Gluons and sea quarks in the proton at low scales

M. Diehl

work done together with Pascal Stienemeier Deutsches Elektronen-Synchroton DESY

POETIC Regensburg, 21 March 2018

Introduction

- outstanding question in QCD: relation between "current quarks" and "constituent quarks"
- ightharpoonup starting from resolution scales $\mu \sim {
 m few~GeV}$, how do parton distributions look like when resolution becomes more coarse?
- some scenarios for proton at low scale
 - $1. \ \ {\rm proton} = uud, \ {\rm gluons \ and \ sea \ quarks \ from \ perturbative \ evolution }$ ${\rm Parisi, \ Petronzio \ '76; \ Novikov \ et \ al \ '77; \ Gl\"uck, \ Reya \ '77 }$
 - 2. proton = quarks and antiquarks, gluons from evolution have \bar{q} e.g. from meson cloud Thomas '83 or in quark-soliton model Diakokov et al '86
 - 3. proton =UUD with "composite valence quarks" U,D containing antiquarks and gluons Altarelli et al '74

gluons and sea quarks: focus of studies at EIC

scenario 1. already disfavoured in early PDF fits by GRV required both g and \bar{q} at starting scale of evolution

Glück, Reya, Vogt '90, '92, '95... Jimenez-Delgado, Reya '14

Introduction

Introduction 000

- some scenarios for proton at low scale
 - 1. proton = uud, gluons and sea quarks from perturbative evolution Parisi, Petronzio '76; Novikov et al '77; Glück, Reya '77
- scenario 1. already disfavoured in early PDF fits by GRV required both q and \bar{q} at starting scale of evolution Glück, Reya, Vogt '90, '92, '95 ... Jimenez-Delgado, Reya '14
- nevertheless is still widely used to connect constituent quark models with PDFs and more complicated distributions: TMDs, GPDs, DPDs, ...

Introduction

- some scenarios for proton at low scale
 - $\hbox{1. proton} = uud \hbox{, gluons and sea quarks from perturbative evolution} \\ \hbox{Parisi, Petronzio '76; Novikov et al '77; Glück, Reya '77}$
- scenario 1. already disfavoured in early PDF fits by GRV required both g and \bar{q} at starting scale of evolution Glück, Reya, Vogt '90, '92, '95 . . . Jimenez-Delgado, Reya '14
- nevertheless is still widely used to connect constituent quark models with PDFs and more complicated distributions: TMDs, GPDs, DPDs, . . .
- can conclusions of GRV/JR fits be confirmed/evaded?
 - evolve PDFs fitted by other groups backward to low scales?
 problem: backward evolution becomes unstable
 - here: evolve selected moments of PDFs backward and see if they become ≈ 0 at some point
- \blacktriangleright similar study was done for helicity and orbital angular momentum values from lattice QCD at $\mu=2\,\mathrm{GeV}$ comparison with constituent quark picture at low scales
 - Altenbuchinger, Hägler, Weise, Henley '11

Caveats and limitations

- ▶ down to which μ is perturbative evolution of $\alpha_s(\mu)$ and PDFs reliable?
 - substantial work on nonperturbative behaviour of $\alpha_s(\mu)$ at low μ in models and lattice QCD
 - but not for PDF moments or PDFs
- PDFs defined by QCD operators renormalised in some scheme
 - no guarantee that interpretation as parton densities valid everywhere especially in MS scheme
 - studies in other "more physical" schemes could be interesting but am not aware of suitable schemes
- ▶ if g(x) or $\bar{q}(x)$ zero at some scale, then will be negative at lower scales \leadsto breakdown of parton interpretation

Introduction

Moments of PDFs

- ightharpoonup consider $n_F = 3$ active quark flavours, only quark flavour sums
- Mellin moments

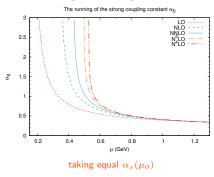
$$Q(j,\mu) = \sum_{q=u,d,s} \int_0^1 dx \, x^{j-1} \, q(x,\mu) \qquad \overline{Q}(j,\mu) = \sum_{q=u,d,s} \int_0^1 dx \, x^{j-1} \, \overline{q}(x,\mu)$$

