Bootstrapping the space of $4d$ $\mathcal{N} = 2, 3$ SCFTs

Madalena Lemos

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography
Feb 3 2018

Based on:
1312.5344 w/ C. Beem, P. Liendo, W. Peelaers, L. Rastelli and B. van Rees
1511.07449 w/ P. Liendo
1702.05101 w/ M. Cornaglioitto and V. Schomerus
1 The Superconformal Bootstrap Program
2 A solvable subsector
3 $4d \mathcal{N} = 3$ SCFTs
4 Constraining the space of $\mathcal{N} = 2$ SCFTs
5 Summary and Outlook
1. The Superconformal Bootstrap Program

2. A solvable subsector

3. $4d$ $\mathcal{N} = 3$ SCFTs

4. Constraining the space of $\mathcal{N} = 2$ SCFTs

5. Summary and Outlook
What is the space of consistent SCFTs?
What is the space of consistent SCFTs?

→ Maximally supersymmetric theories: well known list of theories
What is the space of consistent SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 2$ theories: large known list of theories
 many lacking a Lagrangian description
The Superconformal Bootstrap Program

What is the space of consistent SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description
The Superconformal Bootstrap Program

What is the space of consistent SCFTs?

→ Maximally supersymmetric theories: well known list of theories

→ $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado

→ $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?
The Superconformal Bootstrap Program

What is the space of consistent SCFTs?

- Maximally supersymmetric theories: well known list of theories
- $\mathcal{N} = 3$ theories: not known to exist until García-Etxebarria and Regalado
- $\mathcal{N} = 2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

- See Pedro’s talk!
Conformal field theory defined by
Set of local operators and their correlation functions
Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions

\[\{ \mathcal{O}_{\Delta, \ell, \ldots}(x) \} \text{ and } \{ \lambda_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \]
Conformal field theory defined by
Set of local operators and their correlation functions
\{O_{\Delta,\ell,\ldots}(x)\} and \{\lambda_{O_iO_jO_k}\}

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra
Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions
\(\{ \mathcal{O}_{\Delta,\ell,...}(x) \} \) and \(\{ \lambda_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \)

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra

\[
\langle (\mathcal{O}_1(x_1) \mathcal{O}_2(x_2)) \mathcal{O}_3(x_3) \mathcal{O}_4(x_4) \rangle = \sum_{\mathcal{O}_{\Delta,\ell}} \lambda_{\mathcal{O}_{\Delta,\ell}}^2 \mathcal{O}_{\Delta,\ell}
\]
Conformal field theory defined by
Set of local operators and their correlation functions
\{\mathcal{O}_{\Delta,\ell,\ldots}(x)\} \text{ and } \{\lambda_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k}\}

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra

\begin{align*}
\langle \mathcal{O}_1(x_1)(\mathcal{O}_2(x_2)\mathcal{O}_3(x_3))\mathcal{O}_4(x_4) \rangle &= \sum_{\mathcal{O}_{\Delta,\ell}} \lambda_{\mathcal{O}_{\Delta,\ell}}^2 \tilde{\mathcal{O}}_{\Delta,\ell} \\
&= \sum_{\tilde{\mathcal{O}}_{\Delta,\ell}} \lambda_{\tilde{\mathcal{O}}_{\Delta,\ell}}^2 \tilde{\mathcal{O}}_{\Delta,\ell}
\end{align*}
Various conformal families related by action of supercharges
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data
Various conformal families related by action of supercharges

Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

$6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \, \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

$6d \, \mathcal{N} = (2, 0)$ and $2d \, \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

- Step 1: Solve this subsector
The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

 $6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

- Step 1: Solve this subsector
- Step 2: Full blown numerics for the rest
Various conformal families related by action of supercharges

Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

→ Yes, for $4d \mathcal{N} \geq 2$ [Beem ML Liendo Peelaers Rastelli van Rees]

 $6d \mathcal{N} = (2, 0)$ and $2d \mathcal{N} = (0, 4)$ [Beem Rastelli van Rees]

→ Step 1: Solve this subsector
→ Step 2: Full blown numerics for the rest \rightsquigarrow Pedro’s talk
1. The Superconformal Bootstrap Program

