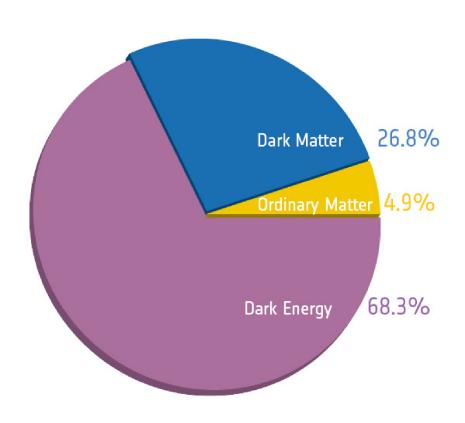
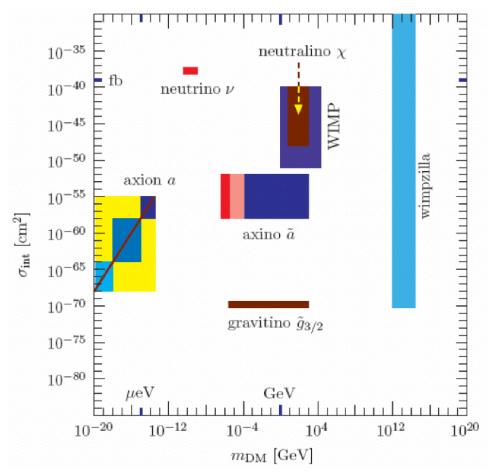
Dark-Matter Axion Mass.

Andreas Ringwald (DESY)


Workshop on Ultralight Dark Matter and Axions Ann Arbor, MI, USA 5-7 March 2018

Strong Case for Particles Beyond the Standard Model

- Standard Model (SM) of particle physics describes properties of known matter and forces to a great precision
- SM describes only about 15% of matter content of Universe

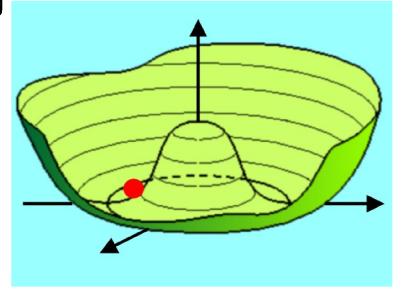


[PLANCK]

Strong Case for Particles Beyond the Standard Model

- Standard Model (SM) of particle physics describes properties of known matter and forces to a great precision
- SM describes only about 15% of matter content of Universe
- Theorists have proposed plenitude of DM candidates, spanning a large parameter space in mass and interaction strength
- Best motivated candidates those which occur in SM extensions solving also other problems, such as
 - Hierarchy problem: Neutralino in MSSM
 - Strong CP problem: Axion in PQSM

[Kim, Carosi 10]

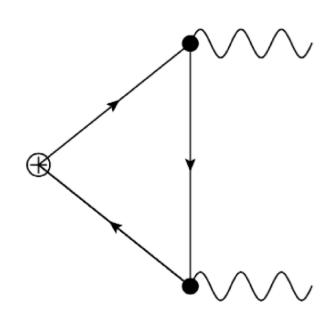


PQSM: Peccei-Quinn Extensions of the Standard Model

- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$

$$\sigma(x) = \frac{1}{2} \left(v_{PQ} + \rho(x) \right) e^{iA(x)/v_{PQ}}$$

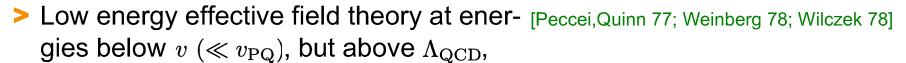
- Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
- Excitation of angle: NGB $m_A=0$

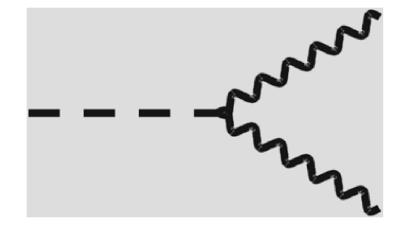

[Raffelt]

PQSM: Peccei-Quinn Extensions of the Standard Model

- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{\rm PQ} + \rho(x) \right) {\rm e}^{{\rm i} A(x)/v_{\rm PQ}}$
 - Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
 - Excitation of angle: NGB $m_A=0$
- > Quarks (SM or extra) carry PQ charges such that $U(1)_{PQ}$ is anomalously broken due to gluonic triangle anomaly:

$$\partial_{\mu}J^{\mu}_{U(1)_{\mathrm{PQ}}}\supset -rac{lpha_{s}}{8\pi}N\,G^{b}_{\mu
u} ilde{G}^{b,\mu
u}$$