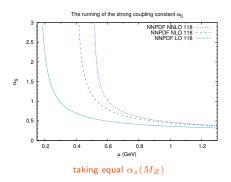
$$G(j,\mu) = \int_0^1 dx \, x^{j-1} \, g(x,\mu)$$

relation with local operators only for $Q(j) + \overline{Q}(j)$ and G(j) when j even and for $Q(j) - \overline{Q}(j)$ when j odd

scale evolution

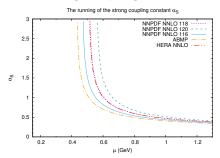
$$\frac{d}{d\log \mu^2} \left[Q(j,\mu) - \overline{Q}(j,\mu) \right] = \gamma_{\rm NS} \big(j, \alpha_s(\mu) \big) \left[Q(j,\mu) - \overline{Q}(j,\mu) \right]$$


with $\gamma_{ns}(j, \alpha_s) = Mellin moment of DGLAP splitting function$ analogous matrix equation for $Q(j) + \overline{Q}(j)$ and G(j)solve numerically using Runge-Kutta method


PDF sets

- \blacktriangleright use $\overline{\rm MS}$ scheme for PDFs and $\gamma(j,\alpha_s)$ at LO, NLO, NNLO NNLO NNLO splitting fcts: Moch, Vermaseren, Vogt 2004
- ▶ take PDFs at scale $\mu_0=1.3\,{\rm GeV}$ from LHAPDF interface scale chosen such that variable flavour number PDFs evaluated for $n_F=3$
- choice of recent PDF sets to reflect different fitting methods, theory approaches, data selection etc.

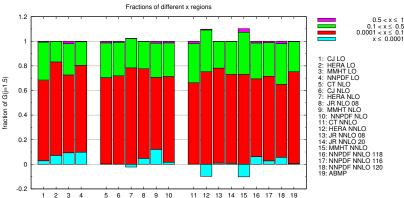
set	LO	NLO	NNLO	remarks
ABMP 16			×	
CJ 15	×	×		special focus on large x region
CT 14		×	×	
HERAPDF 2.0	×	×	×	
JR 14		×	×	PDFs parameterised at $Q_0^2=0.8{ m GeV^2}$
MMHT 2014	×	×	×	*
NNPDF 3.1	×	×	×	NNLO sets with $\alpha_s(M_Z)=0.116,0.118,0.120$


Running coupling

▶ $\overline{\text{MS}}$ coupling perturbatively stable down to $\mu \sim 0.7$ to $0.8\,\mathrm{GeV}$

Running coupling

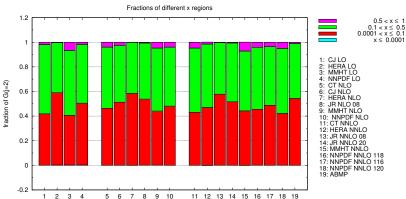
Method


0000

- ightharpoonup considerable spread in α_s values between different PDF sets
- lacktriangle plot moments against $lpha_s$ instead of μ if behaviour at small μ is important

Moments and x ranges

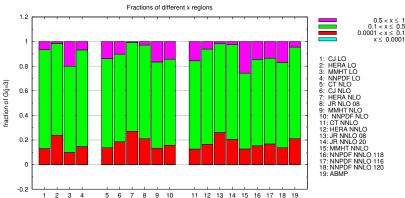
- lacktriangle study moments for j=1.5,2,2.5,3 to be sensitive to broad x range
- lacktriangle at starting scale μ_0 determine relative fraction of different x


Moments and x ranges

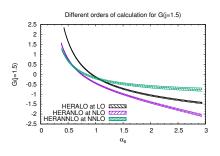
Method

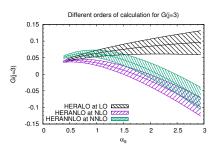
000

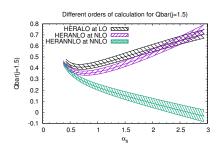
- \blacktriangleright study moments for j=1.5,2,2.5,3 to be sensitive to broad x range
- lacktriangle at starting scale μ_0 determine relative fraction of different x

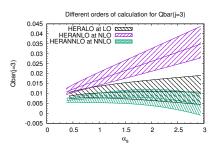


Method

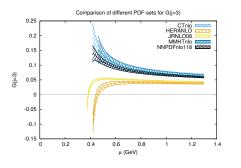

000

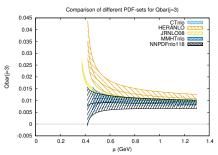

- \blacktriangleright study moments for j=1.5,2,2.5,3 to be sensitive to broad x range
- lacktriangle at starting scale μ_0 determine relative fraction of different x


Comparing different orders



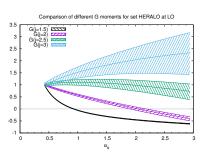
- error bands of PDFs increase as μ decreases (α_s increases) but in general remain of moderate size
- differences between orders quickly increase at low scales even quantitatively (rise vs. fall)

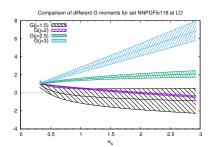

Comparing different orders



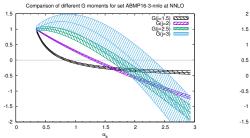
- error bands of PDFs increase as μ decreases (α_s increases) but in general remain of moderate size
- differences between orders quickly increase at low scales even quantitatively (rise vs. fall)

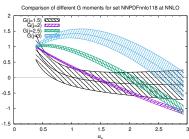
Comparing different sets

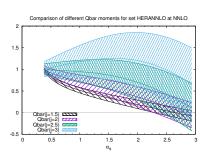


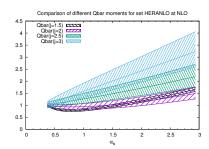


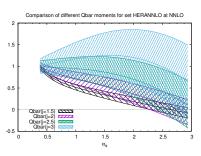
▶ PDF sets may differ in qualitative behaviour


Summary


- ▶ plot different moments for given set (normalised to value at μ_0) look for cases where all G(j) or all $\overline{Q}(j)$ have zero at one scale
- ightharpoonup gluon for all LO sets high moments stay positive at some scale G(1.5) becomes zero or consistent with zero


- \triangleright plot different moments for given set (normalised to value at μ_0) look for cases where all G(j) or all $\overline{Q}(j)$ have zero at one scale
- gluon in several NLO and NNLO sets all moments have zeroes but earlier for low j and later for high j




- \leadsto with decreasing μ gluon < 0 first for small and then for larger x
- → parton interpretation lost

- \triangleright plot different moments for given set (normalised to value at μ_0) look for cases where all G(j) or all $\overline{Q}(j)$ have zero at one scale
- antiquarks for HERAPDF NNLO set all moments approach zero at very low μ for all other sets at least one moment remains clearly > 0

- \triangleright plot different moments for given set (normalised to value at μ_0) look for cases where all G(j) or all $\overline{Q}(j)$ have zero at one scale
- antiquarks for HERAPDF NNLO set all moments approach zero but this happens at very low scale, where all gluon moments < 0

Comparison of different G moments for set HERANNLO at NNLO 0.5 0 -0.5 -1 -1.5 1.5 2 2.5

→ parton interpretation lost

Summary

- in no PDF set are moments consistent with either g(x) or $\bar{q}(x)$ zero or close to zero at any scale
- scenarios ruled out in which proton PDFs generated by perturbative radiation starting with only quarks at low scale fully confirms conclusions of fits by GRV, JR
- ightharpoonup moments indicate that at low scales g(x) < 0 for small xthen parton interpretation is lost $G(1.5) = \int_0^1 dx \sqrt{x} g(x)$ turns negative somewhere below $\mu = 0.8 \, \mathrm{GeV}$ except for PDF sets where error on G(1.5) consistent with either sign
- possible paths toward explaining observed PDFs starting from low scales?
 - intrinsic, nonperturbatively generated gluons and sea quarks
 - nonperturbative modification of scale evolution
 - alternative scheme to \overline{MS} for defining PDFs