,  write type,    read type,     … 

    ( VII_PAGE,   PAGE_REG,                    0,   0,  PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, … 
    (  VII_VECT,  VECT_CNT,                    0,   0,  PAGE_REG,  VII_WNOACCESS, VII_RNOACCESS, … 
    (   VII_BITS, BITS_CNT_INIT,               1,   1,  VECT_CNT,  VII_WACCESS,   VII_RNOACCESS, … 
    (   VII_BITS, BITS_CNT_FINISH,             1,   1,  VECT_CNT,  VII_WNOACCESS, VII_REXTERNAL, … 
    (  VII_WORD,  WORD_CNT_DATA,   COUNTER_WIDTH,   1,  PAGE_REG,  VII_WACCESS,   VII_REXTERNAL, … 
  ); 

  constant IIPar  :TVII := TVIICreate(VIIItemDeclList,II_ADDR_WIDTH,II_DATA_WIDTH); 
  signal   IIVecInt, IIVecAll, IIVecEna  :TSLV(TSLVhigh(VII(IIPar)) downto VEC_INDEX_MIN); 

  -- 

  signal   H     :TSL; 

  signal   ExtCntInitN    :TSL; 

  signal   ExtCntData    :TSLV(COUNTER_WIDTH-1 downto 0); 

  signal   ExtCntLoadN    :TSL; 

  signal   ExtCntResult    :TSLV(COUNTER_WIDTH-1 downto 0); 

  signal   ExtCntFinishN   :TSL; 

         

begin  

 

  H <= '1'; 

 

  -- 

  -- user connections 

  -- 

 

  ExtCntInitN <= not(IIConnGetBitsSave(IIVecEna,IIPar,BITS_CNT_INIT,ii_strobeN)); 

  ExtCntData  <= IIConnGetWordData(IIVecAll,IIVecEna,IIPar,WORD_CNT_DATA,0,ExtCntResult); 

  ExtCntLoadN <= not(OR_REDUCE(IIConnGetWordSave(IIVecEna,IIPar,WORD_CNT_DATA,0,ii_strobeN))); 

  -- 

  ext_count :KTP_LPM_COUNT 

    generic map( 

      LPM_DATA_WIDTH  => COUNTER_WIDTH, 

      COUNT_STOP  => TRUE, 

      COUNT_RELOAD  => FALSE 

    ) 

    port map( 

      resetN   => ii_resetN, 

      clk   => ext_cnt_clk, 

      clk_ena   => ext_cnt_ena, 

      initN   => ExtCntInitN, 

      loadN   => ExtCntLoadN, 

      downN   => H, 

      setN   => H, 

      reloadN   => H, 

      data   => ExtCntData, 

      count   => ExtCntResult, 

      finishN   => ExtCntFinishN, 

      overN   => open 

    ); 

 

  -- 

  -- Internal Interface implementation 
  -- 

  process(II_resetN, II_strobeN) 
  begin 

    if(II_resetN='0') then 
      IIVecInt <= IIReset(IIVecInt,IIPar); 

    elsif(II_strobeN'event and II_strobeN='1') then 
      if(II_operN='0' and II_writeN='0') then 
        IIVecInt <= IISave(IIVecInt,IIPar,II_addr,II_data_in); 
      end if; 

    end if; 

  end process; 

 

  IIVecEna <= IIEnable(IIPar,II_operN,II_writeN,II_addr); 
  IIVecAll <= (IIWrite(IIVecInt,IIPar,II_addr,II_data_in) 
          or IIConnPutWordData(IIVecInt, IIPar, WORD_CNT_DATA,   0, ExtCntResult) 

          or IIConnPutBitsData(IIVecInt, IIPar, BITS_CNT_FINISH, 0, TSLVconv(ExtCntFinishN)) 

   ); 

  II_data_out <= IIRead(IIVecAll,IIPar,II_addr); 
 

end behaviour; 
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Table 8 presents physical distribution of components in the address area  and Internal 

Interface communication bus area, for the set parameters of the considered project: 

 interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4, 

 external counter bus parameters: COUNTER_WIDTH=8. 

Splitting of address and data area stems from automatic mechanism described in chapter 4.2): 

Exemplary result of functional simulation of external counter was presented in fig.5. 

The counter KTP_LPM_COUNT counts forward, synchronously with the rising edge of the 

clock signal ext_cnt_clk under the condition of counting activating with high signal 

status ext_cnt_ena. 

The component of external register is connected to the Internal Interface: 

 writing cycle to the address 0 causes asynchronous initialization of the counter to value 0. 

Only  high status of bit D0 of the bus II_data_in is valid. It activates signal 

ExtCntInitN to low status during the signal duration II_strobeN, 

 Writing cycles to addresses 1 and 2 cause setting, successively, four younger and four older 

bits of counter KTP_LPM_COUNT. The process of counter status setting is asynchronous 

against the clock signal ext_cnt_clk. Data are transmitted via the bus ExtCntData, 

and writing activates the low signal status ExtCntLoadN, 

 Reading cycle from the address 0 returns signal status ExtCntFinishN during the bit D1 

of the bus II_data_in, 

 Reading cycles from the addresses 1 and 2 return successively, four younger and four older 

bits of the counter KTP_LPM_COUNT. Counter status is transferred by the bus 

ExtCntResult. 
 

The way of implementation of synchronous external counter KTP_LPM_COUNT 

does not depend on real dimensions of the counter (parameter COUNT_WIDTH), 

neither it depends on the bus dimensions  (parameters: II_addr_width, and 

II_data_width). 
 

II_Data component II_Addr 
(A3-A0) D3 D2 D1 D0 identifier access index 

   bit 0 BITS_CNT_INIT Ext. WO  
0 

  bit 1  BITS_CNT_FINISH Ext. RO  

1 bit 3 bit 2 bit 1 bit 0 

2 bit 7 bit 6 bit 5 bit 4 
WORD_CNT_DATA Ext. RW 0 

Tab. 8. Collection of record declarations for test interface of a counter.  

designations: - Ext. – external register,  

- RO- only for reading, WO – only for writing, RW – full access. 