PQSM: Peccei-Quinn Extensions of the Standard Model

- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{\rm PQ} + \rho(x) \right) {\rm e}^{{\rm i} A(x)/v_{\rm PQ}}$
 - ullet Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
 - Excitation of angle: NGB $m_A=0$
- > Quarks (SM or extra) carry PQ charges such that $U(1)_{PQ}$ is anomalously broken due to gluonic triangle anomaly:

$$\partial_{\mu}J^{\mu}_{U(1)_{\mathrm{PQ}}}\supset -rac{lpha_{s}}{8\pi}N\,G^{b}_{\mu
u} ilde{G}^{b,\mu
u}$$

$$\mathcal{L} \supset -rac{lpha_s}{8\pi}rac{A(x)}{f_A}\,G^b_{\mu
u} ilde{G}^{b,\mu
u}\,; \qquad f_A=v_{
m PQ}/N$$

Axionic Solution of Strong CP Problem

Can eliminate QCD theta term,

$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \left[\overline{\theta} + \theta(x) \right] G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

by shift $\theta(x) \to \theta(x) - \overline{\theta}$

Effective potential at energies below Λ_{QCD} ,

$$V(\theta) = \Sigma \left(m_u + m_d\right) \left(1 - rac{\sqrt{m_u^2 + m_d^2 + 2m_u m_d \cos heta}}{m_u + m_d}
ight)$$
 [Di Vecchia, Veneziano `80; Leutwyler, Smilga 92]

 $\Sigma \equiv -\langle \bar{u}u \rangle = -\langle dd \rangle$

 $\theta(x) \equiv A(x)/f_A$

has absolute minimum at $\theta = 0$ and thus predicts vanishing vev, $\langle \theta(x) \rangle = 0$

[Peccei,Quinn 77]

$$V(a)$$

$$\int \int \int da$$

$$\pi v_{PQ}$$

Axionic Solution of Strong CP Problem

Can eliminate QCD theta term,

$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \left[\overline{\theta} + \theta(x) \right] G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

by shift $\theta(x) \to \theta(x) - \overline{\theta}$

 \triangleright Effective potential at energies below Λ_{QCD} ,

$$V(\theta) = \Sigma \; (m_u + m_d) \left(1 - rac{\sqrt{m_u^2 + m_d^2 + 2m_u m_d \cos heta}}{m_u + m_d}
ight)$$
 [Di Vecchia, Veneziano `80; Leutwyler, Smilga 92]

 $\Sigma \equiv -\langle \bar{u}u \rangle = -\langle dd \rangle$

 $\theta(x) \equiv A(x)/f_A$

has absolute minimum at $\theta = 0$ and thus predicts vanishing vev, $\langle \theta(x) \rangle = 0$

[Peccei,Quinn 77]

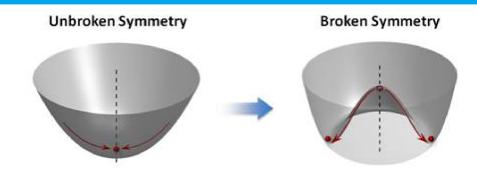
Particle excitation: pseudo NG boson "axion"

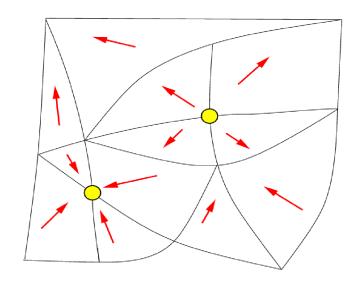
[Weinberg 78; Wilczek 78]

$$m Mass: m_A \simeq rac{\sqrt{\Sigma}}{f_A} \sqrt{rac{m_u m_d}{m_u + m_d}} \simeq rac{m_\pi f_\pi}{f_A} rac{\sqrt{m_u m_d}}{m_u + m_d} \simeq 6 \,\, \mathrm{meV} \left(rac{10^9 \,\, \mathrm{GeV}}{f_A}
ight)$$

Precisely (NLO CPT; Lattice QCD):

$$m_A = 57.0(7) \left(\frac{10^{11} \,\text{GeV}}{f_A} \right) \mu \text{eV}$$


[Grilli di Cortona et al. `16; Borsanyi et al. `16]

