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A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq̄(′)bb̄ final state 
is described. The search uses 36.1 fb−1 of proton–proton collision data at 

√
s = 13 TeV collected by the 

ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with 
the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a 
local (global) significance of 3.3 (2.1) σ . The results are presented in terms of constraints on a simplified 
model with a heavy vector triplet. Upper limits are set on the production cross-section times branching 
ratio for resonances decaying to a W (Z ) boson and a Higgs boson, itself decaying to bb̄, in the mass 
range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 
1.1 fb) at 95% confidence level.

 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson [1,2] confirms the validity 
of the Standard Model (SM) in the description of particle inter-
actions at energies up to a few hundred GeV. However, radiative 
corrections to the Higgs boson mass drive its value to the model’s 
validity limit, indicating either extreme fine-tuning or the presence 
of new physics at an energy scale not far above the Higgs boson 
mass. It is natural to expect such new physics to manifest itself 
through significant coupling to the Higgs boson, for example in 
decays of new particles to a Higgs boson and other SM particles. 
This Letter presents a search for resonances produced in 36.1 fb−1

of proton–proton (pp) collision data at 
√
s = 13 TeV which decay 

to a W or Z boson and a Higgs boson. Such resonances are pre-
dicted in multiple models of physics beyond the SM, e.g. composite 
Higgs [3,4] or Little Higgs [5] models, or models with extra dimen-
sions [6,7].

This search is conducted in the channel where the W or Z and 
Higgs bosons decay to quarks. The high mass region, with res-
onance masses mV H > 1 TeV (V = W , Z ), where the V and H
bosons are highly Lorentz boosted, is considered. The V and H
boson candidates are each reconstructed in a single jet, using jet 
substructure techniques and b-tagging to suppress the dominant 
background from multijet events and to enhance the sensitivity to 

⋆ E-mail address: atlas.publications@cern.ch.

the dominant H → bb̄ decay mode. The reconstructed dijet mass 
distribution is used to search for a signal and, in its absence, to set 
bounds on the production cross-section times branching ratio for 
new bosons which decay to a W or Z boson and a Higgs boson.

The results are expressed as limits in a simplified model which 
incorporates a heavy vector triplet (HVT) [8,9] of bosons; this 
choice allows the results to be interpreted in a large class of 
models. The new heavy vector bosons couple to the Higgs bo-
son and SM gauge bosons with coupling strength cH gV and to 
the SM fermions with coupling strength (g2/gV )cF , where g is 
the SM SU(2)L coupling constant. The parameter gV characterizes 
the interactions of the new vector bosons, while the dimension-
less coefficients cH and cF parameterize departures of this typical 
strength for interactions with the Higgs and SM gauge bosons and 
with fermions, respectively, and are expected to be of order unity 
in most models. Two benchmark models are used: in the first, re-
ferred to as Model A, the branching ratios of the new heavy vector 
boson to known fermions and gauge bosons are comparable, as in 
some extensions of the SM gauge group [10]. In Model B, fermionic 
couplings to the new heavy vector boson are suppressed, as for 
example in a composite Higgs model [11]. The regions of HVT pa-
rameter space studied correspond to the production of resonances 
with an intrinsic width that is narrow relative to the experimen-
tal resolution. The latter is roughly 8% of the resonance mass. The 
sensitivity of the analysis to wider resonances is not tested. In ad-
dition, while the production rates of the new heavy charged and 
neutral states are related within the HVT model, the search pre-
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sented here assumes the production of only a charged or neutral 
resonance and not both simultaneously.

Searches for V H resonances, V ′ , have recently been performed 
by the ATLAS and CMS collaborations. The ATLAS searches (using 
leptonic V decays) based on data collected at 

√
s = 8 TeV set a 

lower limit at the 95% confidence level (CL) on the W ′ (Z ′) mass 
at 1.47 (1.36) TeV in HVT benchmark Model A with gV = 1 [12]. 
Using the same decay modes, a search based on 3.2 fb−1 of data 
collected at 

√
s = 13 TeV set a 95% CL lower limit on the W ′ (Z ′) 

mass at 1.75 (1.49) TeV [13] in the HVT benchmark Model A. For 
Model B the corresponding limits are 2.22 (1.58) TeV. Searches by 
the CMS Collaboration at 

√
s = 8 TeV in hadronic channels, based 

on HVT benchmark Model B with gV = 3, exclude heavy resonance 
masses below 1.6 TeV (W ′ → WH), below 1.1 TeV and between 
1.3 TeV and 1.5 TeV (Z ′ → ZH), and below 1.7 TeV (combined 
V ′ → V H) [14] at the 95% CL. Using the W ′ → WH → ℓνbb̄
channel, CMS excludes new heavy vector bosons with masses up 
to 1.5 TeV in the same context [15]. The CMS Collaboration also 
carried out a search for a narrow resonance decaying to ZH in 
the qq̄τ+τ− final state, setting limits on the Z ′ production cross-
section [16]. Searches for heavy resonances in HVT models have 
also been carried out in the hadronic WW /W Z /Z Z channels by 
the ATLAS experiment at 

√
s = 13 TeV with 3.2 fb−1 of data [17]. 