 

Fig. 5. Functional simulation results of external counter implementation.  
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7.3 Implementation of parametric external memory  

Component of synchronous double-port memory utilizes physical memory blocks 

present in the FPGA chip (in chip series: APEX, ACEX, CYCLONE, STRATIX, SPARTAN, 

VIRTEX and others). The presented example uses component DPM_PROG, which is fully 

controlled by the Internal Interface. The presented component implementation enables writing 

an reading of memory address area. Nondependent parameter MEM_ADDR_WIDTH 

determines the dimension of memory address bus and respectively the parameter 

MEM_DATA_WIDTH, defines the dimension of data bus.  

 

The example is confined to the usage of component DPM_PROG exclusively in the access 

mode to the Internal Interface. 
 

 

 

The project synthesis process requires only the file LPM_comp_? which complies with the 

used type of FPGA. 
 

 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_misc.all; 

use work.std_logic_1164_ktp.all; 

use work.ktpcomponent.all; 

use work.VComponent.all; 

use work.lpmcomponent.all; 

 

entity II_test_ext_memory is 
  generic ( 

    constant II_ADDR_WIDTH  :TVL  :=4; --"interface address bus size"   

    constant II_DATA_WIDTH  :TVL  :=4; --"interface data bus size"   

    constant MEM_ADDR_WIDTH  :TVL  :=2;  --"external register bus size"   

    constant MEM_DATA_WIDTH  :TVL  :=8  --"external register bus size"   

  ); 

  port( 

    ext_cnt_clk    :in  TSL; 

    ext_cnt_ena    :in  TSL; 

    -- internal bus interface 

    II_resetN    :in  TSL; 

    II_operN    :in  TSL; 

    II_writeN    :in  TSL; 

    II_strobeN    :in  TSL; 

    II_addr    :in  TSLV(II_ADDR_WIDTH-1 downto 0); 
    II_data_in    :in  TSLV(II_DATA_WIDTH-1 downto 0); 
    II_data_out    :out TSLV(II_DATA_WIDTH-1 downto 0) 
  ); 

end II_test_ext_memory; 
 

architecture behaviour of II_test_ext_memory is 
 

  constant PAGE_REG   :TN   :=  1; --   "register page identifier"   

  constant AREA_MEM   :TN   :=  2; --   "external memory identifier" 

  -- 

  constant VIIItemDeclList   :TVIIItemDeclList :=(   

  --item type, item ID,          width,               num, parent ID, write type,    read type,    …     

  (VII_PAGE,  PAGE_REG,              0,                 0,  PAGE_REG, VII_WNOACCESS, VII_RNOACCESS … 
  ( VII_AREA, AREA_MEM, MEM_DATA_WIDTH, 2**MEM_ADDR_WIDTH,  PAGE_REG, VII_WACCESS,   VII_REXTERNAL … 
 ); 

  constant IIPar  :TVII := TVIICreate(VIIItemDeclList,II_ADDR_WIDTH,II_DATA_WIDTH); 
  signal   IIVecInt, IIVecAll, IIVecEna  :TSLV(TSLVhigh(VII(IIPar)) downto VEC_INDEX_MIN); 

  -- 

  signal   H, L    :TSL; 

  signal   AL    :TSLV(MEM_ADDR_WIDTH-1 downto 0); 

  signal   DL    :TSLV(MEM_DATA_WIDTH-1 downto 0); 

  constant MEM_II_ADDR_WIDTH  :TN := MEM_ADDR_WIDTH --> 

             +SLVPartAddrExpand(MEM_DATA_WIDTH,II_DATA_WIDTH); 
  signal   ExtMemWr   :TSL; 

  signal   ExtMemStr   :TSL; 

  signal   ExtMemDataOut  :TSLV(II_DATA_WIDTH-1 downto 0); 
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begin 

  H <= '1'; L <= '0'; 

  AL <= (others => '0'); DL <= (others =>'0'); 

  -- 

  -- user connections 

  -- 

  ExtMemWr  <= IIConnGetAreaWriteEna(IIVecEna,IIPar,AREA_MEM); 

  ExtMemStr <= IIConnGetAreaStrobe(IIVecEna,IIPar,AREA_MEM,ii_strobeN); 

  -- 

  ext_memory :DPM_PROG 

    generic map ( 

      LPM_DATA_WIDTH   => MEM_DATA_WIDTH, 

      LPM_ADDR_WIDTH   => MEM_ADDR_WIDTH, 

      LPM_MDATA_WIDTH  => II_DATA_WIDTH, 
      ADDRESS_SEPARATE => FALSE 

    ) 

    port map ( 

      resetN           => II_resetN, 
      clk              => L, 

      ena_in           => L, 

      addr_in          => AL, 

      data_in          => DL, 

      ena_out          => L, 

      addr_out         => AL, 

      data_out         => open, 

      simulate         => L, 

      proc_req         => L, 

      proc_ack         => open, 

      memory_addr      => II_addr(MEM_II_ADDR_WIDTH-1 downto 0), 
      memory_data_in   => II_data_in, 
      memory_data_out  => ExtMemDataOut, 

      memory_wr        => ExtMemWr, 

      memory_str       => ExtMemStr 

  ); 

  -- 

  -- Internal Interface implementation 
  -- 

  process(II_resetN, II_strobeN) 
  begin 

    if(II_resetN='0') then 
      IIVecInt <= IIReset(IIVecInt,IIPar); 

    elsif(II_strobeN'event and II_strobeN='1') then 
      if(II_operN='0' and II_writeN='0') then 
        IIVecInt <= IISave(IIVecInt,IIPar,II_addr,II_data_in); 
      end if; 

    end if; 

  end process; 

  -- 

  IIVecEna <= IIEnable(IIPar,II_operN,II_writeN,II_addr); 
  IIVecAll <= (IIWrite(IIVecInt,IIPar,II_addr,II_data_in) 
          or IIConnPutAreaMData(IIVecInt, IIPar, AREA_MEM, ExtMemDataOut) 

   ); 

  II_data_out <= IIRead(IIVecAll,IIPar,II_addr); 
end behaviour; 

Table 9 presents physical distribution of components in the address and data areas of 

communication bus Internal Interface for the set project parameters: 

 Interface parameters: II_ADDR_WIDTH=4, II_DATA_WIDTH=4, 

 Memory bus parameters: MEM_ADDR_WIDTH =2, MEM_ADDR_WIDTH =8. 