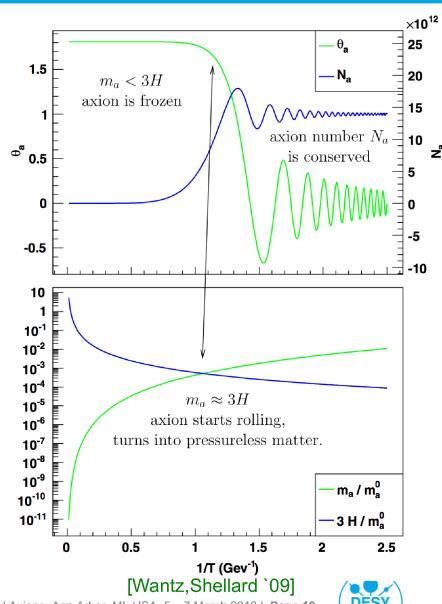

Axion field is born after PQ symmetry breaking

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

In causally connected regions at phase transition, axion takes random initial values

[Peking University]

[Uhlmann et al. `10]

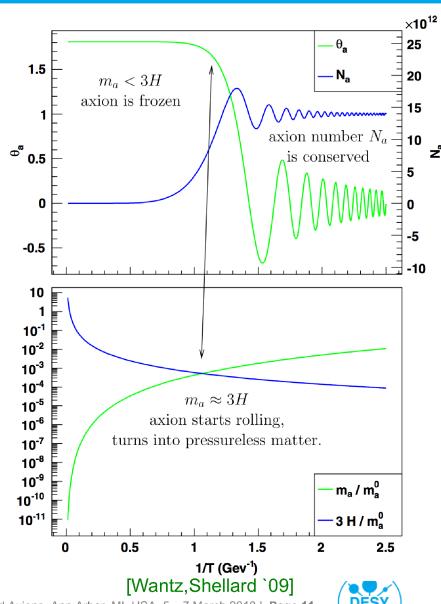

Axion field is born after PQ symmetry breaking

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

- In causally connected regions at phase transition, axion takes random initial values and stucks
- > Later when $H(T) \sim m_A(T)$, axion field starts to oscillate around minimum of potential; behaves like cold dark matter:

$$w_A = p_A/\rho_A \simeq 0$$

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

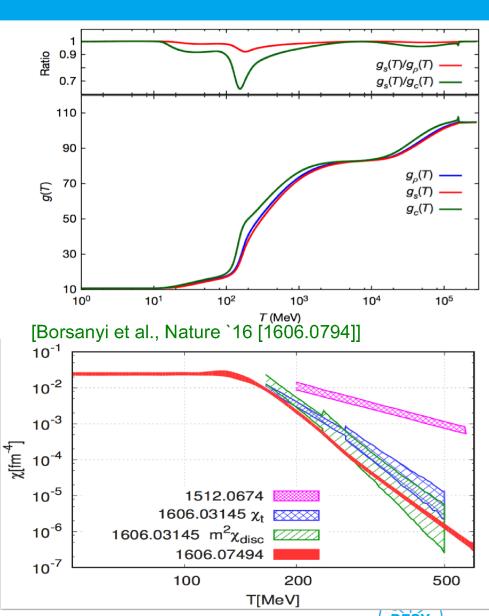


- Precise determination of evolution needs QCD input:
- 1. Equation of state at temperatures around 1 GeV: determines H(T)
- Topological susceptibility:

$$\chi(T) \equiv \int d^4x \langle q(x)q(0)\rangle_T$$

determines

$$m_A^2(T) = \chi(T)/f_A^2$$

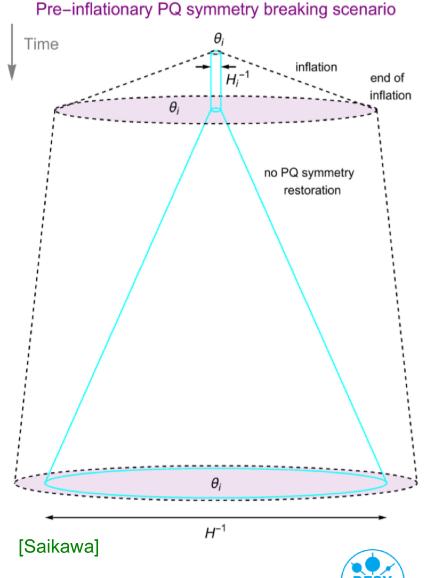

- Precise determination of evolution needs QCD input:
- 1. Equation of state at temperatures around 1 GeV: determines H(T)
- Topological susceptibility:

$$\chi(T) \equiv \int d^4x \langle q(x)q(0)\rangle_T$$

determines

$$m_A^2(T) = \chi(T)/f_A^2$$

- Both obtained recently with high precision via lattice QCD
 - Temperature slope of $\chi(T)$ remarkably close to prediction from dilute instanton gas; latter underestimates normalization by factor of order ten