For Model B, a new gauge boson with mass below 2.6 TeV is 
excluded at the 95% CL. The CMS Collaboration combined [18]
diboson resonance searches at 

√
s = 8 and 13 TeV [18], setting 

lower limits for W ′ and Z ′ singlets at 2.3 TeV and for a triplet 
at 2.4 TeV. As this Letter was being finalized, the CMS Collabora-
tion released [19] a search in the same final state as studied in this 
Letter, using 36 fb−1 of data collected at 

√
s = 13 TeV. For Model B, 

a W ′ boson with mass below 2.45 TeV and between 2.78 TeV and 
3.15 TeV is excluded at the 95% CL. For a Z ′ boson, masses below 
1.19 TeV and between 1.21 TeV and 2.26 TeV are excluded at the 
95% CL.

2. ATLAS detector

The ATLAS detector [20] is a general-purpose particle detector 
used to investigate a broad range of physics processes. It includes 
inner tracking devices surrounded by a 2.3 m diameter supercon-
ducting solenoid, electromagnetic and hadronic calorimeters and 
a muon spectrometer with a toroidal magnetic field. The inner de-
tector consists of a high-granularity silicon pixel detector, including 
the insertable B-layer [21] installed after Run 1 of the LHC, a sili-
con strip detector, and a straw-tube tracker. It is immersed in a 2 T 
axial magnetic field and provides precision tracking of charged par-
ticles with pseudorapidity |η| < 2.5.1 The calorimeter system con-
sists of finely segmented sampling calorimeters using lead/liquid-
argon for the detection of electromagnetic (EM) showers up to 
|η| < 3.2, and copper or tungsten/liquid-argon for electromagnetic 
and hadronic showers for 1.5 < |η| < 4.9. In the central region 
(|η| < 1.7), a steel/scintillator hadronic calorimeter is used. Outside 
the calorimeters, the muon system incorporates multiple layers of 
trigger and tracking chambers within a magnetic field produced 
by a system of superconducting toroids, enabling an independent 
precise measurement of muon track momenta for |η| < 2.7. A ded-
icated trigger system is used to select events [22]. The first-level 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms 
of the polar angle θ as η = − ln tan(θ/2). The rapidity is defined relative to the 
beam axis as y = 1/2 ln((E + pz)/(E − pz)).

trigger is implemented in hardware and uses the calorimeter and 
muon detectors to reduce the accepted rate to 100 kHz. This is fol-
lowed by a software-based high-level trigger, which reduces the 
accepted event rate to 1 kHz on average.

3. Data and simulation samples

This analysis uses 36.1 fb−1 of LHC pp collisions at 
√
s = 13 TeV

collected in 2015 and 2016. The data were collected during sta-
ble beam conditions with all relevant detector systems functional. 
Events were selected using a trigger that requires a single anti-kt
jet [23] with radius parameter R = 1.0 (large-R jet) with a trans-
verse energy (ET) threshold of 360 (420) GeV in 2015 (2016). The 
trigger requirement is > 99% efficient for events passing the of-
fline selection of a large-R jet with transverse momentum (pT) 
> 450 GeV.

Signal processes, as well as backgrounds from tt̄ and W /Z +
jets production, are modelled with Monte Carlo (MC) simula-
tion. While multijet MC events are used as a cross-check, the 
primary multijet background estimation is performed using data 
as described in Section 6. The signal is modelled using bench-
mark Model A with gV = 1. Results derived from this model 
can be directly applied to benchmark Model B by rescaling the 
relevant branching ratios. The signal was generated with Mad-
graph5_aMC@NLO 2.2.2 [24] interfaced to Pythia 8.186 [25] for 
parton shower and hadronization, with the NNPDF2.3 next-to-
leading order (NLO) parton distribution function (PDF) set [26] and 
a set of tuned parameters called the ATLAS A14 tune [27] for the 
underlying event. The Higgs boson mass was set to 125.5 GeV, 
and Higgs boson decays to both bb̄ and cc̄, assuming SM branch-
ing ratios, were included in the simulation. The V ′ → V H →
qq̄(′)(bb̄ + cc̄) signal cross-section in Model B ranges from 110 fb 
(203 fb) for neutral (charged) resonances with a mass of 1 TeV, 
down to 0.09 fb (0.19 fb) for neutral (charged) resonances with a 
mass of 3.8 TeV. Samples were generated in steps of 100 GeV or 
200 GeV up to 4 TeV.

The tt̄ background samples were generated with Powheg-

Box v2 [28] with the CT10 PDF set [29], interfaced with Pythia

6.428 [30] and the Perugia 2012 tune for the parton shower [31]
using the CTEQ6L1 PDF set [32]. The cross-section of the tt̄ process 
is normalized to the result of a quantum chromodynamics (QCD) 
calculation at next-to-next-to-leading order and log (NNLO+NNLL), 
as implemented in Top++ 2.0 [33]. The Powheg hdamp parame-
ter [34] was set to the top quark mass, taken to be mt = 172.5 GeV. 
The W +jets and Z+jets background samples were generated with
Sherpa 2.1.1 [35] interfaced with the CT10 PDF set. Matrix ele-
ments of up to four extra partons were calculated at leading order 
in QCD. Only the hadronic decays of the W and Z bosons were 
included. For studies with simulated multijet events, the MC sam-
ples were generated with Pythia 8.186 [25], with the NNPDF2.3 
NLO PDF and the ATLAS A14 tune. The background from SM dibo-
son and V H production is negligible and therefore not considered.