Splitting of address and data area stems from automatic mechanism described in chapter 4.2): 

II_Data component II_Addr 
(A3-A0) D3 D2 D1 D0 identifier access index 

0-3 bit 3 bit 2 bit 1 bit 0 
AREA_MEM 
(sub-area 0) 

4-7 bit 7 bit 6 bit 5 bit 4 
AREA_ MEM 
(sub-area 1) 

Ext. RW   

Tab. 9. Collection of record declarations for the test interfaces for memory 

designations: - gray fields  denote non valid parameters,  

- Ext. – external register, RW – full access. 
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The exemplary result of functional simulation of synchronous dual-port memory  was 

presented in fig. 6. Memory DPM_PROG has input proc_req set permanently to low status. 

It realizes constantly access to its data area via the Internal Interface. Writing was performed of 

values 59, 6A, 7B and 8C successively to memory cells addressed from 0 to 3. Successively, 

there was written the first and then the second memory sub-area. The stored data (in memory 

sub-areas) reading was done in the same succession.   

 

The example uses memory model from the ACEX chip by ALTERA. 

The sub-areas contents are represented by mem_data. 
 

 

During the writing cycle, the memory component is controlled from the Internal Interface 

by the following signals: 

 The address bus of memory is directly connected to the youngest two bits of the address bus 

II_addr (A0 and A1), 

 Input data bus of the memory is directly connected to the data bus II_data_in, 

 The writing cycle is activated by high status of signal ExtMemWr calculated by the function 

IIConnGetAreaWriteEna, 

 Switching of synchronous memory is realized by the signal ExtMemStr calculated by 

function IIConnGetAreaStrobe. 

During the reading cycle, the memory component is controlled from the Internal Interface 

by the following signals: 

 Memory address bus is directly connected to the youngest two bits of address bus 

II_addr (A0 and A1), 

 Output data bus is connected to the Internal Interface via the signal bus ExtMemDataOut 

and function IIConnPutWordData 

 

 

Fig. 6. Results of functional simulations for external counter. 
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8  CONCLUSIONS AND CLOSING REMARKS 

     The contemporary electronic systems for HEP and FEL experiment are functionally 

and structurally very complex. They require effective and easily expandable communication 

layer. Implementation of such a layer is equivalent with solution of the following problems:    

  Physical application of such buses as VME, VXI, PCI or Ethernet, 

 Implementation of strictly ordered communication area inside each involved FPGA chip, 

 Integration of FPGA chip and the hardware communication layer with respective 

programming environment.  

 Professional, integrated communication I/O systems, between programming 

environment and FPGA chips, are offered in the proprietary packets by all bigger commercial 

FPGA system vendors, like:  

 National Instrument, is offering the integration technology for the LabView packet with 

the National Instruments Reconfigurable I/O (RIO) devices, 

 MathWorks, offers for the market extensive tools like MATLAB and SIMULINK which 

are very well suited for cooperation with commercial devices,  

 Nallatech, producer of advanced technological devices based on FPGA and DSP of the 

recent generation; the relevant programming environment FUSE is offered;  

 Xilinx, manufacturer of FPGA chips, offers programming tools cooperating with electronic 

devices with FPGA chips from other vendors;  

 Altera, similarly to Xilinx, offers a proprietary solution in the for m of an advanced 

integrated packets. The packet includes a number of specialized programs for realization of 

basic functions.  

The examples of commercial solutions were presented in appendix E. These solutions are 

suitable to obtain fast and easy application in the hardware FPGA and programming layer. 

The offered commercial device and programming layer are integrated as a unity.  Such a 

solution may be effective for HEP and FEL experiments on the stage of initial experiments, 

with the choice of proper FPGA chip, peripheral devices, laboratory tests, control algorithms, 

data processing and realization of simple functional prototypes.   . 

Final solutions are realized as distributed, multichannel electronic systems, precisely 

tailored to the needs of particular experiment or accelerator. There are taken into account 

numerable technical requirements like, for example:  

 Kinds and number of input signals, which typically are confined in the range of tens of 

thousands or millions of nondependent measurement channels. Proper fitting of the initial 

processing to the character of measured signals, provides required accuracy of the whole 

system. The parameters to be controlled for FEL and HEP  experiments are: field stability in 

the superconducting RF cavity, effective calculation of the trigger signal;  

 Synchronization signals distribution, which have to provide synchronous work of the 

distributed electronic system with assumed stability. The following signals are subject to 

distribution: clock, phase reference, trigger, global control signals (data acquisition, 

exception handling, etc.); 

 Distribution and acquisition of synchronous data streams, which provide realization of 

successive data concentration in the system and data registration for the purpose of further 

processing in the computer systems;  
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 Integrated programming environment with the computer system, is a grave factor 

determining the physical communication way with electronic apparatus and control 

technology of the electronic system. The requirements set for the HEP experiments and 

accelerators are very demanding and force the usage of new research solutions not yet 

available in the commercial packets. The experiments develop often their own specialized 

solutions like DOOCS, XDAQ, etc. In the experiments, various computer systems are used, 

like PC, SUN, TRANSPUTER etc. Proper functional control and monitoring programs are 

realized for the purpose of particular research projects realization by participating experts 

and researchers.  

  Situation of modules in particular industrial crates and in the large object (like accelerator 

or detector) stems from unique and specific construction of particular machine. The factors 

of concern are: considerable length of the accelerator, positioning of accelerating cavities in 

superconducting modules, big dimensions of the detector, high levels of damaging radiation 

fields in particular places, etc.  The electronic system has to be fit to the needs of such large 

distributed structures. Usually, it is split to separate functional modules. The modules 

occupy separate PCBs. The PCBs are fit to the place of their situation in the object or in the 

VME crates. The communication interfaces are chosen individually, as well as power 

supplies, cabling, thresholds for ionizing radiation hardness, etc.  

 Standardization versus individualization; There is clearly a trade-off between the level of 

individualization and specialization of functional modules and their unification and 

standardization. Unification may result in lower costs, with complete change of system 

design and introduction of wide parameterization techniques. Specialization may result 

potentially in better system performance.  

 Costs versus performance; Another trade-off is between costs and system performance. 

Using off-the shelf industrial products, mainly designed for the largest industrial 

telecommunications market usually considerably lowers the costs.  

 Hardware versus software;  There is a trade-off between splitting the system functions 

among the software and hardware layers. Usually the hardware redundancy allows later for 

more flexibility with software updates. Such approach makes the system live longer and 

prevents to soon aging.  It is said however, that the load in the future systems will shift more 

toward the software layer.  