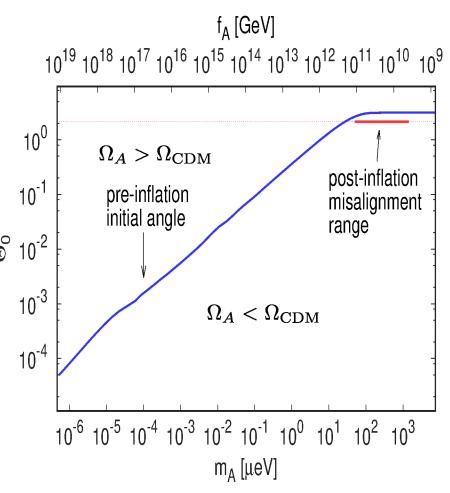

If PQ symmetry broken before or during inflation $(f_A > H_I/(2\pi))$ and not restored afterwards (pre-inflationary PQ breaking scenario):

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

• Axion CDM density depends on single initial value in patch which becomes observable universe and f_A :

$$\Omega_A^{\mathrm{vr}} h^2 pprox 0.12 \left(\frac{f_A}{9 \times 10^{11} \text{ GeV}} \right)^{1.165} \theta_{\mathrm{i}}^2$$

$$\approx 0.12 \left(\frac{6 \ \mu \mathrm{eV}}{m_A} \right)^{1.165} \theta_{\mathrm{i}}^2,$$


> If PQ symmetry broken before or during inflation $(f_A > H_I/(2\pi))$ and not restored afterwards (pre-inflationary PQ breaking scenario):

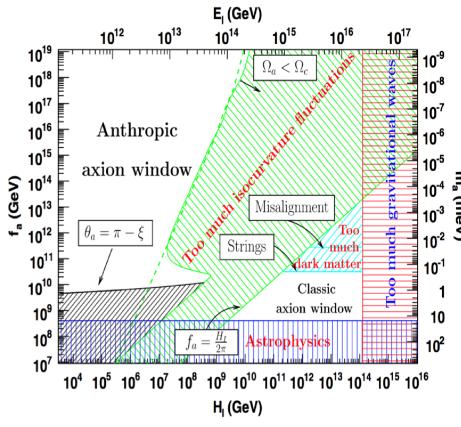
[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

• Axion CDM density depends on single initial value in patch which becomes observable universe and f_A :

$$\Omega_A^{\mathrm{vr}} h^2 pprox 0.12 \left(\frac{f_A}{9 \times 10^{11} \mathrm{GeV}} \right)^{1.165} \theta_{\mathrm{i}}^2$$

$$\approx 0.12 \left(\frac{6 \mu \mathrm{eV}}{m_A} \right)^{1.165} \theta_{\mathrm{i}}^2,$$

[Borsanyi et al., Nature `16 [1606.0794]]

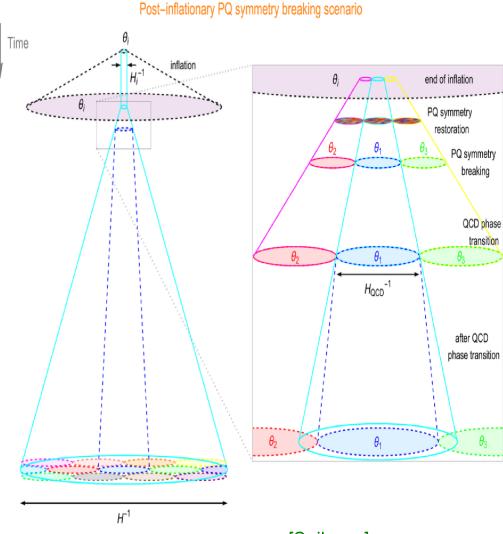

> If PQ symmetry broken before or during inflation $(f_A > H_I/(2\pi))$ and not restored afterwards (pre-inflationary PQ breaking scenario):

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,...