For all simulated events, except those produced using Sherpa,
EvtGen v1.2.0 [36] was used to model the properties of bottom 
and charm hadron decays. The detector response was simulated 
with Geant 4 [37,38] and the events were processed with the 
same reconstruction software as that used for data. All simulated 
samples include the effects due to multiple pp interactions per 
bunch-crossing (pile-up).

4. Event reconstruction

Collision vertices are reconstructed requiring a minimum of two 
tracks each with transverse momentum pT > 0.4 GeV. The primary 
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vertex is chosen to be the vertex with the largest 
∑

p2
T , where the 

sum extends over all tracks associated with the vertex.
The identification and reconstruction of hadronically decaying 

gauge boson and Higgs boson candidates is performed with the 
anti-kt jet clustering algorithm with R parameter equal to 1.0. 
These large-R jets [39] are reconstructed from locally calibrated 
topological clusters [40] of calorimeter energy deposits. To mit-
igate the effects of pile-up and soft radiation, the large-R jets 
are trimmed [41]: the jet constituents are reclustered into sub-
jets using the kt algorithm [42] with R = 0.2, removing those with 
p
subjet
T /p

jet
T < 0.05, where psubjet

T is the transverse momentum of 

the subjet and pjet
T is the transverse momentum of the original 

large-R jet. In order to improve on the limited angular resolution 
of the calorimeter, the combined mass of a large-R jet is computed 
using a combination of calorimeter and tracking information [43]. 
The combined mass is defined as:

m J ≡ wcalo ×mcalo
J + wtrack ×

(

mtrack
J

pcalo
T

ptrack
T

)

,

where mcalo
J (pcalo

T ) is the calorimeter-only estimate of the jet mass 

(pT), and mtrack
J (ptrack

T ) is the jet mass (pT) estimated via tracks 
with pT > 0.4 GeV associated with the large-R jet using ghost 
association2 [44]. To correct for the missing neutral component 
in the track-based measurement, mtrack

J is scaled by the ratio of 
calorimeter to track pT estimates. The weighting factors wcalo and 
wtrack are pcalo

T -dependent functions of the calorimeter- and track-
based jet mass resolutions used to optimize the combined mass 
resolution.

Track jets clustered using the anti-kt algorithm with R = 0.2
are used to aid the identification of b-hadron candidates from the 
Higgs boson decay [45]. Track jets are built from charged par-
ticle tracks with pT > 0.4 GeV and |η| < 2.5 that satisfy a set 
of hit and impact parameter criteria to minimize the impact of 
tracks from pile-up interactions, and are required to have track jet 
pT > 10 GeV, |η| < 2.5, and at least two tracks clustered in the 
track jet. Track jets are matched with large-R jets using ghost as-
sociation. The identification of b-hadrons relies on a multivariate 
tagging algorithm [46] which combines information from several 
vertexing and impact parameter tagging algorithms applied to a 
set of tracks in a region of interest around each track jet axis. The 
b-tagging requirements result in an efficiency of 77% for track jets 
containing b-hadrons, and a misidentification rate of ∼ 2% (∼ 24%) 
for light-flavour (charm) jets, as determined in a sample of sim-
ulated tt̄ events. For MC samples the tagging efficiencies are cor-
rected to match those measured in data [47].

Muons are reconstructed by combining tracks in the inner de-
tector and the muon system, and are required to satisfy “Tight” 
muon identification criteria [48]. The four-momentum of the 
closest muon candidate with pT > 4 GeV and |η| < 2.5 that is 
within 
R =

√

(
η)2 + (
φ)2 = 0.2 of a track jet is added to the 
calorimeter jet four-momentum to partially account for the en-
ergy carried by muons from semileptonic b-hadron decays. This 
muon correction results in a ∼ 5% resolution improvement for 
Higgs boson candidate jets (defined in Section 5) [49]. Electrons 
are reconstructed from inner detector and calorimeter information, 
and are required to satisfy the “Loose” likelihood selection [50].

Leptons (electrons and muons, ℓ) are also used in a “veto” to 
ensure the orthogonality of the analysis selection with respect to 

2 In this method, the large-R jet algorithm is rerun with both the four-momenta 
of tracks, modified to have infinitesimally small momentum (the “ghosts”), and all 
topological energy clusters in the event as potential constituents of jets. As a re-
sult, the presence of tracks does not alter the large-R jets already found and their 
association with specific large-R jets is determined by the jet algorithm.

other heavy V H resonance searches in non-fully hadronic final 
states. The considered leptons have pT > 7 GeV, |η| < 2.5 (2.47)
for muons (electrons), and their associated tracks must have 
|d0|/σd0 < 3 (5) and |z0 sin θ | < 0.5 mm, where d0 is the trans-
verse impact parameter with respect to the beam line, σd0 is the 
uncertainty on d0 , and z0 is the distance between the longitudinal 
position of the track along the beam line at the point where d0 is 
measured and the longitudinal position of the primary vertex. Lep-
tons are also required to satisfy an isolation criterion, whereby the 
ratio of the pT sum of all tracks with pT > 1 GeV (excluding the 
lepton’s) within a cone around the lepton (with radius dependent 
on the lepton pT) to the lepton momentum must be less than a 
pT- and |η|-dependent threshold I0 . The value of I0 is chosen such 
that a constant efficiency of 99% as a function of pT and |η| is 
obtained for leptons in events with identified Z → ℓℓ candidates.