2. A solvable subsector

3. 4d $\mathcal{N} = 3$ SCFTs

4. Constraining the space of $\mathcal{N} = 2$ SCFTs

5. Summary and Outlook
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ O_{\Delta,(j_1,j_2)} \} \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\left\{ \mathcal{O}_{\Delta, (j_1, j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_r}, f \right\} \]
Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta, (j_1, j_2)}, R_{SU(2)_R}, r_{U(1)_r} \}, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \subset \mathbb{R}^4 \),
Chiral algebra

Organize operators in representations of superconformal algebra

$$\{ O_{\Delta,(j_1,j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_r}, f \}$$

Claim

→ Pick a plane $\mathbb{R}^2 \in \mathbb{R}^4$, $(z, \bar{z}) \in \mathbb{R}^2$
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta,(j_1,j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_R}, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)

\[\langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ \mathcal{O}_{\Delta, (j_1, j_2)}, R, r, f \} \]

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \)

→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)

\[\langle \mathcal{O}^{l_1}_1(z_1, \bar{z}_1) \ldots \mathcal{O}^{l_n}_n(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra

\[\{ O_{\Delta,(j_1,j_2),R^2}, r \}_{SU(2)_R, U(1)_r} \]

Claim

\[\rightarrow \text{ Pick a plane } \mathbb{R}^2 \in \mathbb{R}^4, \ (z, \bar{z}) \in \mathbb{R}^2 \]

\[\rightarrow \text{ Restrict to operators with } \Delta = 2R + j_1 + j_2 \]

\[u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n) \langle O_{1,1}^{l_1}(z_1, \bar{z}_1) \ldots O_{n,n}^{l_n}(z_n, \bar{z}_n) \rangle \]
Chiral algebra

Organize operators in representations of superconformal algebra
\(\{ \mathcal{O}_{\Delta,(j_1,j_2)}, \underbrace{R}_{SU(2)_R}, \underbrace{r}_{U(1)_r}, f \} \)

Claim

→ Pick a plane \(\mathbb{R}^2 \in \mathbb{R}^4, (z, \bar{z}) \in \mathbb{R}^2 \)
→ Restrict to operators with \(\Delta = 2R + j_1 + j_2 \)

\[u_{l_1}(\bar{z}_1) \ldots u_{l_n}(\bar{z}_n) \langle \mathcal{O}_{1}^{l_1}(z_1, \bar{z}_1) \ldots \mathcal{O}_{n}^{l_n}(z_n, \bar{z}_n) \rangle = f(z_i) \]

→ Meromorphic!
Why?

- Subsector $= \text{Cohomology of nilpotent } \mathbb{Q}$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim Q + S$
Why?

- Subsector $= \text{Cohomology of nilpotent } \mathbb{Q} \sim \mathbb{Q} + S$
- $\rightarrow \text{Cohomology at the origin } \Rightarrow \text{non-empty classes}$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \mathfrak{sl}_2$
Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\underset{s\mathfrak{l}_2}{\times} \underset{\mathfrak{s}\mathfrak{l}_2}{\mathfrak{\bar{}}}$ commutes with \mathbb{Q}
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$

\Rightarrow Cohomology at the origin \Rightarrow non-empty classes

$\Delta = 2R + j_1 + j_2$

- On plane $\mathfrak{sl}_2 \times \tilde{\mathfrak{sl}}_2$

commutes with \mathbb{Q} does not
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + \mathcal{S}$
- Cohomology at the origin \Rightarrow non-empty classes
 $\Delta = 2R + j_1 + j_2$
- On plane $\mathfrak{sl}_2 \times \overline{\mathfrak{sl}}_2$
 - commutes with \mathbb{Q}
 - does not
- twisted translations $u_I(\bar{z})$
Why?

Subsector = Cohomology of nilpotent \(Q \sim Q + S \)

\[\Delta = 2R + j_1 + j_2 \]

On plane \(sl_2 \times \bar{sl}_2 \) commutes with \(Q \) does not

\[u_I(\bar{z}) \]

-diagonal subalgebra \(\bar{sl}_2 \times su(2)_R \) is \(Q \) exact
Chiral algebra

Why?