• Axion CDM density depends on single initial value in patch which becomes observable universe and f_A :

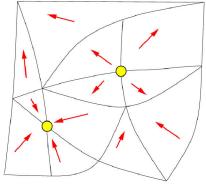
$$\Omega_A^{\mathrm{vr}} h^2 pprox 0.12 \, \left(rac{f_A}{9 imes 10^{11} \, \mathrm{GeV}}
ight)^{1.165} \, heta_{\mathrm{i}}^2
onumber \ pprox 0.12 \, \left(rac{6 \, \mu \mathrm{eV}}{m_A}
ight)^{1.165} \, heta_{\mathrm{i}}^2 \, ,$$

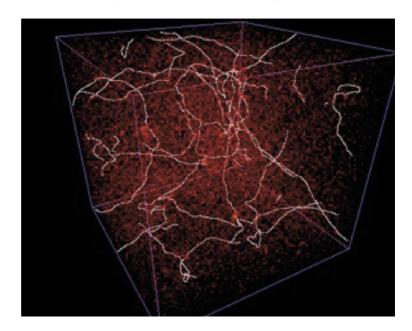
 Upper bound on scale of inflation from isocurvature fluctuations produced by the axion during inflation and not erased afterwards



[Wilczek, Turner `91; Beltran et al. 06; Hertzberg, Tegmark, Wilczek 08; Visinelli, Gondolo 09; Hamann et al. 09; **Wantz, Shellard 09**]

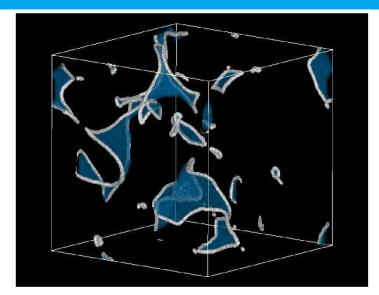
- If Peccei-Quinn symmetry restored after inflation (post-inflationary PQ breaking scenario):
 - Random initial axion field values in regions of post-inflationary causal contact; naive average:


$$\Omega_A^{\mathrm{vr}} h^2 pprox 0.12 \left(\frac{30 \ \mu \mathrm{eV}}{m_A} \right)^{1.165}$$

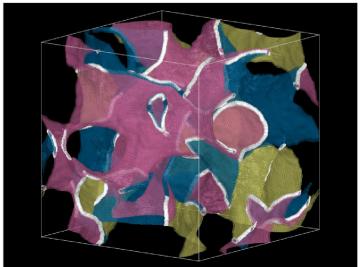


- If Peccei-Quinn symmetry restored after inflation (post-inflationary PQ breaking scenario):
 - Random initial axion field values in regions of post-inflationary causal contact
 - Network of axionic cosmic strings created by Kibble mechanism

[Uhlmann et al. `10]


[Hiramatsu et al.]

- If Peccei-Quinn symmetry restored after inflation (post-inflationary PQ breaking scenario):
 - Random initial axion field values in regions of post-inflationary causal contact
 - Network of axionic cosmic strings created by Kibble mechanism
 - Around QCD phase transition, axion potential develops,


$$V(A,T) = \chi(T) \left[1 - \cos \left(N rac{A}{v_{
m PQ}}
ight)
ight]$$
 N domain walls end at string

- N = 1: String-wall system decays
- N > 1: Domain wall problem

N = 1

[Hiramatsu et al.]

- If Peccei-Quinn symmetry restored after inflation (post-inflationary PQ breaking scenario):
 - ullet For N=1, exploiting results from field theoretic lattice simulations, updated to latest determination of topological susceptibility, find CDM explained for

$$m_A \approx (30\text{--}200)\,\mu\text{eV}$$

[Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; Borsanyi et al. 16; Ballesteros et al. 16]

Large uncertainty due to extrapolation of string tension to physical value

New method allows to simulate directly at physical string tension, resulting in

$$m_A = (26.2 \pm 3.4) \ \mu \text{eV}$$

[Klaer, Moore `17]

- If Peccei-Quinn symmetry restored after inflation (post-inflationary PQ breaking scenario)
 - For N=1, exploiting results from field theoretic lattice simulations, updated to latest determination of topological susceptibility, find CDM explained for

$$m_A \approx (30-200) \, \mu \mathrm{eV}$$

[Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; Borsanyi et al. 16; Ballesteros et al. 16]