 Flexibility versus aging; As mentioned above, hardware and software flexibility (system 

parameterization) prevents too early aging.  

 Reliability; The factors influencing system reliability are: implementation of own or 

commercial solutions, the methods of IP support, crew training, etc.,  

 Maintainability; The system has to be designed in this way as to be manageable and 

maintainable only by internal crew. Practically commercial system maintenance for long 

term is excluded.  

 Most of these factors mentioned above speak for the usage of own solutions now. The 

example of such solution is Internal Interface technology. This may change in time, 

however, with the advent of global standardization of FPGA technology usage.  

The Internal Interface technology was developed strictly as a result of real needs of the 

HEP and FEL communities. It introduced a lot of standardization and eased the design 

methods of large and complex FPGA based systems. Construction of very large electronic 

systems for HEP/FEL experiments requires prediction of the following factors:  

 multilevel optimization at the functional design level,  

 system topology design,  
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 technology choices level,  

 practical system fabrication,  

 iterative system debugging,  

 system commissioning,  

 performance tests,  

 system coarse and fine tuning to the needs of particular experiment, 

 need of frequent modifications during the experiment, introduced well after original 

system commissioning,  

 extremely long exploitation and, thus, required life time of the system. 

The need for system reconfiguration ability is a must and stems from fast technological 

developments nowadays in hardware and software, large scale of HEP/FEL experiments, 

large costs, large number of involved electronic modules, suddenly appearing novel research 

needs to be immediately addressed, constant requirements for measurement capability 

upgrades, etc.  

  The Internal Interface was written in VHDL as modular and parametric solution. It is 

implemented no dependently of the hardware platform and the type of FPGA chip. This 

concerns the following families of PLDs: ALTERA, XILIX, ACTEL, etc. It is implemented 

independently of the communication interface like: VME, VXI, LPT, RS, Ethernet etc. 

Standardized library functions of the Internal Interface enable the user: 

  simple implementation of the project, determined by precise definition of the needs;  

 Access to particular components of the interface from the level of own functional project 

written in VHDL; 

 Application of various modules of physical communication like VME, LPT, RS or Ethernet.  

A number of documents in this technical note on the Internal Interface were excluded 

from the main body of the text, to form appendices. The appendices include illustrative 

examples, application note details and auxiliary data supplementing the whole material: 

 Appendix A presents exemplary and the most important VHDL library files of the Internal 

Interface programming environment.  

 Appendix B presents examples of practical applications of the Internal Interface technology 

in a few separate projects prepared for HEP and accelerator experiments.  

 Appendix C presents examples of realization for the programming layer. The particular 

features of the layer stems from the needs of the GHEP and accelerator experiments. The 

programming layer is integrated with the Internal Interface. 

 Appendix D presents the plans for future development of the Internal Interface standard. 

The standard is not frozen but is subject to intense development to include new 

functionalities and to facilitate the system design capabilities.  

 Appendix E introduces the competing commercial standards of communication with 

FPGA chips existing on the market. The market standards are of proprietary nature and 

allow only for what is offered in the GUI designed by the vendors.  

 Appendix F is an ownership statement for the Internal Interface technology and short note 

about its open usage as well as technical support offered by the authors from Warsaw 

ELHEP Group.  
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The practical experiences gathered so far with the Internal Interface show clearly its 

extremely big usefulness for HEP experiments and superconducting accelerator technology. 

There were realized numerable test applications (together a few tens) in these fields up till 

now using the debated technology. The hardware test beds using Internal Interface work now in  

such research centers like CERN, DESY and FermiLab. 

The experiences gathered for the last few years in construction of relevant systems show 

extremely dynamic development of FPGA based technologies and their wider applications. 

The consequence is further development of programming techniques, increasing functional 

requirements for designed experimental systems. The Internal Interface technology will 

develop with these needs and increasing hardware capabilities. These trends are addressed in 

the Appendix D. The Internal Interface develops in the direction of the component oriented 

version. The component oriented Internal Interface will enable realization of much more 

complex functional structures to be implemented in FPGA. Such structures will be 

automatically integrated with the programming layer. Thus, the programming layer will 

embrace control processes, monitoring, diagnostics, exception handling, data acquisition, etc.   
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APPENDICES 

A VHDL library files  

This appendix contains fragments of the following source files:  

 std_logic_1164_.vhd – contains basic definitions of types and functions, 

 VComponent.vhd – contains definitions and II  library functions. 

Usage of the files is necessary in VHDL projects which implement the Internal Interface. The 

library functions enable automatic creation of the  II, connection to physical communication 

bus, access to bus resources from the level of external blocks realized in FPGA chip.   

A.I File „std_logic_1164_.vhd” 

The file defines  package std_logic_1164_, which contains among others, the following 

definitions necessary for appropriate implementation of the Internal Interface: 

A.I.1 Definition abbreviations for types: 

subtype TI is integer; integer number  
subtype TN is natural;  natural number 
subtype TP is positive;  integer positive number  
subtype TL is boolean;  logical value 
subtype TC is character;  character  
subtype TS is string;  string of characters  

subtype TSL is std_logic; type of standard logical value 
subtype TSLV is std_logic_vector; vector of std. logical values 

A.I.2 Type definitions for vector description:  

subtype TVL is TN; type defining vector length  
constant NO_VEC_LEN :TVL := 0; non defined vector length 
 
subtype TVI is TI range -1 to TVL'high; type determining position in vector  
constant NO_VEC_INDEX :TVI := -1; non defined position in vector  
constant  VEC_INDEX_MIN :TVI := 0; beginning position of vector   

A.I.3 Vector types definitions:  

type TIV is array(TN range<>) of TI; vector of integer numbers 
type TNV is array(TN range<>) of TN; vector of natural numbers 
type TPV is array(TN range<>) of TP; vector of integer positive numbers  
type TLV is array(TN range<>) of TL; vector of logical values 

type TVLV is array(TN range<>) of TVL; vector of vectors lengths values 
type TVIV is array(TN range<>) of TVI; vector of position values of vectors 

A.I.4 Definition of user functions:  

function pow2 (v :TN) return TN; 
function TVLcreate (arg:TN) return TVL; 
function SLVMax (arg:TN) return TN; 
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A.II File  „VComponent.vhd” 

