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We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an
adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for syn-
chronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell’s
equations under an adiabatic approximation and find excellent agreement with a finite-difference time-
domain computer simulation. The fields were implemented into the particle-tracking program ASTRA and
we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field
of 100 MV=m. Numerical simulations indicate that a ∼200-keV electron beam can be accelerated to an
energy of ∼10 MeV over ∼10 cm with parameters of interest to a wide range of applications including,
e.g., future advanced accelerators, and ultra-fast electron diffraction.

DOI: 10.1103/PhysRevAccelBeams.21.051302

I. INTRODUCTION

High-energy charged-particle accelerators have emerged
as invaluable tools to conduct fundamental scientific
research. Circular high energy colliders continue exploring
nuclear and high-energy landscapes, searching for hints
beyond the standard model. Linear accelerators capable of
forming high-quality electron bunches have paved the way
to bright, coherent x-ray sources to probe ultrafast phe-
nomena at the nanometer-scale with femtosecond resolu-
tions in condensed matter, life science and chemistry.
Accelerators have also found medical applications such
as, e.g., high-resolution imaging and oncology.
Modern klystron-powered conventional accelerators

incorporate radio-frequency (rf) accelerating structures
optimized to provide suitable accelerating fields typically
in the frequency range f ∈ ½0.1; 10� GHz (i.e., wavelengths
respectively in the range λ ∈ ½3; 0.03� m). Unfortunately,
power requirements and mechanical breakdowns in accel-
erating cavities have limited the permissible electric fields to
E0 ≲ 50 MV=m, leading to km-scale infrastructures for
high-energy accelerators. These limitations have motivated
the development of advanced acceleration techniques capable
of supporting high accelerating fields.Accelerating structures

based on dielectric waveguides or plasmas operating in a
higher-frequency regime [OðTHzÞ] have been extensively
explored in the relativistic regime.
A key challenge in accelerating low-energy nonrelativ-

istic beams with higher frequencies stems from the differ-
ence between the beam’s velocity and accelerating-mode’s
phase velocity. This difference leads to “phase slippage”
between the beam and the accelerating field which ulti-
mately limits the final beam energy and quality. Scaling to
higher frequencies (i.e., shorter wavelengths) exacerbates
the problem [1–4]. A figure of merit conventionally used to
characterize the beam dynamics in the longitudinal degree
of freedom during acceleration of a non-relativistic beam is
the normalized vector potential α ¼ ðeE0λÞ=ð2πmc2Þ,
where e and mc2 are respectively the electronic charge
and rest mass, and E0 is the time averaged accelerating
field. Conventional electron photoinjectors typically oper-
ate in a relativistic regime of α ≳ 1; retaining relativistic
field strengths while scaling to smaller wavelengths
(following E0 ∝ λ−1) is challenging beyond rf frequencies
but is now routinely attained using high-power infrared
lasers in plasmas operating at f ∼ 1 THz. Low-α accel-
eration with optical wavelengths, i.e., dielectric-laser accel-
eration (DLA) is interesting due to the foreseen compact
footprints, relatively large gradients and high-repetition
rates. DLA has demonstrated side-coupled grating struc-
tures [5,6] which are relatively simple and allow for tapered
grating periods; however, the evanescent mode inherently
supports nonlinear accelerating fields, leading to defocusing
forces and emittance growth. Finally, proton accelerators
have established radio frequency quadrupoles (RFQs) [7]
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and drift-tube linacs with comparably long wavelengths to
achieve low-α acceleration.
In this work, we show analytically that a longitudinally-

tapered dielectric-lined waveguide (DLW) can support
electromagnetic fields with a longitudinally-dependent
phase velocity. Therefore, by properly tailoring the spatial
taper profile of the DLW, one can establish an electromag-
netic field with instantaneous phase velocity vpðzÞ match-
ing the beam velocity βðzÞc along the direction of motion ẑ
[8,9]. The concept is shown to be able to accelerate a non-
relativistic electron beam (∼200 keV) generated out of a
compact low-power rf gun to relativistic energies∼10 MeV
within a few centimeters. We hypothesize an ansatz for the
transient field equations supported in a tapered DLW, show
they verify Maxwell’s equations and validate them against
a finite-difference time-domain (FDTD) electromagnetic
simulation. We finally implement the transient field equa-
tions in the beam dynamics program ASTRA [10], present
start-to-end simulations and validate the concept to form
bright electron bunches suited for the production of atto-
second x-rays via inverse Compton scattering [11]. We
especially find that a single derived tapered waveguide
can have a versatile range of operation, yielding electron
bunches with a broad set of properties of interest for various
applications.