- Subsector = Cohomology of nilpotent $\mathbb{Q} \sim \mathbb{Q} + S$
 - Cohomology at the origin \Rightarrow non-empty classes
 \[\Delta = 2R + j_1 + j_2 \]
- On plane $\mathfrak{sl}_2 \times \overline{\mathfrak{sl}}_2$
 - Commutes with \mathbb{Q}
 - Does not
- Twisted translations $u_I(\bar{z})$
- Diagonal subalgebra $\mathfrak{sl}_2 \times \mathfrak{su}(2)_R$ is \mathbb{Q} exact
- Anti-holomorphic dependence drops out
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \hat{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[u_I = (1, \bar{z})\]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[u_I = (1, \bar{z})\]

\[q(z, \bar{z}) = u_I Q'\]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[u_I = (1, \bar{z})\]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z})\]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
\begin{align*}
Q' &= \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \\
\tilde{Q}' &= \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
u_I &= (1, \bar{z}) \\
q(z, \bar{z}) &= u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \\
\tilde{q}(z, \bar{z}) &= u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z})
\end{align*}
\]
Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]

\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]

\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\rightarrow q(z, \bar{z})\tilde{q}(0) \sim \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\rightarrow q(z, \bar{z}) \tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[
Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -Q^* \end{bmatrix}
\]

\[u_I = (1, \bar{z})\]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z})\]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z})\]

\[\rightarrow q(z, \bar{z})\tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z\bar{z}}\]
Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

\[Q' = \begin{bmatrix} Q \\ \tilde{Q}^* \end{bmatrix}, \quad \tilde{Q}' = \begin{bmatrix} \tilde{Q} \\ -\tilde{Q}^* \end{bmatrix} \]

\[u_I = (1, \bar{z}) \]
\[q(z, \bar{z}) = u_I Q' = Q(z, \bar{z}) + \bar{z} \tilde{Q}^*(z, \bar{z}) \]
\[\tilde{q}(z, \bar{z}) = u_I \tilde{Q}' = \tilde{Q}(z, \bar{z}) - \bar{z} Q^*(z, \bar{z}) \]

\[\rightarrow q(z, \bar{z})\tilde{q}(0) \sim \bar{z} \tilde{Q}^*(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z\bar{z}} = \frac{1}{z} \]
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu}$
Which operators are in the cohomology?
→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant
→ Stress tensor supermultiplet
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant

\rightarrow Stress tensor supermultiplet

$$T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu}$ \leadsto superdescendant

\rightarrow Stress tensor supermultiplet \Rightarrow 2d stress tensor

$$T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots ,$$
Which operators are in the cohomology?

→ Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant

→ Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

$$T(z) T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,$$

→ Global \mathfrak{sl}_2 enhances to Virasoro
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Stress tensor $T_{\mu\nu} \rightsquigarrow$ superdescendant

\rightarrow Stress tensor supermultiplet $\Rightarrow 2d$ stress tensor

\[
T(z)T(0) \sim -12 \frac{c_{4d}/2}{z^4} + 2 \frac{T(0)}{z^2} + \frac{\partial T(0)}{z} + \ldots,
\]

\leftrightarrow Global \mathfrak{sl}_2 enhances to Virasoro

$\leftrightarrow c_{2d} = -12c_{4d}$
Which operators are in the cohomology?

→ Theory with flavor symmetry
4d $\mathcal{N} \geq 2$ SCFT \rightarrow chiral algebra

Which operators are in the cohomology?

\rightarrow Theory with flavor symmetry

\rightarrow Multiplet containing flavor current
Which operators are in the cohomology?

→ Theory with flavor symmetry
→ Multiplet containing flavor current
← Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots , \]
Which operators are in the cohomology?

→ Theory with flavor symmetry
→ Multiplet containing flavor current
← Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}}{2z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots , \]

← \[k_{2d} = -\frac{k_{4d}}{2} \]
Which operators are in the cohomology?