The file defines package VComponent, which contains definitions, creation functions, 

communication and access functions for the Internal Interface: 

A.II.1 Component kinds  (see chapt. 3.1): 

type TVIIItemType is ( 
   VII_PAGE, 
   VII_AREA, 
   VII_WORD, 
   VII_VECT, 
   VII_BITS 
); 

A.II.2 Access kinds to components  (see chapt. 3.5):  

type TVIIItemWrType is ( 
   VII_WNOACCESS, 
   VII_WACCESS 
); 
 
type TVIIItemRdType is ( 
   VII_RNOACCESS, 
   VII_REXTERNAL, 
   VII_RINTERNAL 
); 

A.II.3 Description parameters of components  (see chapt.  3.6):  

constant VII_ITEM_NAME_LEN :TP := 32; 
constant VII_ITEM_DESCR_LEN :TP := 64; 
 
type TVIIItemFun is ( 
   VII_FUN_UNDEF, 
   VII_FUN_HIST, 
   VII_FUN_RATE 
); 

A.II.4 Record components of declaration list  (see chapt. 3):  

type TVIIItemDecl is record 
   ItemType :TVIIItemType; 
   ItemID :TN; 
   ItemWidth :TVL; 
   ItemNumber :TN; 
   ItemParentID :TN; 
   ItemWrType :TVIIItemWrType; 
   ItemRdType :TVIIItemRdType; 
    ItemName :TS(VII_ITEM_NAME_LEN downto 1); 
   ItemFun :TVIIItemFun; -- HIST, COUNT, UNDEF 
   ItemDescr :TS(VII_ITEM_DESCR_LEN downto 1); 
end record; 
 
type TVIIItemDeclList is array (TN range<>) of TVIIItemDecl; 
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A.II.5 Record components of implementation table  (see chapt. 4.4):  

type TVIIItem is record 
   ItemType :TVIIItemType; 
   ItemID :TN; 
   ItemParentID :TVI; 
   ItemWidth :TVL; 
   ItemNumber :TN; 
   ItemWrType :TVIIItemWrType; 
   ItemWrPos :TVI; 
   ItemRdType :TVIIItemRdType; 
   ItemRdPos :TVI; 
   ItemAddrPos :TVI; 
   ItemAddrLen :TVL; 
end record; 
type TVII is array (TN range<>) of TVIIItem; 

A.II.6 Information processing functions  (see chapt. 5.1):  

VIINameConv (name :TS) return TS; 
VIIDescrConv (name :TS) return TS; 

A.II.7 Service functions of interface initialization  (see chapt. 5.2):  

TVIICreate ( list :TVIIItemDeclList; addr_width, data_width :TVL) return TVII; 
VII (par :TVII) return TSLV; 
VIICheckSumGet (par :TVII) return TN; 
VIICheckCodeGet (par :TVII) return TSLV; 
IIAddrWidthGet (par :TVII) return TVI; 
IIDataWidthGet (par :TVII) return TVI; 
IIAddrRangeGet (par :TVII) return TVI; 

A.II.8 Service functions of interface  (see chapt. 5.3):  

IIReset (vec :TSLV; par :TVII) return TSLV; 
IISave (vec :TSLV; par :TVII; addr, data_in :TSLV) return TSLV; 
IIWrite (vec :TSLV; par :TVII; addr, data_in :TSLV) return TSLV; 
IIRead (vec :TSLV; par :TVII; addr :TSLV) return TSLV; 
IIEnable (par :TVII; enableN, WriteN :TSL; addr :TSLV) return TSLV; 

A.II.9 Service functions of component type WORD (see chapt. 5.3, 5.4):  

IIConnPutWordData (vec :TSLV; par :TVII; item_id :TN; pos :TVI; data_in :TSLV) return TSLV; 
IIConnPutWordTab (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV; 
IIConnGetWordData (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV; 
IIConnGetWordData (dvec,evec:TSLV; par:TVII; item_id :TN; pos :TVI; data :TSLV) return TSLV; 
IIConnGetWordEnable (vec :TSLV; par :TVII; item_id :TN; pos :TVI; writeN :TSL) return TSLV; 
IIConnGetWordReadEna (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV; 
IIConnGetWordWriteEna (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV; 
IIConnGetWordSave (vec :TSLV; par :TVII; item_id :TN; pos :TVI; strobeN :TSL) return TSLV; 

A.II.10 Service functions of component type BITS (see chapt. 5.3 and 5.4):  

IIConnPutBitsData (vec :TSLV; par :TVII; item_id :TN; pos :TVI; data_in :TSLV) return TSLV; 
IIConnPutBitsTab (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV; 
IIConnGetBitsData (vec :TSLV; par :TVII; item_id :TN; pos :TVI) return TSLV; 
IIConnGetBitsEnable (vec :TSLV; par :TVII; item_id :TN; writeN :TSL) return TSL; 
IIConnGetBitsReadEna (vec :TSLV; par :TVII; item_id :TN) return TSL; 
IIConnGetBitsWriteEna (vec :TSLV; par :TVII; item_id :TN) return TSL; 
IIConnGetBitsSave (vec :TSLV; par :TVII; item_id :TN; strobeN :TSL) return TSL; 
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A.II.11 Service functions of component type AREA (see chapt. 5.3 and 5.4):  

IIConnPutAreaData (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV; 
IIConnPutAreaMData (vec :TSLV; par :TVII; item_id :TN; data_in :TSLV) return TSLV; 
IIConnGetAreaEnable (vec :TSLV; par :TVII; item_id :TN; writeN :TSL) return TSL; 
IIConnGetAreaWriteEna (vec :TSLV; par :TVII; item_id :TN) return TSL; 
IIConnGetAreaReadEna (vec :TSLV; par :TVII; item_id :TN) return TSL; 
IIConnGetAreaStrobe (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL; 
IIConnGetAreaWriteStr (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL; 
IIConnGetAreaReadStr (vec :TSLV; par :TVII; item_id :TN; strN :TSL) return TSL; 
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B Applications of Internal Interface for HEP experiments     

and accelerator LLRF control 

This paper presents a new automatic system of efficient and broadly standardized and 

parameterized communication with FPGA , called the Internal Interface. Described system  is 

currently used in a few large projects of distributed measurement and control networks: 

1. Early versions of the Internal Interface (AHDL version, 1999-2000) were tested on the 

BAC Trigger boards (UNIBOARDS, XY-BOARDS, GFLTBI) for the BAC detector. 