Large uncertainty due to extrapolation of string tension to physical value

New method allows to simulate directly at physical string tension, resulting in

$$m_A = (26.2 \pm 3.4) \ \mu eV$$

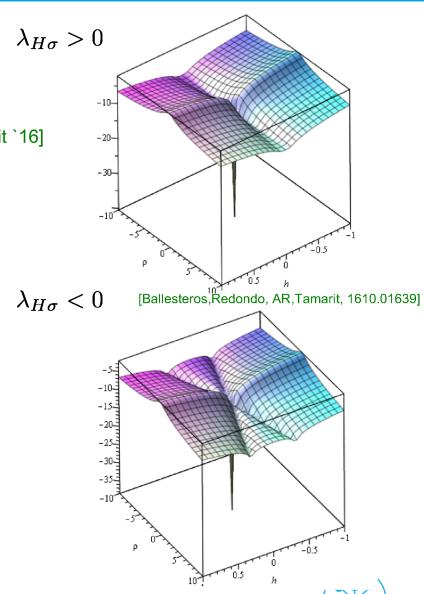
[Klaer, Moore `17]

• For N>1, domain wall problem can be avoided if PQ symmetry explicitely broken, e.g. by Planck suppressed operators, $\mathcal{L}\supset gM_{\mathrm{P}}^4\left(\sigma/M_{\mathrm{P}}\right)^{\mathcal{N}}+\mathrm{h.c.}$, for $\mathcal{N}=9,10$,

$$0.2\,\mathrm{meV}\lesssim m_A\lesssim 50\,\mathrm{meV}$$

[AR,Saikawa `16; Giannotti,Irastorza,Redondo,AR,Saikawa `17]

May employ discrete symmetry to forbid lower dimensional operators


e.g. [Dias et al. `14]

A DFSZ axion (N=6) in this mass range explains excessive stellar energy losses

Unifying Inflation and Dark Matter with PQ Field

> Saxion, $|\sigma| = \rho/\sqrt{2}$, or mixture with Higgs modulus, may play role of inflaton, if it has non-minimal coupling to gravity: [Fairbairn, Hogan, Marsh `14; Ballesteros, Redondo, AR, Tamarit `16]

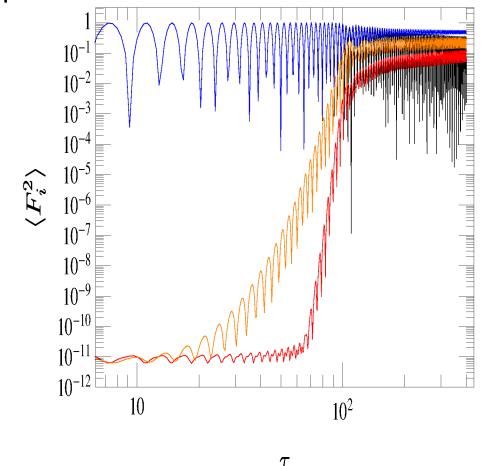
$$S \supset -\int d^4x \sqrt{-g} \,\, \xi_\sigma \, \sigma^* \sigma R$$

Unifying Inflation and Dark Matter with PQ Field

> Saxion, $|\sigma| = \rho/\sqrt{2}$, or mixture with Higgs modulus, may play role of inflaton, if it has non-minimal coupling to gravity:

$$S \supset -\int d^4x \sqrt{-g} \,\, \xi_\sigma \, \sigma^* \sigma R$$

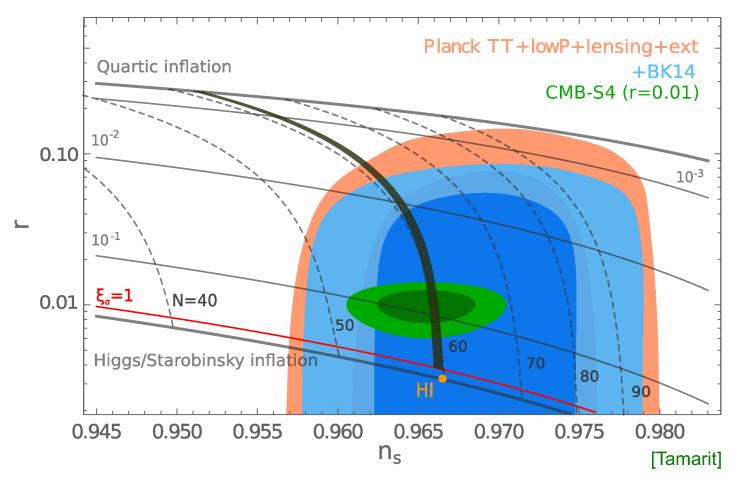
> CMB observables fit by


$$\xi \simeq 2 \times 10^5 \sqrt{\lambda} \gtrsim 10^{-3}$$

- PQ symmetry restored after inflation already in preheating stage
- Dark-matter axion mass:

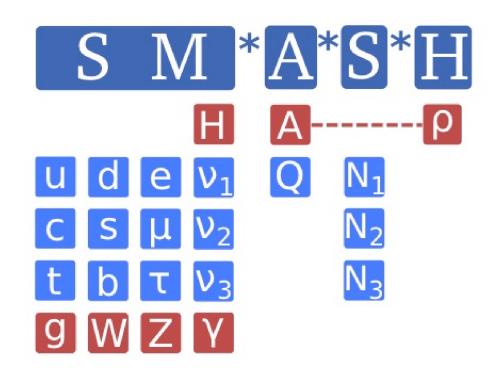
$$30 \,\mu \mathrm{eV} \lesssim m_A \lesssim 50 \,\mathrm{meV}$$

> Axion dark radiation: $\Delta N_{\nu}^{\rm eff} \simeq 0.03$



[Ballesteros, Redondo, AR, Tamarit `16]

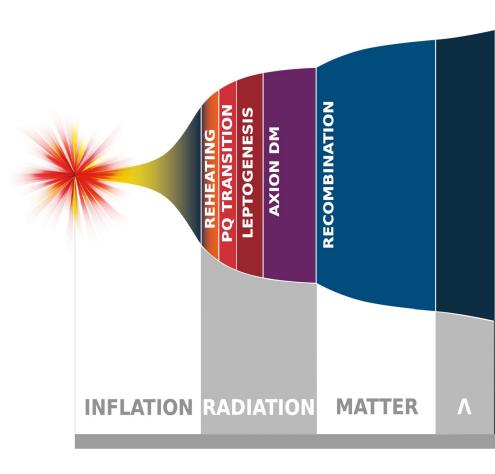
Unifying Inflation and Dark Matter with PQ Field


> Sharp prediction of r vs n_s for fixed pivot scale, e.g. $k_0 = 0.002 \; {\rm Mpc}^{-1}$

Can be probed by next generation CMB experiments (e.g. CMB-S4)

- > Augmenting axion models with three SM singlet neutrinos, getting their Majorana masses also through the vev $v_{\sigma} = N f_A$
 - no strong CP problem
 - dark matter
 - inflation
 - neutrino masses and mixing
 - baryogenesis via leptogenesis

[Dias et al. `14; Ballesteros et al. `16]



- > Augmenting axion models with three SM singlet neutrinos, getting their Majorana masses also through the vev $v_{\sigma}=Nf_A$
 - no strong CP problem
 - dark matter
 - inflation
 - neutrino masses and mixing
 - baryogenesis via leptogenesis

[Dias et al. `14; Ballesteros et al. `16]

Complete and consistent history of the universe from inflation to now

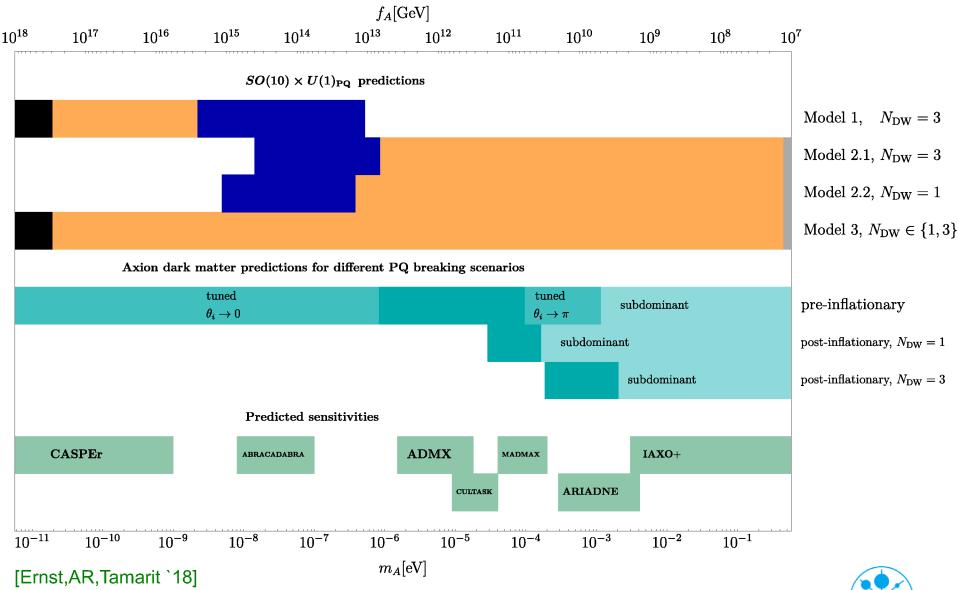
[desy.de]