II. THEORY

A cylindrical-symmetric DLW consists of a hollow-core
dielectric waveguide (with relative dielectric permittivity
ϵr) with its outer surface metallized [12]. Introducing the
cylindrical-coordinate system ðr;ϕ; zÞ, where r is refer-
enced with respect to the DLW axis along the ẑ direction,
and denoting the inner and outer radii as respectively a,
and b, the electromagnetic field (E;H) associated to
the accelerating (TM01) has the following nonvanishing
components:

Ez ¼ E0I0ðrk1Þ sinðωt − kzzþ ψÞ;

Er ¼
E0kz
k1

I1ðrk1Þ cosðωt − kzzþ ψÞ;

Bϕ ¼ ωϵ0μ0E0

k1
I1ðrk1Þ cosðωt − kzzþ ψÞ; ð1Þ

where k1 ≡ ω
ffiffiffiffiffiffiffiffiffiffiffiffi
1
v2p
− 1

c2

q

, k2 ≡ ω
ffiffiffiffiffiffiffiffiffiffiffiffi
ϵr
c2 −

1
v2p

q

, kz ¼ ω
vp
, Imð…Þ

are themodifiedmth order Bessel’s function of the first kind,
E0 is the peak axial field amplitude, vp is the phase velocity,
ω≡ 2πf and ψ is a phase constant. In the limit vp → c, i.e.,
limk1→0I1ðk1rÞ=k1 ¼ r=2 and limk1→0I0ðk1rÞ ¼ 1, thus the
transverse fields become completely linear and the longi-
tudinal field becomes independent of the transverse coor-
dinate. Conversely smaller values of vp result in increasingly
nonlinear transverse fields and a strong dependence ofEz on
the transverse coordinate. This is a general feature of phase

velocity matched modes and not restricted to the specific
case discussed here. For high frequency structures the effect
of nonlinearities is however exacerbated because the ratio
of typical transverse beam dimensions to the wavelength is
larger than in conventional rf structures.
Solutions of the characteristic equation [12] yield the

allowed ðω; kzÞ for propagating modes and depend on the
DLW structure parameters ða; b; ϵrÞ. A propagating mode
must have a real-valued longitudinal component for the
wave vector kz. Correspondingly, k2 sets a limit on the
phase velocity of a propagating mode via k2 < ωn

c , or vp > c
n

(where n≡ ffiffiffiffi
ϵr

p
is the dielectric’s index of refraction).

Finally, we note that the field amplitudes reduce with
decreasing phase velocities (vp → c=n).
We now turn to modify Eq. (1) to describe the fields

associated to a tapered DLW. Specifically, we hypothesize
that the transverse dimensions ða; bÞ at a longitudinal
coordinate z locally determine vp and E0ðzÞ. In addition,
the phase at a position z should depend on the integrated
phase velocity upstream of the structure. Given these
conjectures, we make the following ansatz for the non-
vanishing (E;B) fields

Ez ¼ E0ðzÞI0ðrk1ðzÞÞ sin
�

ωt −
Z

z

0

dzkzðzÞ þ ψ

�

Er ¼
E0ðzÞkzðzÞ

k1ðzÞ
I1½rk1ðzÞ� cos

�

ωt −
Z

z

0

dzkzðzÞ þ ψ

�

Bϕ ¼ ωϵ0μ0E0ðzÞ
k1ðzÞ

I1½rk1ðzÞ� cos
�

ωt −
Z

z

0

dzkzðzÞ þ ψ

�

;

ð2Þ

where now kzðzÞ is integrated from the structure entrance
(z ¼ 0) to the longitudinal coordinate z. The latter set of
equations also introduce an explicit z dependence for E0ðzÞ,
k1ðzÞ, kzðzÞ. For convenience we define Ψðt; zÞ≡ ωt−
R
z
0 dzkzðzÞ þ ψ .
In order to validate our ansatz, we check that it satisfies

Maxwell’s equations, starting with the Ampère-Maxwell
law ∂E

∂t ¼ −∇ × B which yields

1

c2
∂Ez

∂t ¼ −
1

r
∂
∂r ðrBϕÞ: ð3Þ

Computing the right-hand side (rhs) and left-hand side (lhs)
of the equation given the field components listed in Eq. (2)
and making use of the identity ∂

∂r rI1ðk1rÞ ¼ k1rI0ðk1rÞ
confirms that Eq. (3) is fulfilled as both sides equal
ω
c2 E0I0ðk1rÞ cosðΨðt; zÞÞ.
Next, we consider Gauss’ law ∇ · E ¼ 0 which yields,

for the fields proposed in Eq. (2),

∂
∂z Ez ¼ −

1

r
∂
∂r ðrErÞ: ð4Þ
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The rhs of the latter equation gives