These PCBs carry totally over 100 FPGA chips (ACEX - ALTERA) [11].  

2. The Internal Interface  communication and addressing standard is used very successfully in 

the electronic system of the Muon Trigger RPC (CMS experiment at the LHC accelerator, 

CERN) from 2001 [14]. The applications of Internal Interface were implemented in sub-

projects of the Finnish CMS Group (Lapperanta – University of Technology), Italian CMS 

Group (Bari – INFN) and Polish CMS Group (Warsaw, Warsaw University and Warsaw 

University of Technology). The system embraces together approximately 3000 

nondependent PCBs of the dimensions 6-HE or 9-HE (in the VME standard). These PCBs 

carry totally over 10000 FPGA chips (ACEX, CYCLONE, STRATX - ALTERA, 

SPATRAN,VIRTEX - XILINX)[15]. 

3. Since 2002, the Internal Interface standard is used in the TESLA Technology based 

experiments and user facilities like TTF2 and TTF3, VUV-FEL in DESY, Hamburg. The 

II  interface standard was implemented in the successive versions of the LLRF control 

system for accelerating, microwave superconducting cavity measurement and control for 

the high power EM field stabilization (VIRTEX - XILINX) [17]. These systems were:   

 SIMCON 1.0 [18] – single simulator and controller (laboratory version), 

 SIMCON 2.1 [19] – single simulator and controller (real-time version), 

 SIMCON 3.0 [20] – 8-channels SIMCON (real-time version with exception handling), 

 SIMCON 3.1 [22] – new version of 8-channels controller (under develop). 

 The implementation of Internal Interface was also used for the control of the RF-GUN for 

VUV-FEL with the version of  SIMCON 3.0 and SIMCON3.1 
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C Programming layer of Internal Interface 

Close integration of hardware layer of the Internal Interface with programming layer 

allows for full usage of functional possibilities of the proposed solution. Due to the usage of 

common configuration files of IID type (compare chapter 3), the programming layer 

automatically images hardware functional blocks in the software (comp. fig. 1). One obtains a 

right imaging of the communication space and right logical imaging of the I/O ports  (for 

example: bits, registers or memory areas). The imaging process is automatic and is controlled 

by set parameters and area structure of the Internal Interface. 

There were developed a few nondependent solutions for the programming layer of the 

Internal Interface. The different solutions address variety of needs of wide range of apparatus 

controlled by the Internal Interface. The basic experiments now, where the Internal Interface 

technology is applied are:  CMS, TTF2 and VUV-FEL. There were used the following 

programming languages and specialized environments: C, C++, Java, MATLAB, DOOCS, 

XDAQ. The implementation of programming layer was done for the following OSs: 

Windows98/2000/XP, Linux and Unix on the following computers: IBM-PC, SUN and 

embedded processors (GPP type) ETRAX and POWER-PC/XILINX. 

 

Application of different solutions for the programming layer, various operational systems and 

various communication interfaces does not require any modification in the hardware layer 

of the Internal Interface implemented in the FPGA chips. 
 

 

C.I Internal Interface  control system in C++ 

The first system solution of the Internal Interface code was prepared during the period of 

2000-2001 for the CMS experiment at LHC accelerator in CERN. During the period of 2001-

2004 the system was further developed for the needs of LHC muon tests. A few versions of 

RPC Muon Trigger hardware were then prepared using extensively FPGA technology.   

 

During the period of 2003-2004 this version of software was used for laboratory tests of 

superconducting cavity simulator and controller SIMCON 1.0 [18]. 
 

The programming layer, written in C++, is a collection of classes and interfaces. It gives 

to the user a convenient communication interface with the hardware layer. The applied 

parametric system approach resulted in capability of the software and resulting interface to 

cooperate with an arbitrary PCB equipped in FPGA chips and (for example) VME interface. 

The programming platform provides a set of functions to interpret the IID file and for 

servicing particular interface components. These components stem from current 

implementation of the interface in the FPGA chip.  

Fig. 7 presents an example of, automatically generated, Internal Interface service panel 

for the “LB” board. The LB PCB is a board of RPC Muon Trigger and contains a number of 

FPGA chips. There are visible, in the successive columns, the structure of communication 

area of the Internal Interface for three FPGA chips, called respectively: LB_CONTROL, 

LB_GOLSRC and LB_GOLDST).  

Fig. 8 presents functional components of the „LB” board which are designed to monitor 

the RPC chambers  during the accelerator tests in the real-time. These tests embrace: 
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investigation of noise level from particular chamber channels, measurements of detection 

efficiency of muon beam, etc. The operator is able to observe simultaneously the current 

status of the device and modify the necessary parameters. This ability is possible due to 

communication with the FPGA provided by the Internal Interface.  

 

Fig. 7. Example of an operator panel which provides access to the components of the Internal 

Interface from FPGA chips.  

 

Fig. 8. Functional panel for monitoring of working conditions of RPC chambers of the Muon 

Trigger. 
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C.II Internal Interface  control via C++ and MATLAB 

The integration of MATLAB environment 

with hardware layer of the Internal Interface, to be 

used for the simulator and controller of resonant 

cavity in the TTF2 and VUV-FEL accelerators, 

was performed in 2004. The application of 

MATLAB, in the laboratory conditions, provides 

a unique possibility to combine the mathematical 

modeling components and signal processing with 

physical control layer for the device. The tasks 

include, among others: choice of optimal control 

parameters, data acquisition, measurements of 

electrical field changes in the cavity. There were 

written, in C++, library functions in the form of 

MEX-files. They provide basic operations in the 

communication layer with FPGA chip, via the 

Internal Interface. The MEX-files are responsible 

for standard communication mechanisms with 

VME, parallel port or Ethernet.  

The library tools, written in MATLAB  

environment, provide user with the access to 

particular components of the Internal Interface. The 

components are implemented in FPGA chip and described in appropriate IID file. An example 

of control panel was presented in fig. 9. Fig. 10 presents control and monitoring panel for the 

resonant cavity.  

 

Fig. 9. Internal Interface control panel in 

the MATLAB environment. 