The missing transverse momentum (�Emiss
T ) is calculated as 

the negative vectorial sum of the transverse momenta of all the 
muons, electrons, calorimeter jets with R = 0.4, and any inner-
detector tracks from the primary vertex not matched to any of 
these objects [51]. The magnitude of the �Emiss

T is denoted by Emiss
T .

5. Event selection

Events selected for this analysis must contain at least two 
large-R jets with |η| < 2.0 and invariant mass m J > 50 GeV, and 
cannot have any lepton candidate passing the veto for leptons. The 
leading and subleading pT large-R jets must have pT greater than 
450 GeV and 250 GeV, respectively. The two leading pT large-R
jets are assigned to be the Higgs and vector boson candidates, 
and the invariant mass of the individual jets is used to determine 
the boson type; the large-R jet with the larger invariant mass is 
assigned to be the Higgs boson candidate jet (H-jet), while the 
smaller invariant mass large-R jet is assigned as the vector bo-
son candidate jet (V -jet). In signal MC simulation, this procedure 
results in 99% correct assignment after the full signal region selec-
tions described below. Furthermore, the absolute value of the ra-
pidity difference, |
y12|, between the two leading pT large-R jets 
must be less than 1.6, exploiting the more central production of 
the signal compared to the multijet background. To ensure orthog-
onality with the Z H resonance search in which the Z boson decays 
to neutrinos, events are rejected if they have Emiss

T > 150 GeV and 

φ(�Emiss

T , H-jet) > 120 degrees.
The H-jet is further required to satisfy mass and b-tagging cri-

teria consistent with expectations from a Higgs boson decaying 
to bb̄ [45]. The H-jet mass, m J ,H , must satisfy 75 GeV < m J ,H <

145 GeV, which is ∼ 90% efficient for Higgs boson jets. The number 
of ghost associated b-tagged track jets is then used to catego-
rize events. The H-jets with either one or two b-tagged track jets, 
amongst the two leading pT associated track jets, are used in this 
analysis. The H-jets with one associated b-tagged track jet are not 
required to have two associated track jets. The Higgs boson tagging 
efficiency, defined with respect to jets that are within 
R = 1.0 of 
a truth Higgs boson and its decay b-hadrons, for doubly- (singly-) 
b-tagged H-jets is ∼ 40% (∼ 75%) for H-jets with pT ≈ 500 GeV 
and ∼ 25% (∼ 65%) for H-jets with pT ≈ 900 GeV [49]. The rejec-
tion factor for jets from multijet production is ∼ 600 (∼ 50) for 
double (single) tags.

The V -jet must satisfy mass and substructure criteria con-
sistent with a W - or Z -jet using a 50% efficiency working 
point, similar to the “Medium” working point in Ref. [52]. To 
be considered a W (Z ) candidate, the V -jet must have a mass 
m J ,V within a pT-dependent mass window which varies between 
m J ,V ∈ [67, 95] ([75, 107]) GeV for jets with pT ≈ 250 GeV, and 
m J ,V ∈ [60, 100] ([70, 110]) GeV for jets with pT ≈ 2500 GeV. The 
jet must also satisfy a pT-dependent D2 [53,54] selection (with 
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Table 1

Summary of event selection criteria. The selection efficiency for HVT benchmark Model B is shown for WH resonances. It is very similar for ZH
resonances.

Selection Description m = 2 TeV WH signal efficiency [%]

Large-R jet selection pT
lead > 450 GeV, pT

sublead > 250 GeV, |η| < 2.0, m J > 50 GeV 83.8
Lepton veto Remove events with leptons 83.0
Rapidity difference |
y12| < 1.6 73.3
Emiss
T veto Remove events with Emiss

T > 150 GeV and 
φ(�Emiss
T , H-jet) > 120 degrees 68.3

V /H assignment Larger mass jet is H-jet, smaller mass jet is V -jet 68.3
W /Z-tagging Mass window + D2 selection 36.3
Dijet mass m J J > 1 TeV 36.3

Signal region WH 1-tag 15.0
Signal region WH 2-tag 12.5

β = 1) which depends on whether the candidate is a W or a Z
boson, as described in Ref. [52]. The variable D2 exploits two-
and three-point energy correlation functions to tag boosted ob-
jects with two-body decay structures. The V -jet tagging efficiency 
is ∼ 50% and constant in V -jet pT , with a misidentification rate for 
jets from multijet production of ∼ 2%.