→ Theory with flavor symmetry
→ Multiplet containing flavor current
← Affine Kac Moody current algebra

\[J^a(z)J^b(0) \sim -\frac{k_{4d}/2\delta^{ab}}{z^2} + if^{abc} \frac{J^c(0)}{z} + \ldots, \]

← $k_{2d} = -\frac{k_{4d}}{2}$
→ \ldots
1 The Superconformal Bootstrap Program

2 A solvable subsector

3 $4d \mathcal{N} = 3$ SCFTs

4 Constraining the space of $\mathcal{N} = 2$ SCFTs

5 Summary and Outlook
$\mathcal{N} = 3$ Chiral algebra

- $4d \, \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
\[\mathcal{N} = 3 \text{ Chiral algebra} \]

- \(4d \mathcal{N} \geq 3\): some of the extra supercharges commute with \(Q\)
 \(\Rightarrow 4d \mathcal{N} = 4 \Rightarrow 2d \) “small” \(\mathcal{N} = 4\) chiral algebra
\(\mathcal{N} = 3 \) Chiral algebra

- 4d \(\mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \Rightarrow 2d \) “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2 \) chiral algebra \[\text{[Nishinaka, Tachikawa]} \]
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
 - $4d \mathcal{N} = 4 \Rightarrow 2d$ “small” $\mathcal{N} = 4$ chiral algebra
 - $4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet
$\mathcal{N} = 3$ Chiral algebra

- $4d \mathcal{N} \geq 3$: some of the extra supercharges commute with Q
 - $4d \mathcal{N} = 4 \Rightarrow 2d$ “small” $\mathcal{N} = 4$ chiral algebra
 - $4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}
\(\mathcal{N} = 3 \) Chiral algebra

- 4d \(\mathcal{N} \geq 3 \): some of the extra supercharges commute with \(Q \)
 - \(4d \mathcal{N} = 4 \Rightarrow 2d \) “small” \(\mathcal{N} = 4 \) chiral algebra
 - \(4d \mathcal{N} = 3 \Rightarrow 2d \mathcal{N} = 2 \) chiral algebra \([\text{Nishinaka, Tachikawa}]\)

- 2d stress tensor promoted to supermultiplet

2d \(\mathcal{N} = 2 \) Stress tensor \(\mathcal{J} \)

→ Present in any local \(\mathcal{N} = 3 \) SCFT
$\mathcal{N} = 3$ Chiral algebra

- $4d \, \mathcal{N} \geq 3$: some of the extra supercharges commute with Q

 $\implies 4d \, \mathcal{N} = 4 \implies 2d$ “small” $\mathcal{N} = 4$ chiral algebra

 $\implies 4d \, \mathcal{N} = 3 \implies 2d \, \mathcal{N} = 2$ chiral algebra [Nishinaka, Tachikawa]

- $2d$ stress tensor promoted to supermultiplet

$2d \, \mathcal{N} = 2$ Stress tensor \mathcal{J}

- Present in any local $\mathcal{N} = 3$ SCFT

- A trivial statement in $2d$:

 $\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}
Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d} \mathcal{O}_{2d}$$
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \lambda_{\mathcal{O}_{2d}}^2$$
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{I}

$\langle \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \rangle$ is fixed in terms of c_{2d}

- $2d$ Superblock decomposition:

$$
\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \mathcal{O}_{2d}
$$

$\rightarrow \lambda_{\mathcal{O}_{2d}}^2 \sim \lambda_{\mathcal{O}_{4d}}^2$

assumptions: interacting theory, unique stress tensor
2d $\mathcal{N} = 2$ **Stress tensor** \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- **2d Superblock decomposition:**

 \[
 \sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \rightarrow \mathcal{O}_{2d}
 \]

 $\xrightarrow{\lambda_{\mathcal{O}_{2d}}^2} \lambda_{\mathcal{O}_{4d}}^2 \geq 0$

 assumptions: interacting theory, unique stress tensor

$4d$ unitarity
Space of $\mathcal{N} = 3$ SCFTs

$2d \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

\[
\sum_{\mathcal{O}_{2d}} \lambda^2_{\mathcal{O}_{2d}} \rightarrow \lambda^2_{\mathcal{O}_{2d}} \sum_{\mathcal{O}_{4d}} \lambda^2_{\mathcal{O}_{4d}} \geq 0 \Rightarrow \text{New unitarity bound}
\]

4d unitarity

assumptions: interacting theory, unique stress tensor
Space of $\mathcal{N} = 3$ SCFTs

$2d \, \mathcal{N} = 2$ Stress tensor \mathcal{J}

$\langle \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J} \rangle$ is fixed in terms of c_{2d}