 

Fig. 10. Control panel for monitoring of work of the resonant cavity via Internal Interface. 
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C.III Integration of Internal Interface with DOOCS and MATLAB 

The Matlab module for DOOCS provides to the system an interface, through which 

compiled Matlab function can communicate with the rest of the DOOCS system. The purpose 

of this unification is to make the changes of the server as simple as it is possible. The interface 

bases on the firmware structure. It means, that it must be changed if the firmware changes 

(which happens relatively seldom comparing with the changes made in the software). The 

interface should be applied in Matlab m-function so after compilation the library will be 

easily integral with the server. 

The Matlab libraries in the communication module were adapted for the DOOCS needs. 

Additionally dedicated C++ classes were developed in DOOCS. This provides the interface 

for writing and reading to  every Internal Interface element. These functions allow to write or 

read from the hardware a single word or memory arrays. 

The control system, integrated with DOOCS and MATLAB environments, was 

implemented for:  

 Chechia test set up  with control modules SIMCON 2.1 ,  SIMCON 3.0 and SIMCON 3.1 

 ACC1 module of VUV-FEL accelerator with usage of eight channel controllers SIMCON 

3.0 and SIMCON 3.1 

 Copper cavity of the RF-GUN of VUV-FEL accelerator with the usage of controllers 

SIMCON 3.0 and SIMCON 3.1 

Fig. 11 presents an example of the control module for CHECHIA set-up.  

 

 

Fig. 11. Main panel for SIMCON controller in DOOCS environment. 
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C.IV Integration of Internal Interface with XDAQ system for CMS 

XDAQ is a software product line that has been designed [5] to match the diverse 

requirements of data acquisition application scenarios of the CMS experiment. These include 

the central DAQ, sub-detector local DAQ systems for commissioning, debugging, 

configuration, monitoring and calibration purposes, test-beam and detector production 

installations as well as design verification and demonstration purposes. XDAQ includes a 

distributed processing environment called “the executive” that provides applications with the 

necessary functions for communication, configuration control and monitoring. 

Fig. 12 presents an example of XDAC environment usage for full control of the 

electronic system of RPC Muon Trigger.  The communication areas, implemented by the 

Internal Interface in FPGA chips are made accessible via the WWW panel in the hierarchic 

tree. The tree images structure of the whole system.    

 

Fig. 12. Integration of XDAQ environment with Internal Interface for RPC Muon Trigger 
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D Development of Internal Interface 

The experiences on the usage of Internal Interface gathered up till now show that the 

successive generations of the systems increase their functional requirements. This causes that 

the internal structure of the FPGA is more complex and richer of new components (compare 

explicitly two documents [19-20]). As a consequence, an increased number of required 

registers is observed, and memory areas used in the successive versions of system 

implementations in the FPGA. In parallel, there is observed a considerable progress of the 

programming layer for the FPGA [22,23].  

The Internal Interface  technology is under intense development into the direction of 

making it standard component oriented. The new version of Component Internal Interface  will 

enable division of the unified structure of the II (see fig. 13) to standardized, separate library 

components in the hardware and in the software layers (see fig. 14). This development 

direction was schematically presented in these two figures. On the level of the II interface 

definition there will be realized the assumptions for FPGA project structure and for external 

programming.    

 

Fig. 13. General unified structure of Internal Interface ver.1.0.  

 

 

Fig. 14. General structure of „Component Internal Interface” ver 2.0. 
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E Examples of commercial communication standards  

Professional systems of integrated I/O communication between programming 

environment and FPGA chips are offered by numerable commercial firms, together with their 

products or products of other manufacturers.  This appendix tries to present chosen examples 

of technologically advanced solutions. These solutions usually provide easy integration of 

programming layer with the firmware layer implemented in the FPGA chip. These solutions 

usually offer a set of convenient tools inside the operator’s GUI. The characteristics of the 

available communication standards are presented below and base on the commercial materials 

offered by the vendors.  

E.I Integration of Lab View with FPGA modules 

With the LabVIEW FPGA Module and LabVIEW, the user can create Virtual 

Instrument VIS library file that runs on National Instruments Reconfigurable I/O (RIO) 

devices. Reconfigurable I/O devices, also known as FPGA devices, contain a reconfigurable 

FPGA surrounded by fixed I/O resources. Depending on the specific FPGA device, fixed I/O 

resources can include analog and digital resources—such as analog-to-digital converters 

(ADCs) and digital-to-analog converters (DACs)—that the user control from the FPGA. 

With the FPGA Module, the user can configure the behavior of the reconfigurable 

FPGA to match the requirements of a specific measurement and control system. The VI, the 

user creates to run on an FPGA device is called the FPGA VI. One can use the FPGA Module 

to write FPGA VIs. When the user downloads the FPGA VI to the FPGA, he is programming 

the functionality of the FPGA device. Each new FPGA VI the user creates and downloads is a 

custom timing, triggering, and I/O solution.  

When standard hardware did not meet the requirements of the user for a specific 

application prior to the FPGA module, one had to create a custom hardware design using low-

level hardware description languages. With the FPGA Module, the user does not need to 

know a hardware description language to design a specific hardware solution—one just needs 

LabVIEW. With the FPGA Module, one can design and rapidly develop hardware 

components with the power of LabVIEW graphical programming. 

The FPGA Module is ideal for programming applications that require functionality such 

as the following: 

 Custom I/O—Modified digital and analog lines with custom counters, encoders, and pulse 

width modulators (PWMs), 

 Onboard decision making—Control, digital filtering, and Boolean decisions, 

 Resource synchronization—Precise timing of FPGA device resources, such as analog input 

(AI), analog output (AO), digital input and output (DIO), counters, and PWMs, as well as 

synchronization among multiple devices. 

FPGA Module applications range from a single FPGA VI running on an FPGA device 

to large LabVIEW solutions that include multiple FPGA devices, the LabVIEW Real-Time 

Module, and LabVIEW for Windows. In any case, the user needs to create the FPGA VI that 

runs on the FPGA device. To create an FPGA VI, first one selects the FPGA device as the 

execution target in LabVIEW. An execution target is any location—including FPGA devices, 

RT targets, or the development computer—on which the user can run a VI. 