Four signal regions (SRs) are used in this analysis. They differ by 
the number of b-tagged track jets associated to the H-jet and by 
whether the V -jet passes a Z -tag or W -tag selection. The “1-tag” 
and “2-tag” SRs require exactly one and two b-tagged track jets as-
sociated to the H-jet, respectively. The 2-tag signal regions provide 
better sensitivity for resonances with masses below ∼ 2.5 TeV. 
Above 2.5 TeV the 1-tag regions provide higher sensitivity because 
the Lorentz boost of the Higgs boson is large enough to merge 
the fragmentation products of both b-quarks into a single track jet. 
Events in which the V -jet passes a Z -tag constitute the Z H signal 
regions, while events in which the V -jet passes a W -tag constitute 
the WH signal regions. While the 1-tag and 2-tag signal regions 
are orthogonal regardless of the V -jet tag, the WH and ZH selec-
tions are not orthogonal within a given b-tag category. The overlap 
between the WH and ZH selections in the signal regions is ap-
proximately 60%.

The final event requirement is that the mass of the candidate 
resonance built from the sum of the V -jet and H-jet candidate 
four-momenta, m J J , must be larger than 1 TeV. This requirement 
ensures full efficiency for the trigger and jet pT requirements for 
events passing the full selection. The full event selection can be 
found in Table 1. The expected selection efficiency for both WH

and ZH resonances decaying to qq̄(′)(bb̄ + cc̄) with a mass of 
2 (3) TeV in the HVT benchmark Model B is ∼ 30% (∼ 20%).

6. Background estimation

After the selection of 1-tag and 2-tag events, ∼ 90% of the back-
ground in the signal regions originates from multijet events. The 
remaining ∼ 10% is predominantly tt̄ with a small contribution 
from V +jets (� 1%). The multijet background is modelled directly 
from data, while other backgrounds are estimated from MC simu-
lation.

Multijet modelling starts from the same trigger and event se-
lection as described above, but the H-jet is required to have zero 
associated b-tagged track jets. This 0-tag sample, which consists of 
multijet events at the ∼ 99% level, is used to model the kinematics 
of the multijet background in the 1-tag and 2-tag SRs. To keep the 
0-tag region kinematics close to the 1- and 2-tag regions, H-jets in 
0-tag events must contain at least one (two) associated track jets 
when modelling the 1(2)-tag signal region.

The 0-tag sample is normalized to the 1-tag and 2-tag samples 
and corrected for kinematic differences with respect to the signal 
regions, as described below. These kinematic differences arise from 
the b-tagging efficiency variations as a function of pT and |η| and 

Fig. 1. Illustration of the sideband and validation regions, showing orthogonal slices 
through the space defined by the masses of the two boson candidates and the num-
ber of b-tags.

because different multijet processes, in terms of quark, gluon, and 
heavy-flavour content, contribute different fractions to the 0-, 1-, 
and 2-tag samples.

The 0-tag sample is normalized to the 1- and 2-tag samples, 
separately, using a signal-free high mass sideband of the H-jet de-
fined by 145 GeV <m J ,H < 200 GeV. This sideband (SB), illustrated 
in Fig. 1, is orthogonal to the signal region and has similar ex-
pected event yield to the signal region. The normalization of the 
multijet events is set by scaling the number of events in each re-
gion of the 0-tag sample by

µ
1(2)-tag
Multijet =

N
1(2)-tag
Multijet

N
0-tag
Multijet

=
N

1(2)-tag
data − N

1(2)-tag
tt̄

− N
1(2)-tag
V+jets

N
0-tag
data − N

0-tag
tt̄

− N
0-tag
V+jets

, (1)

where N
0/1/2-tag
data , N

0/1/2-tag
tt̄

and N
0/1/2-tag
V+jets are the numbers of 

events observed in data, and predicted from tt̄ and V +jets MC 
simulation in the 0-, 1-, or 2-tag SB samples, respectively. As the 
selection of track jets for H-jets in 0-tag events differs when mod-
elling the 1-tag and 2-tag regions (as stated above), N0-tag

Multijet differs 

between estimates of the µ1-tag
Multijet and µ2-tag

Multijet .
Kinematic corrections to the multijet background template are 

applied by reweighting events from the 0-tag sample. This is per-
formed only for the 2-tag sample, as the modelling of the multi-
jet background in the 1-tag SB and validation regions (described 
below and depicted in Fig. 1) without reweighting is observed 
to be adequate. The weights are derived in the SB region, from 
third-order polynomial fits to the ratio of the total background 
model to data in two distributions that are sensitive to kine-
matic and b-tagging efficiency differences between the 0-tag and 
2-tag samples. The variables are the track jet pT ratio, defined as 
plead
T /(plead

T + psublead
T ), and psublead

T , both using the pT distribu-
tions of the leading two pT track jets associated to the H-jet. The 
reweighting is performed using one-dimensional distributions but 
is iterated so that correlations between the two variables are taken 
into account. After each reweighting iteration, the value of µ1(2)-tag

Multijet
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Table 2

The number of events in data and predicted background events in the sideband and val-
idation regions. In the sideband, the data and the total background prediction agree by 
construction. The uncertainties are statistical only. Due to rounding the totals can differ from 
the sums of components.

2-tag 
sample

Sideband 
region

Validation region 
(Signal-region-like)

Validation region 
(Sideband-region-like)

No D2 With D2 No D2 With D2

Multijet 1410±10 13700±20 875±5 7150±10 455±5
tt̄ 220±10 115±10 12±3 250±15 26±4
V +jets 35±15 250±30 14±6 30±10 3±3

Total 1670±20 14050±35 900±8 7430±20 485±6

Data 1667 15013 934 7200 426

1-tag 
sample

Sideband 
region

Validation region 
(Signal-region-like)

Validation region 
(Sideband-region-like)

No D2 With D2 No D2 With D2

Multijet 12350±50 138500±160 8820±40 62600±100 3970±30
tt̄ 2200±30 1030±30 115±7 1700±35 210±10
V +jets 300±40 1480±90 120±25 420±50 35±13

Total 15000±75 140900±190 9050±50 64700±120 4200±30

Data 14973 135131 8685 66896 4418

Fig. 2. The m J J distribution in the signal-region-like validation region in the (left) 2-tag (right) 1-tag samples, compared to the predicted background. The uncertainty band 
corresponds to the statistical uncertainty on the multijet model.

is recomputed to ensure that the normalization is kept fixed. No 
explicit uncertainties are associated with this reweighting as these 
are determined from comparison with validation regions, as de-
scribed below.

Due to the small number of events in the background template 
in the high m J J tail, the backgrounds are modelled by fitting be-
tween 1.2 and 4 TeV with power-law and exponential functions. 
The multijet background in m J J is modelled using the functional 
form

fMultijet(x) = pa(1 − x)pb (1+ x)pcx, (2)

while the merged tt̄ and V +jets backgrounds are modelled using 
the functional forms

f
1-tag
Other(x) = pd(1− x)pe xp f , and (3)

f
2-tag
Other(x) = pge

−phx (4)

for the 1-tag and 2-tag samples respectively. In these functional 
forms, x =m J J /

√
s, and pa through ph are parameters determined 

by the fit. These functional forms are used as they can model 
changes in the power-law behaviour of the respective backgrounds 

between high and low masses. The exponential function is used 
for the 2-tag tt̄ and V +jets samples because it was found to model 
the tail of the distribution well and because a fit to the small 
statistics of the sample could not constrain a function with more 
parameters. Fits are performed separately for the 1-tag and 2-tag 
background estimates, and separately for each background.

The background model is validated in the two regions denoted 
by VR-SR and VR-SB in Fig. 1, each also with two subregions. In 
all of these, the V -jet is required to have mass 50 GeV < m J ,V <

70 GeV but the D2 selection is only applied in one of the sub-
regions. For the signal-region-like validation regions (VR-SR) the 
H-jet selection is unchanged, and for the sideband-like validation 
regions (VR-SB) the H-jet is required to have mass 145 GeV <

m J ,H < 200 GeV. Both validation regions are kinematically similar 
to the signal regions but orthogonal to them (and to each other).

Table 2 compares the observed data yields in the validation 
regions with the corresponding background estimates. The differ-
ences are used as estimators of the background normalization un-
certainties, as described in Section 7. The modelling of the m J J

distribution in the signal-region-like validation region is shown in 
Fig. 2 for the 1-tag and 2-tag samples. The data are well described 
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Table 3

Summary of the main post-fit systematic uncertainties (expressed as a percentage of the yield) in the background 
and signal event yields in the 1-tag and 2-tag signal regions. The values for the jet energy scale and b-tagging effi-
ciency uncertainties represent the sum in quadrature of the values from the dominant components. The jet energy 
scale, jet mass resolution, b-tagging efficiency and luminosity do not apply to the multijet contribution, which is de-
termined from data. Uncertainties are provided for a resonance mass of 2 TeV in the context of the HVT Model B, for 
both V ′ → ZH and V ′ → WH resonances.

Source ZH 2-tag yield variation [%] ZH 1-tag yield variation [%]

Background HVT Model B Z ′ (2 TeV) Background HVT Model B Z ′ (2 TeV)

Luminosity 0.2 3.2 0.3 3.2
Jet energy scale 2.2 7.0 1.2 7.4
Jet mass resolution 0.6 9.5 0.4 8.5
b-tagging 1.6 10 0.5 15
tt̄ normalization 1.8 – 2.5 –

Multijet normalization 4.7 – 2.8 –

Source WH 2-tag yield variation [%] WH 1-tag yield variation [%]

Background HVT Model B W ′ (2 TeV) Background HVT Model B W ′ (2 TeV)

Luminosity 0.2 3.2 0.3 3.2
Jet energy scale 2.4 5.7 0.8 5.6
Jet mass resolution 1.2 11 0.3 10
b-tagging 1.6 10 0.4 15
tt̄ normalization 1.9 – 2.5 –

Multijet normalization 4.3 – 2.8 –

by the background model. Other kinematic variables are generally 
well described.

7. Systematic uncertainties

The preliminary uncertainty on the combined 2015 and 2016 
integrated luminosity is 3.2%. It is derived, following a methodol-
ogy similar to that detailed in Ref. [55], from a preliminary cali-
bration of the luminosity scale using x–y beam-separation scans 
performed in 2015 and 2016.