∂
∂zEz ¼ E0f−kzI0 cos½Ψðt; zÞ� þ rk01I1 sin½Ψðt; zÞ�g

þ E0
0I0 sin½Ψðt; zÞ� ð5Þ

while its lhs results in

−
1

r
∂
∂r ðrErÞ ¼ −

E0kz cos½Ψðt; zÞ�
k1r

∂
∂r ½rI1ðk1rÞ�

¼ −kzE0I0ðk1rÞ cos½Ψðt; zÞ�: ð6Þ
Equations (5) and (6) are generally not equal unless the
tapering of the DLW is sufficiently slow or adiabatic,

�
�
�
�

rk01I1ðk1rÞ
kzI0ðk1rÞ

�
�
�
�
≪ 1; and

�
�
�
�

E0
0

E0kz

�
�
�
�
≪ 1: ð7Þ

Equations (7) are independent of ϵr and present general
conditions to the evolution of a traveling mode in a tapered
waveguide which may also be of interest to plasma
acceleration with, e.g., smaller field gradients and poten-
tially higher repetition rates.

III. BEAM DYNAMICS

Insofar, our discussion has solely concentrated on the
electromagnetic aspect of the problem. Let us now consider
the beam dynamics of a charged particle accelerating in a
tapered DLW. The requirement for continuous synchronous
acceleration imposes vpðzÞ ¼ βðzÞc. The longitudinal
phase space dynamics is described by the coupled ordinary
differential equations,

∂z
∂t ¼ βc;

∂β
∂t ¼

eE0ðzÞ
γ3mc

I0ðk1rÞ sinðΨÞ: ð8Þ

In addition to synchronous acceleration, the transverse-
dynamics plays a crucial role in the formation of bright
electron beams. The transverse force can be calculated from
the Lorentz force,

Fr ¼ eðEr − βcBϕÞ

¼ eE0

�
1

βp
− β

�

k0
I1ðk1rÞ

k1
cosðΨÞ; ð9Þ

where βp ≡ vp=c is the normalized phase velocity.
For synchronous acceleration (β ¼ βp), the latter equation
simplifies to

Fr ¼ eE0

k0
γ2β

I1ðk1rÞ
k1

cosðΨÞ; ð10Þ

implying transverse defocusing forces forΨ ∈ ½−90; 0� deg
(i.e., the compression phase where the bunch tail experiences

a stronger longitudinal field than the head) and transverse
focusing forces for Ψ ∈ ½−180;−90� deg and no transverse
force on-crest atΨ ¼ −90 deg.We note that the amplitude of
the force is increased by a combination of the particle and
the phase velocity [Eq. (9)], while the nonlinearity of the field
is a result of the matching to the phase velocity alone. For
vp ∼ c, as, e.g., in conventional rf guns, [Eq. (9)] reduces to
Fr ¼ eE0k0=ðγ2ð1þ βÞÞr=2; the transverse fields are linear
in r and the longitudinal field is independent of the radial
coordinate. In the matched case however, strong and non-
linear fields appear at low energies, which in combination
with the r-dependence of Ez, strongly affect the beam
dynamics. The transverse emittance is an important figure
of merit which characterizes the phase-space density of
the beam defined as εr ≃ εu ¼ 1

mc ½hu2ihp2
ui − hupui�1=2

where h…i is the statistical averaging over the beam
distribution. Therefore at injection, the transverse beam size
σr should be minimized to mitigate emittance and energy
spread dilutions.
We now describe a start-to-end simulation considering a

driving field with λ ¼ 1 mm (f ¼ 300 GHz) and E0 ¼
100 MV=m corresponding to α ≃ 0.03. A C++ program
was developed to integrate the equations of motion (Eqs. (8)
for one electron given the set of initial conditions: electron
injection energy, wavelength, peak accelerating field, and
DLW geometry. In parallel, the characteristic equation is
solved to derive the appropriate taper. Consequently, an
electron injected on crest will not experience any phase-
slippage through the structure. Additionally, scaling the
accelerating field E0 → ηE0 offsets the point of zero
phase-slippage by an amount δΨ ¼ arcsinð1=ηÞ. We spe-
cialize our study to the case where the DLW has a constant
inner radius a and devise the outer radius bðzÞ to ensure