- 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{2d}}^2 \xrightarrow{\mathcal{O}_{2d}} \lambda_{\mathcal{O}_{4d}}^2 \geq 0 \implies \text{New unitarity bound}$$

assumptions: interacting theory, unique stress tensor

$$c_{4d} \geq \frac{13}{24} \quad \text{[Cornagliotto, ML, Schomerus]}$$
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$c_{4d} \geq \frac{13}{24}$ [Cornagliotto, ML, Schomerus]

→ Not saturated by any known SCFT
2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

\[c_{4d} \geq \frac{13}{24} \]
[Cornagliootto, ML, Schomerus]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: \[c_{4d} = \frac{15}{12} \]
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$$c_{4d} \geq \frac{13}{24}$$

[Cornagliotto, ML, Schomerus]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
Space of $\mathcal{N} = 3$ SCFTs

$2d$ $\mathcal{N} = 2$ Stress tensor \mathcal{J}

\[
c_{4d} \geq \frac{13}{24}
\]
[Cornagliotto, ML, Schomerus]

\leftarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\leftarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct $4d$ operators appearing in $\mathcal{J} \mathcal{J}$
Space of $\mathcal{N} = 3$ SCFTs

2d $\mathcal{N} = 2$ Stress tensor \mathcal{J}

$\boxed{c_{4d} \geq \frac{13}{24}}$ [Cornaglioatto, ML, Schomerus]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $\mathcal{J} \mathcal{J}$

\rightarrow Inconsistent with an *interacting* 4d SCFT
2d $\mathcal{N} = 2$ **Stress tensor J**

\[c_{4d} > \frac{13}{24} \]

[Cornaglione, ML, Schomerus]

\rightarrow Not saturated by any known SCFT

smallest interacting known theory: $c_{4d} = \frac{15}{12}$

\rightarrow Similar bounds in $\mathcal{N} = 4$ and $\mathcal{N} = 2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

\rightarrow $c_{4d} = \frac{13}{24} \Rightarrow$ reconstruct 4d operators appearing in $J J$

\rightarrow Inconsistent with an *interacting* 4d SCFT
1. The Superconformal Bootstrap Program
2. A solvable subsector
3. $4d$ $\mathcal{N} = 3$ SCFTs
4. **Constraining the space of** $\mathcal{N} = 2$ SCFTs
5. Summary and Outlook
$4d \mathcal{N} = 2$ SCFTs with $SU(2)$ flavor symmetry

$\langle TTTT \rangle, \langle J^a J^b J^c J^d \rangle, \langle TT J^a J^b \rangle$
$4d \mathcal{N} = 2$ SCFTs with $SU(2)$ flavor symmetry

$\langle TTTT \rangle$, $\langle J^a J^b J^c J^d \rangle$, $\langle TTJ^a J^b \rangle$

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
1. The Superconformal Bootstrap Program
2. A solvable subsector
3. $4d \mathcal{N} = 3$ SCFTs
4. Constraining the space of $\mathcal{N} = 2$ SCFTs
5. Summary and Outlook
New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs

\rightarrow No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$

← can we improve on this bound analytically?
What are the conditions for a chiral algebra to correspond to a 4d SCFT?
Summary and Outlook

New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
 → can we improve on this bound analytically?
 What are the conditions for a chiral algebra to correspond to a 4d SCFT?

→ Can the numerical bootstrap complement these?
New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$
 → can we improve on this bound analytically?
 What are the conditions for a chiral algebra to correspond to a $4d$ SCFT?

→ Can the numerical bootstrap complement these?

→ Is $c_{4d}/k_{4d} \geq \ldots$?
New constraints on the space of allowed $\mathcal{N} > 1$ SCFTs

→ No “minimal” $\mathcal{N} = 3$ SCFT with $c = \frac{13}{24}$

What are the conditions for a chiral algebra to correspond to a 4d SCFT?

← can we improve on this bound analytically?

→ Can the numerical bootstrap complement these?

→ Is $c_{4d}/k_{4d} \geq \ldots$?

Numerically solving theories?

▶ Pedro’s talk for the “simplest” $\mathcal{N} = 2$ SCFT
Thank you!
Constraining the space of $4d$ $\mathcal{N} = 2$ SCFTs

E_6 flavor symmetry

[Beem, ML, Liendo, Peelaers, Rastelli, van Rees] [ML, Liendo] [Beem, ML, Liendo, Rastelli, van Rees]