Experimental systematic uncertainties affect the signal as well 
as the tt̄ and V +jets backgrounds estimated from MC simulation. 
The systematic uncertainties related to the scales of the large-R jet 
pT , mass and D2 are of the order of 2%, 5% and 3%, respectively. 
They are derived following the technique described in Ref. [39]. 
The impacts of the uncertainties on the resolutions of each of 
these large-R jet observables are evaluated by smearing the jet ob-
servable according to the systematic uncertainties of the resolution 
measurement [39,52]. A 2% absolute uncertainty is assigned to the 
large-R jet pT , and to the mass and D2 resolutions relative 20% and 
15% uncertainties are assigned, respectively. The uncertainty in the 
b-tagging efficiency for track jets is based on the uncertainty in 
the measured tagging efficiency for b-jets in data following the 
methodology used in Ref. [47]. This is measured as a function 
of b-jet pT and ranges between 2% and 8% for track jets with 
pT < 250 GeV. For track jets with pT > 250 GeV the uncertainty 
in the tagging efficiencies is extrapolated using MC simulation [47]
and is approximately 9% for track jets with pT > 400 GeV. A 30% 
normalization uncertainty is applied to the tt̄ background based on 
the ATLAS tt̄ differential cross-section measurement [56]. Due to 
the small contribution of the V +jets background, no corresponding 
uncertainty is considered.

Systematic uncertainties in the normalization and shape of the 
data-based multijet background model are assessed from the val-
idation regions. The background normalization predictions in the 
validation regions agree with the observed data to within ±5%
in the 1-tag sample and ±13% in the 2-tag sample. These dif-
ferences are taken as the uncertainties in the predicted multijet 
yield. The shape uncertainty is derived by taking the ratio of the 
predicted background to the observed data after fitting both to a 
power law. This is done separately for the 1-tag and 2-tag samples. 
The larger of the observed shape differences in the VR-SR and VR-
SB is taken as the shape uncertainty. Separate shape uncertainties 

are estimated for m J J above and below 2 TeV in order to allow 
for independent shape variations in the bulk and tail of the m J J

distribution in the final statistical analysis.
An additional uncertainty in the shape of the multijet back-

ground prediction is assigned by fitting a variety of empirical func-
tions designed to model power-law behaviour to the 0-tag m J J

distribution, as described in Ref. [57]. The largest difference be-
tween the nominal and alternative fit functions is taken as a sys-
tematic uncertainty. Similarly, the fit range of the nominal power-
law function is varied, and the largest difference between the nom-
inal and alternative fit ranges is taken as a systematic uncertainty.

The impact of the main systematic uncertainties on event yields 
is summarized in Table 3.

8. Results

The results are interpreted using the statistical procedure de-
scribed in Ref. [1] and references therein. A test statistic based on 
the profile likelihood ratio [58] is used to test hypothesized values 
of µ, the global signal strength factor, separately for each model 
considered. The statistical analysis described below is performed 
using the m J J distribution of the data observed in the signal re-
gions. The systematic uncertainties are modelled with Gaussian or 
log-normal constraint terms (nuisance parameters) in the defini-
tion of the likelihood function. The data distributions from the 
1-tag and 2-tag signal regions are used in the fit simultaneously, 
treating systematic uncertainties on the luminosity, jet energy 
scale, jet energy resolution, jet mass resolution and b-tagging as 
fully correlated between the two signal regions. Both the multijet 
normalization and shape uncertainties are treated as independent 
between the two signal regions. In addition, the multijet shape 
uncertainties for m J J above and below 2 TeV are treated as in-
dependent. When performing the fit, the nuisance parameters are 
allowed to vary within their constraints to maximize the likeli-
hood. As a result of the fit, the multijet shape uncertainties are 
significantly reduced. With the jet mass resolution, jet energy scale 
and multijet normalization, they have the largest impact on the 
search sensitivity. Fits in the W H and ZH signal regions are per-
formed separately. The pre- and post-fit m J J distributions in the 
signal regions are shown in Fig. 3.

The number of background events in the 1-tag and 2-tag ZH
and WH signal regions after the fit, the number of events ob-
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Fig. 3. The m J J distributions in the V H signal regions for data (points) and background estimate (histograms) after the likelihood fit for events in the (left) 2-tag and (right) 
1-tag categories. The pre-fit background expectation is given by the blue dashed line. The expected signal distributions (multiplied by 50) for a HVT benchmark Model B V ′

boson with 2 TeV mass are also shown. In the data/prediction ratio plots, arrows indicate off-scale points.

Table 4

The number of predicted background events in the V H

1-tag and 2-tag signal regions after the fit, compared to the 
data. The “Other backgrounds” entries include both tt̄ and 
V +jets. Uncertainties correspond to the total uncertainties 
in the predicted event yields, and are smaller for the total 
than for the individual contributions because the latter are 
anti-correlated. The yields for m = 2 TeV V ′ bosons decay-
ing to V H in Model B are also given. Due to rounding the 
totals can differ from the sums of components.

ZH 2-tag ZH 1-tag

Multijet 1440±60 13770±310
Other backgrounds 135±45 1350±270

Total backgrounds 1575±40 15120±130
Data 1574 15112

Model B, m = 2 TeV 25±7 29±10

WH 2-tag WH 1-tag

Multijet 1525±65 13900±290
Other backgrounds 110±45 1310±260

Total backgrounds 1635±40 15220±120
Data 1646 15212

Model B, m = 2 TeV 51±10 62±16

served in the data, and the predicted yield for a potential signal 
are reported in Table 4. The total data and background yields in 
each region are constrained to agree by the fit. There is a ∼ 60%
overlap of data between the W H and ZH selections for both the 
2-tag and 1-tag signal regions, and this fraction is approximately 
constant as a function of m J J . This overlap is similar when exam-
ining the signal MC simulation, for instance for the 2 TeV Z ′ signal 

MC approximately ∼ 60% of events pass both the W H and Z H se-
lections.

8.1. Statistical analysis

To determine if there are any statistically significant local ex-
cesses in the data, a test of the background-only hypothesis 
(µ = 0) is performed at each signal mass point. The significance 
of an excess is quantified using the local p0 value, the probabil-
ity that the background could produce a fluctuation greater than 
or equal to the excess observed in data. A global p0 is also calcu-
lated for the most significant discrepancy, using background-only 
pseudo-experiments to derive a correction for the look-elsewhere 
effect across the mass range tested [59]. The most significant de-
viation from the background-only hypothesis is in the ZH signal 
region, occurring at m J J ≈ 3.0 TeV with a local significance of 
3.3 σ . The global significance of this excess is 2.1 σ , which is 
computed considering the full range of Z ′ masses examined for 
potential signals from 1.1 TeV to 3.8 TeV.

The data are used to set upper limits on the cross-sections for 
the different benchmark signal processes. Exclusion limits are com-
puted using the CLs method [60], with a value of µ regarded as 
excluded at the 95% CL when CLs is less than 5%.

Fig. 4 shows the 95% CL cross-section upper limits on HVT 
resonances for both Model A and Model B in the WH and ZH
signal regions for masses between 1.1 and 3.8 TeV. Limits on 
σ (pp → V ′ → V H) × B(H → (bb̄ + cc̄))3 are set in the range of 

3 The signal samples contain Higgs boson decays to bb̄ and cc̄, but due to the 
branching ratios and b-tagging requirements the sensitivity is dominated by H →
bb̄.
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Fig. 4. The observed and expected cross-section upper limits at the 95% confidence level for σ (pp → V ′ → V H) ×B(H → (bb̄+ cc̄)), assuming SM branching ratios, in Model A

and Model B in the (left) ZH and (right) WH signal regions. The red and magenta curves show the predicted cross-sections as a function of resonance mass for the models 
considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Limits in the g2cF /gV vs. gV cH plane for several resonance masses for the (left) ZH and (right) WH channels. Areas outside the curves are excluded. The benchmark 
model points are also shown. Coupling values for which the resonance width Ŵ/m > 5% are shown in grey, as these regions may not be well described by the narrow width 
approximation.

83 fb to 1.6 fb and 77 fb to 1.1 fb in the WH and Z H signal re-
gions, respectively. These cross-section limits are translated into 
excluded Model B signal mass ranges of 1.10–2.50 TeV for WH res-
onances and 1.10–2.60 TeV for ZH resonances. The corresponding 
excluded mass ranges for Model A are 1.10–2.40 TeV for WH reso-
nances, and 1.10–1.48 TeV and 1.70–2.35 TeV for ZH resonances.

Fig. 5 shows the 95% CL limits in the g2cF /gV vs. gV cH plane 
for several resonance masses for both the W H and ZH channels. 
These limits are derived by rescaling the signal cross-sections to 
the values predicted for each point in the (g2cF /gV , gV cH ) plane 
and comparing with the observed cross-section upper limit. As the 
resonance width is not altered in this rescaling, areas for which 
the resonance width Ŵ/m > 5% are shown in grey. These may not 
be well described by the narrow width approximation assumed in 
the rescaling.

9. Summary

A search for resonances decaying to a W or Z boson and a 
Higgs boson has been carried out in the qq̄(′)bb̄ channel with 
36.1 fb−1 of pp collision data collected by ATLAS during the 2015 
and 2016 runs of the LHC at 

√
s = 13 TeV. Both the vector boson 

and Higgs boson candidates are reconstructed using large-radius 

jets, and jet mass and substructure observables are used to tag 
W , Z and Higgs boson candidates and suppress the dominant 
multijet background. In addition, small-radius b-tagged track jets 
ghost-associated to the large-R jets are exploited to select the 
Higgs boson candidate jet. The data are in agreement with the 
Standard Model expectations, with the largest excess observed at 
m J J ≈ 3.0 TeV in the ZH channel with a local significance of 3.3 σ . 
The global significance of this excess is 2.1 σ . Upper limits on the 
production cross-section times the Higgs boson branching ratio to 
the bb̄ final state are set for resonance masses in the range be-
tween 1.1 and 3.8 TeV with values ranging from 83 fb to 1.6 fb 
and 77 fb to 1.1 fb (at 95% CL) for W H and ZH resonances, re-
spectively. The corresponding excluded heavy vector triplet Model B
signal mass ranges are 1.1–2.5 TeV for W H resonances, and 1.1–2.6 
TeV for ZH resonances.
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