After one has an FPGA VI running on the FPGA device, one needs a way to 

communicate with that VI. Depending on the application requirements, one can communicate 
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with the FPGA VI interactively or programmatically. One can use Interactive Front Panel 

Communication to communicate with the FPGA VI directly from the front panel of the FPGA 

VI. One can use Programmatic FPGA Interface Communication to communicate with the 

FPGA VI from a VI running on the host computer. The VI running on the host computer is 

called the host VI. One can use Interactive Front Panel Communication to communicate with 

an FPGA VI running on an FPGA device with no additional programming. With Interactive 

Front Panel Communication, the host computer displays the FPGA VI front panel and the 

FPGA device executes the FPGA VI block diagram, as shown in Figure 1-1. 

E.II Nallatech FUSE software system   

The FUSE System Software GUI is a high-level user interface for interfacing with 

Nallatech DIME and DIME-II motherboard cards and modules. FUSE System Software is a 

Java-based application that allows the user to easily interface with multiple cards, configure 

FPGAs, and apply2 DMA transfers. 

The application also allows the user to control the cards through Nallatech’s scripting 

language - DIMEScript. An introduction to DIMEScript and its main features is provided in 

Nallatech’s Implementation User Guide. The FUSE System Software uses the Java FUSE API 

to interface with the cards. A C/C++ version of the API is provided on the FUSE System 

Software CD offered by Nallatech. This gives the user the ability to develop a more specific 

application for their designs. The Java FUSE API is not provided, although it can be 

purchased separately. Similarly, a FUSE API for Matlab is also available. For more 

information on the FUSE API see the C/C++ API developers guide on the FUSE System 

Software CD available from Nallatech. 

 

Fig. 15. Programmatic FPGA Interface Communication. 
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DIMEScript has been developed by Nallatech as a simple method of accessing cards 

without the need to resort to programming. DIMEScript is an interpreted language which 

means that the language is read in line-by-line and appropriate actions taken. This, in turn, 

means that any errors in the script are only found when the relevant line is executed. This is in 

contrast to a compiled language where the required action is checked in advance and made 

into a more machine friendly form. In the case of the compiled language, syntax and other 

features can be fully checked before running the code. DIMEScript allows users to: 

 Open a Nallatech card 

 Read data from the card 

 Write data to the card 

 Access various specific card functions. 

Another feature of DIMEScript is the ability to write a series of commands in a text file. 

There are a series of user programmable buttons on the left side of the FUSE GUI. Each 

button can be allocated a name and an icon which serves as a reminder of its function. 

The TCP/IP protocol on which the Internet is based is a two-layer protocol. The top 

layer, IP, is concerned with the delivery of data to the correct address, while the layer beneath 

this, TCP, ensures integrity of data between the transfers. Using this protocol along with 

FUSE it is possible to control a Nallatech motherboard over a LAN or even the Internet as if 

the motherboard was plugged into your own PC. With FUSE TCP/IP the user can control the 

card with the FUSE Probe tool or through the FUSE API. 

 

Fig. 16. Example of using DIMEScript Console. 
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E.III FUSE Toolbox for MATLAB   

Nallatech provides C/C++ software libraries, containing functions that allow the 

Nallatech DIME hardware to be easily integrated with software. Users can develop their own 

applications, using these functions in addition to their own code, to interface directly with 

their Nallatech hardware. The toolbox brings the Reconfigurable Computer hardware platform 

to the heart of the acclaimed MATLAB technical computing environment. This toolbox 

facilitates the configuration and control of DIME hardware systems, including data 

communications, directly from MATLAB, using the provided library of functions: 

 Data transfer directly from MATLAB, 

 Harness the powerful capabilities of MATLAB, 

 Quick launch of FUSE Probe tool from Matlab Launch-pad, 

 Multiple card support and multiple interface type support, 

 Fast and simple device configuration directly from within MATLAB, 

 Supported on Windows® platform, 

 Allows rapid interfacing and integration of DIME products within MATLAB based 

applications, 

 Raises the level of abstraction of the Nallatech hardware interface to the system level 

environment, 

 Productivity is greatly enhanced.   

The FUSE Toolbox is another level of integration, that allows the user to develop 

applications for a Nallatech DIME Board straight from the MATLAB environment. Each 

function of the toolbox is a wrapping of the corresponding function from the FUSE C/C++ 

Library where appropriate. The hardware abstract layer interfaces with the custom Nallatech 

hardware and cannot be accessed by developers. Access to this layer is only possible 

indirectly through the developer layer, which effectively removes all hardware interfacing 

issues. The interface to the hardware abstract layer is therefore not provided and is only used 

for internal development by Nallatech. The developer layer is the main layer used by 

developers when interfacing with the board for custom applications. It consists of a library 

called DIMESDL (DIME Software Development Library). 

 

Fig. 17. Example of using FUSE Toolbox for MATLAB. 
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F Ownership statement and Internal Interface code 

implementation and application support 

The Internal Interface was written to facilitate the design of complex electronics systems 

originally for applications in high energy physics experiments and Superconducting RF 

technology (SRF). The II code is released with this document as an open source, however, 

since the II standard is still under intense development and subject to application tests in   a 

few large experiments around the globe, the author kindly requests potential users to give 

proper credit to the source.   

Author, together with its coworkers from the Warsaw ELHEP Group, provides a 

confined support for the problems with the  Internal Interface implementation and usage. The 

problems may be formulated in a form of questions posted at the DESY LLRF Logbook, or 

directly via the e-mail or mail to the following experts:  

 Wojciech Jalmuzna
1
 – w.jalmuzna@elka.pw.edu.pl (VHDL, hardware, person contact)  

 Jaroslaw Szewinski
1
 – j.szewinski@elka.pw.edu.pl  (II software, drivers, MATLAB)  

 Waldemar Koprek
2
 – waldemar.koprek@desy.de  (VHDL, hardware, MATLAB)  

 Krzysztof Pozniak
1
 – pozniak@ise.pw.edu.pl  (VHDL, hardware) 

1. Warsaw ELHEP Group, Institute of Electronic Systems, WUT, Nowowiejska 15/19, 

PL-00-665 Warsaw, Poland; phone: (+48-22)-660-79-86;  

2. DESY LLRF SRF Group, Notkestrase 85, 22607  Hamburg, Germany; 

tel. (+49-40)-8998-1600  

 

All documents associated with the development of the II  technology are posted on  the 

following web addresses: perg.ise.pw.edu.pl/ii 
 

 

 

The Internal Interface code released with this document is not a freeware. 

It should be properly referenced. 
 

 