FIG. 1. Diagram of the accelerator concept (top) and corre-
sponding evolution of the bunch’s transverse emittance (εr), rms
transverse beam size (σr), longitudinal bunch length (σz) (all left
axis) and the kinetic energy (right axis) along the accelerator
beamline (bottom). The example corresponds to an operating
point ðϕ; E0Þ ¼ ð79.3 deg; 106.875 MV=mÞ; see text for details.
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synchronous acceleration throughout the DLW. The DLW
is taken to be made of quartz (ϵr ¼ 4.41) with length
L ¼ 11.5 cm, and a ¼ 0.5 mm. This choice of material
limits the phase velocity to values vp > c=n ∼ .48c thereby
requiring an injection energy > 70 keV. The group velocity
of ∼0.5 c and length of the structure dictate a required
pulse length of ∼383 ps corresponding to a pulse energy of
7.2 mJ for E0 ¼ 100 MV=m.
We consider a compact, low-power, field-enhanced

S-band (f ¼ 3 GHz) gun [13] with a photocathode as our
electron source. The gun is operated off-crest to generate
short σz ∼ 20 μm, 205 keV electron bunches at the DLW
entrance with a total charge Q ¼ 100 fC; our simulation
used 20,000 macroparticles. An electromagnetic solenoid
with variable peak axial magnetic field B1 is located 5 cm
downstream of the cathode and focuses the bunch into the
DLW structure positioned 10 cm from the cathode. To
control the strong defocusing forces [Eq. (9)] during the
early stages of acceleration, a 4-slab, ∼4 cm alternating-
permanent-magnet solenoid [14] with a maximum axial

fieldB2 ¼ 1.5 T surrounds part of the DLWand is located at
a distance zs from the cathode; see Fig. 1 (top). This setup
was not globally optimized.
At the entrance of the structure the matched phase

velocity is vp ¼ 0.7c and the accelerating gradient is
reduced to E0 ∼ 20 MV=m; the adiabatic condition from
Eq. (7) for r ¼ 100 μm at z ¼ 0 gives 0.0017 and
approaches 10−7 toward the end of the structure. For
completeness we use the FDTD program CST MWS [15]
to simulate the field propagation for the first 2 cm of the
DLW where the majority of the taper occurs; here we
simulated a Gaussian THz pulse with 1% bandwidth, while
our simulation in ASTRA utilizes a flat-top pulse. The
simulated fields are in excellent agreement with our semi-
analytical field; see Fig. 2(a). Some discrepancies arise at
the entrance and exit of the structure due to transient effects
not included in our model.
We can gain some significant insight into the longitudinal

dynamicswith a single electron;we illustrate the energy gain
and end phase as a function of initial phase in Fig. 2(b).
Generally, larger accelerating gradients and injection ener-
gies than the matched conditions increase the longitudinal
acceptance of the structure. Plateaus in the end phases
suggests bunch compression across the flat injection phase
width. In Fig. 2(c) we show the resulting compression ratio
in log-scale, Δϕi

Δϕe
, as a function of initial energy Ei and field

strength Ez for an input bunch spanning 60 deg. The phase
trajectory through the structure is determined by Ei, Ez, and
ϕi; changing these parameters will alter the phase trajectory
and impact the forces experienced by the bunch along the
structure; this implies that a single structure has a very broad
range of operational capabilities.
The transverse matching into and through the structure

essentially depends on the balance between the transverse
defocusing forces from the DLW and focusing optics from
the solenoids. Different phase trajectories will generally
have different transverse forces along the structure. We
illustrate the transmission through the structure as a

(b) (c)(a)

FIG. 2. (a) Geometry of the dielectric-layer tapering (green shaded area, right axis) over the entrance of the structure; the initial
dielectric thickness is 143 μm (vp ¼ 0.7c) and asymptotically approaches 91 μm (vp ¼ c). In addition we show the comparison
between our analytic field ansatz with FDTD code CST-MWS over the first 20 mm. (b) Final energy (solid traces, left column) and end
phase (dashed lines, right column) as a function of injection phase for various accelerating gradients and initial kinetic energies. The
black diagonal dashed line shows ϕe ¼ ϕi, intersections with the phase portraits indicate zero phase-slippage. (c) The compression ratio
between the injection phase and end phase, Δϕi=Δϕe in log-scale as a function of injection energy and accelerating gradient for an input
bunch length spanning 60 deg (Δϕi ¼ 60 deg.)

FIG. 3. Charge fractional transmission through the structure as
a function B1 and zs for injection parameters ðEi; EzÞ ¼
ð205 keV; 105.8 MV=mÞ corresponding to a maximum bunch
compression point from Fig. 2(c). A black dashed line encom-
passes 100% transmission.
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function of our matching optics B1 and zs in Fig. 3
associated to a local compression maximum ðEi; EzÞ ¼
ð205 keV; 105.8 MV=mÞ. To accommodate such an injec-
tion energy, we accordingly minimize the bunch length by
choosing an appropriate field strength and injection phase
in the gun, Egun ¼ 113.55 MV=m, ϕgun ¼ 217 deg. Larger
acceptances allow less stringent requirements on the beam
matching and allows a larger operational range for the same
matching point.
Finally, we explore the beam dynamics of the structure for

a matching point in Fig. 3, ðB1; zsÞ ¼ ð0.179 T; 10.5 cmÞ
and show the resulting final energy, energy spread, inverse
bunch length, and transverse emittance for scans over
(ϕ, E0) in Fig. 4. In each figure we include white contour
lines representing the final bunch charge; in cases with
large offsets to the originally matched conditions, e.g.,
large gradients, the larger defocusing forces leads to internal
collimation, which in some instances leads to, e.g., reduction
in emittance. The relationship between these final beam
parameters can be viewed with the 6 dimensional (6D)
brightness, B6D ¼ Q

ϵxϵyϵz
, a figure of merit describing the

phase space density; see Fig. 5. The largest brightness
corresponds to an acclerating gradient ∼20% larger than
the design amplitude. One should of course investigate and
optimize a structure based on the desired final bunch
characteristics and injection constraints; however the large
operational range of a single structure implies broad and
stable operation for a single matching point.
Some notable operating points include, ðσz; ϵr; σE;QÞ ¼

ð1.2 μm; 250 nm; 47.6 keV; 100 fCÞ for ðϕ; E0Þ ¼

ð−10.7 deg; 106.875 MV=mÞ. The shortest bunch length
achieved in our scans for the associated structure was
ðσz; ϵr; σE;QÞ ¼ ð730 nm; 158 nm; 83 keV; 80 fCÞ for the
operational point ðϕ; E0Þ ¼ ð−41.2 deg; 123.75 MV=mÞ;
smaller energy spreads can be reached also, at the expense
of other final parameters. Finally we illustrate the longi-
tudinal phase space (LPS) and current profile for the case of
largest brightness, i.e., ðϕ;E0Þ¼ð−44 deg;125.5MV=mÞ
in Fig. 6 which experiences 87% charge transmission. We
note the long tails increase the σz; the full width at half
maximum (FWHM) is ∼0.57 μm and contains ∼47 fC of
charge. A shorter bunch at injection or longer wavelengths
would ameliorate the final bunch compression.

FIG. 4. Final bunch energy, inverse bunch length, energy spread, and normalized transverse emittance for the matched case,
ðB1; zsÞ ¼ ð0.179 T; 10.5 cmÞ. In each case we overlay the final bunch charge as white contour levels for 0.3, 0.6, and 0.9 charge
transmission. While all final energies are approximately equal (∼11 MeV), the structure allows for the production of widely-tunable
electron beams.

FIG. 5. The final beam brightness B6D ¼ Q
ϵxϵyϵz

, is illustrated

over (ϕ, E0). The maxima correspond very closely with minimum
bunch lengths but differentiations arise from charge losses and,
e.g., beam dilution.
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IV. DISCUSSION

In summary, we have proposed adiabatically-tapered
dielectric-lined waveguides to accelerate and manipulate
low-energy charged particles with nonrelativistic field
strengths, i.e., in the low-α regime. We hypothesized an
ansatz for the transient field equations and support themwith
Maxwell’s equations and computer simulation. We imple-
mented the fields directly into ASTRA and performed beam
dynamics simulations for a low-energy electron bunch
accelerating in a 1 mm field with 100 MV=m. The derived
structure supports nonphase-slipping trajectories for various
input powers; offsets in the initial parameters leads to very
similar final energies but with a wide variety of other bunch
properties, notably small bunch lengths and energy spreads.
We presented a very simple beam matching scheme to
accommodate the strong-defocusing forces in the early
stages of acceleration. Our derivation of Eq. (7) is indepen-
dent of ϵr and is therefore a more general relation to the
evolution of a traveling mode and may appeal to, e.g.,
plasma acceleration with smaller field gradients and poten-
tially higher repetition rates via tapered density profiles.
The proposed setup was not globally optimized. The

beam matching could be improved via the positions and
strengths between the elements to further minimize
emittance growth for a given charge. Likewise, larger
charges could be accelerated with higher injection ener-
gies, longer accelerating wavelengths, and larger accel-
erating field strengths. Acceleration with lower initial
energies can be achieved with larger dielectric permittiv-
ities, and could possibly realize a stand-alone relativistic
electron source. A performance analysis given fabrication
imperfections should be studied.
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