- > Augmenting axion models with three SM singlet neutrinos, getting their Majorana masses also through the vev $v_{\sigma} = N f_A$
 - no strong CP problem
 - dark matter
 - inflation
 - neutrino masses and mixing
 - baryogenesis via leptogenesis

[Dias et al. `14; Ballesteros et al. `16]

- Complete and consistent history of the universe from inflation to now
- > SO(10) GUT SMASH? [Ernst,AR,Tamarit `18 and in prep.]

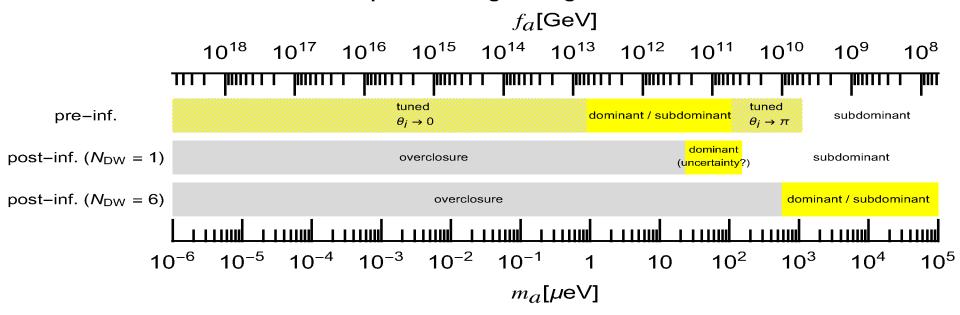
> Minimal $SO(10) \times U(1)_{PQ}$ models:


	16_F	126_H	10_H	210_H	45_H	S	10_F	$\mid N \mid$
Model 1	1	-2	-2	4	_	1	_	3
Model 2.1	1	-2	-2	0	4	_	_	3
Model 2.2	1	-2	-2	0	4	_	-2	1
Model 3.1	1	-2	-2	0	_	4	_	3
Model 3.2	1	-2	-2	0	_	4	-2	1

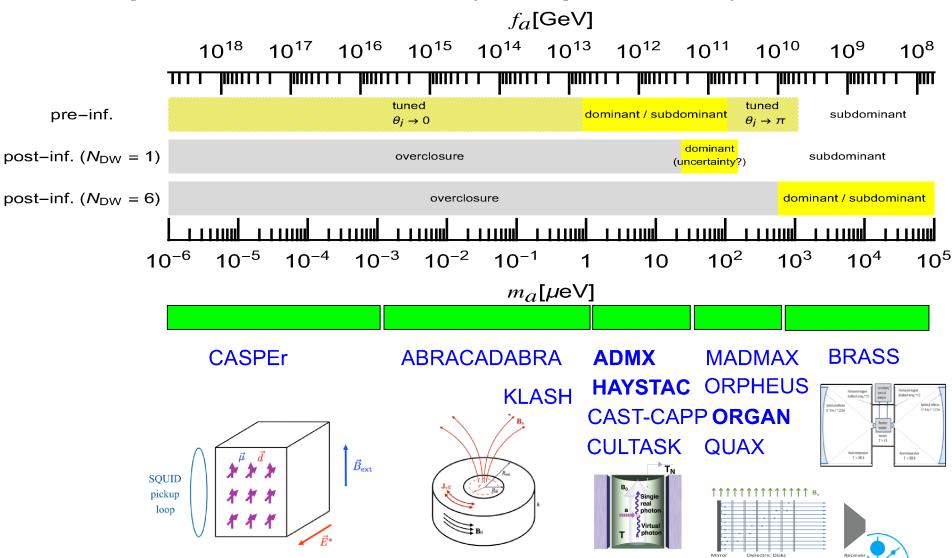
- > 16_F automatically features:
 - Neutrino masses and mixing
 - Baryogenesis via leptogenesis
- > PQ extension adds

[Bajc et al. 06; Altarelli,Meloni 13; Babu,Khan 15]

- Predictivity of fermion masses/mixing
- Solution of strong CP problem
- Axion dark matter



Summary


Dark-matter axion mass spans a huge range:

Summary

Strong motivation for current und upcoming axion DM experiments:

