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Abstract

For k < n, let E(2n,k) be the sum of all multiple zeta values
with even arguments whose weight is 2n and whose depth is k. Of
course E(2n,1) is the value ((2n) of the Riemann zeta function at
2n, and it is well known that E(2n,2) = 3((2n). Recently Z. Shen
and T. Cai gave formulas for F(2n,3) and E(2n,4) in terms of {(2n)
and ((2)¢(2n — 2). We give two formulas for E(2n, k), both valid
for arbitrary & < n, one of which generalizes the Shen-Cai results;
by comparing the two we obtain a Bernoulli-number identity. We also
give explicit generating functions for the numbers E(2n, k) and for the
analogous numbers E*(2n, k) defined using multiple zeta-star values
of even arguments.
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financial support for travel, and the referee for urging him to include multiple zeta-star
values (which led to Corollary 1).



1 Introduction and Statement of Results

For positive integers iy, ..., 4 with 7; > 1, we define the multiple zeta value
C(il, e ,Zk) by

1
Ciry e oo yir) = Z TR (1)
ny>->nE>1 01

The multiple zeta value (1) is said to have weight i; 4 - - - 4 i; and depth k.
Many remarkable identities have been proved about these numbers, but in
this note we will concentrate on the case where the i; are even integers. Let
E(2n, k) be the sum of all the multiple zeta values of even-integer arguments
having weight 2n and depth k, i.e.,

E@nk)= > ... i)

(ST i) even
i1+ +ip=2n

Of course 1B (972

(_ ) 2n< 7T) ’ (2)
2(2n)!

where By, is the 2nth Bernoulli number, by the classical formula of Euler.

Euler also studied double zeta values (i.e., multiple zeta values of depth 2)
and in his paper [3] gave two identities which read

E(2n,1) = ((2n) =

2n—1

> (-1)¢tis2n — i) = 5¢(20)
> clis2n—i) = 2n)

in modern notation. From these it follows that
3
E(2n,2) = ZC(Qn),

though Gangl, Kaneko and Zagier [4] seem to be the first to have pointed it
out in print. Recently Shen and Cai [11] proved the formulas

B(2n,3) = 2¢(20) = 1¢(2)C(2n ~2), n >3 (3)

B(2n,4) = 2¢(2n) ~ —-((2)((2n—2), n >4 (4)



Identity (3) was also proved by Machide [10] using a different method.
This begs the question whether there is a general formula of this type for
E(2n, k). The pattern

3 35 5 35 7 35

4 46 8 46 8 64
of the leading coefficients makes one curious. In fact, the general result is as
follows.

Theorem 1. For k < n,

1 2k -1
125

1 2%k —2j—1 . |
B ; 22h=3(25 + 1)32].( e )C(QJ)C(QTL — 2j).

The next two cases after (4) are

B(2n,5) = 150(2n) — ()~ 2) + SC(A)(20 — 4)
B(2n,6) = 2 ((2n) — 21 C(2)C(2n —2) + S C(4) (20 — 4).

We prove Theorem 1 in §3 below, using the generating function

F(t,s) =1+ Z E(2n, k)t"s".

n>k>1
In §2 we establish the following explicit formula.

Theorem 2.
sin(my/1 — sv/1)
V1—s Sin(ﬂ'\/%) '
Our proof uses symmetric functions. We define a homomorphism 3 :
Sym — R, where Sym is the algebra of symmetric functions, and a family

N, € Sym such that 3 sends N, to E(2n,k). We then obtain a formula
for the generating functions

F(t,s) =

F(t,s) =1+ > Nt"s" € Syml[t, s]]

n>k>1



and apply 3 to get Theorem 2.
Along with the multiple zeta values there are the multiple zeta-star values

) . 1
C(llw--ﬂk): Z i’
ni>->np>1 00 T Tk

where the strict inequalities in equation (1) are replaced by >. These coincide
with multiple zeta values for depth 1, and for greater depths they are simply
sums of multiple zeta values, e.g.,

¢*(6,2,4) = ¢(6,2,4) + ¢(8,4) + ((6,6) + ¢(12).

Conversely, multiple zeta values are sums of multiple zeta-star values with
signs alternating by depth, e.g.,

€(6,2,4) = (*(6,2,4) — (*(8,4) — ¢*(6,6) + ¢*(12).

For k < n we can define E*(2n, k) as the sum of all multiple zeta-star values
with even arguments having weight 2n and depth k. The generating function

F(t,s) =1+ Y E*(2nk)t"s"

n>k>1
turns out to have a remarkably simple relation to F'(¢, s), as we show in §2.

Corollary 1. The generating functions F(t,s) and F*(t,s) are related by
F*(t,s) = F(t,—s)™ "

From the form of F(¢,s) we show that it satisfies a partial differential
equation (Proposition 1 below), which is equivalent to a recurrence for the
N, . From the latter we obtain a formula for the N, ; in terms of complete
and elementary symmetric functions, to which 3 can be applied to give the
following alternative formula for F(2n, k).

Theorem 3. For k < n,

(= S =i (201 g
E(2n, k) = Gn i) Z:; L 5 )20 1) By;.



Note that the sum given by Theorem 3 has n—k+1 terms, while that given
by Theorem 1 has [#1] 41 terms. Yet another explicit formula for E(2n, k)
can be obtained by setting d = 1 in Theorem 7.1 of Komori, Matsumoto and
Tsumura [8]. That formula expresses E(2n, k) as a sum over partitions of k,
and it is not immediately clear how it relates to our two formulas.

Comparison of Theorems 1 and 3 establishes the following Bernoulli-
number identity.

Theorem 4. For k < n,

|45

2 2k — 21— 1\ (2n+1
Z . BQn—2i:
— k 21+ 1
n—k
" n—1u\({2n+1 i
22k 2 Z( >( o )(22 1_1>B27,

=0

It is interesting to contrast this result with the Gessel-Viennot identity (see
[2, Theorem 4.2]) valid on the complementary range:

|45

) fok —2i -1\ (20 + 1 on+1 (2 — 2n
Bopos = 2 .
Z( k )(22’+1) 2= Ty ( k ) k>n ()

=0

Note that the right-hand side of equation (5) is zero unless k > 2n.

2 Symmetric Functions

We think of Sym as the subring of Q[[z1, xs,...]] consisting of those formal
power series of bounded degree that are invariant under permutations of the
x;. A useful reference is the first chapter of Macdonald [9]. We denote the
elementary, complete, and power-sum symmetric functions of degree ¢ by e;,



h;, and p; respectively. They have associated generating functions

E(t) = i e;t! = ﬁ(l + ta;)

oo

0 =3t =1 5 _1m — B(—1)"!

i=1

S
P(t) =Z;pjt”_ =2 1—te; H((t))'

i=1

As explained in [6] and in greater detail in [7], there is a homomorphism ¢ :
Sym® — R, where Sym? is the subalgebra of Sym generated by ps, ps, pa, - . - ,
such that ((p;) is the value (i) of the Riemann zeta function at i, for i > 2
(in [6, 7] this homomorphism is extended to all of Sym, but we do not need
the extension here). Let D : Sym — Sym be the degree-doubling map that
sends z; to 2. Then D(Sym) C Sym?, so the composition 3 = (D is defined
on all of Sym. (Alternatively, we can simply think of 3 as sending z; to 1/4%:
see [9, Ch. I, §2, ex. 21].) Note that 3(p;) = ((2i¢) € R. Further, 3 sends the
monomial symmetric function m;, ; to the symmetrized sum of multiple
zeta values

.....

1
, , C(20501), 205(2)s - - - 200(k) ),
| Tso(iq, ..., i) ; (Rlota), 2iota ®)
oESK
where Sy is the symmetric group on k letters and Iso(iy,. .., ) is the sub-
group of Sy, that fixes (i1, ...,4x) under the obvious action.

Now let N, ; be the sum of all the monomial symmetric functions corre-
sponding to partitions of n having length k. Of course N,, , = 0 unless k£ < n,
and Ny = e;. Then 3 sends N, to E(2n,k). Also, if we define (as in the
introduction)

F(t,s) =1+ Y  Nyst"s",
n>k>1
then 3 sends JF(t, s) to the generating function F (¢, s). We have the following
simple description of F(t, s).

Lemma 1. F(t,s) = E((s — 1)t)H(t).



Proof. Evidently JF(t, s) has the formal factorization

d 14 (s — Dt
H(l + stw; + st?ri 4 ---) = H% =E((s — 1)t)H(t).
i=1 i=1 v

Proof of Theorem 2. Using the well-known formula for ((2,2,...,2) [5, Cor.
2.3],

3e) =C2.2,...,2) = (25—:1)‘ (6)
Hence : -y
3(6() = T2,
and the image of H(t) = E(—t)~! is
L om/=t m/t
SH®) = sinh(my/—t)  sin(mv/1)’
Thus from Lemma 1 F(t,s) = 3(F(t,s)) is
B _sinh(my/(s — 1)t) w/t  sin(my/(1— s)t)
S(E((s —UDH D) = m/(s— 1t sin(myt) V1—ssin(myt)
0

Taking limits as s — 1 in Theorem 2, we obtain

™/t
sin 77\/1_5

and so, taking the coefficient of ¢, the following result.

F(t,1) =

Corollary 2. For alln > 1,

S B k) = 22 12;;)?”_ Banm™ _ 91— 91=2)¢ (2m).




Remark. This result was obtained previously by Aoki, Kombu and Ohno
[1], who stated it in the language of multiple zeta-star values; since

¢*(2,...,2)=E@2n,n)+ E2n,n— 1)+ --- + E(2n, 1), (7)

n

Corollary 2 can be recognized as [1, equation (4.6)]. In fact, using Euler’s
infinite product for sine, one sees that

e ) -1
F(z,1) =] <1—;—2> =14+ ¢'(2,...,2)2™"
m=1 n

n>1

Recall that we defined E*(2n, k) as the sum of all multiple zeta-star values
with even arguments having depth k& and weight 2n. The left-hand side of
equation (7) is E*(2n,n), and that equation generalizes as follows.

Lemma 2. Forn >k > 1,

E*(2n, k) = zk: (Z B ?) E(2n, j).

Jj=1

Proof. Let I = (iy,...,ix) be a composition (i.e., ordered partition) of n. We
can think of I as specified by placing k£ — 1 dividers within a row of n dots,
which makes it clear that there are (Zj) compositions of n with k£ parts. If
we associate to I the multiple zeta and multiple star zeta values

C(2I) = C(2iy,...,2i), CH2D) = (20, ..., 2i),

of even values, then (*(2/) = ), ;((2J), where > is the partial order
on compositions given by refinement, i.e., I = J if J can be obtained by
combining adjacent parts of I; in terms of the dividers-in-row-of-dots picture,
J is obtained by removing some dividers from I.

Now E*(2n, k) is the sum of all (*(2/) with I having k parts. Write each
of these as a sum of multiple zeta values. Then the coefficient of ((2.J), where
J has j < k parts, is the number of distinct compositions I with k parts such
that J =< I; this corresponds to the number of ways to insert k£ — j additional
dividers into J. Since there are n — 1 — (j — 1) = n — j places to put them,
this number is (Z:j) O



Proof of Corollary 1. Using Lemma 2 and Theorem 2,

k :
F*(t,s) =1+ Z E*(2n, k)t"s* =1 + Z Z <Z:j) E(2n, j)t"s*

n>k>1 n>k>1 j=1
n—j .
=1+ ) EQ@2nj))_ (n . ])t"sj“ =14+ Y EQ@njt"s'(1+s)"7
n>j>1 i=0 n>j>1

T— = sin(my/t(1+5))  sin(my/(1+ s)t)
1
F(t,—s)

]

Another consequence of Lemma 1 is the following partial differential equa-
tion.

Proposition 1.

t%—f(t, s)+ (1 — s)g(t, s) = tP(t)F(t, 9).

Proof. From Lemma 1 we have

X 0.5) = (s = DE((s — DNH() + Bl(s ~ DOH'()

Z_f(t, s)=tE'((s — 1)t)H(t)

from which the conclusion follows. O
Now examine the coefficient of ¢"s* in Proposition 1 to get the following.

Proposition 2. Forn >k +1,
P1Nn—1 g+ D2Np—og + -+ Pk Neg = (0 — k)Npio + (B + 1) Ny o1

It is also possible to prove this result directly via a counting argument like
that used to prove the lemma of [7, p. 16].

The preceding result allows us to write N, , explicitly in terms of complete
and elementary symmetric functions as follows.

8



Lemma 3. Forr > 0,

r

Mk +1
Niyrg = Z(—l)l( ; )hri6k+i-

1=0

Proof. We use induction on r, the result being evident for » = 0. Proposition
2 gives

r+1

ZI%NHTH—M =(r+1)Nesrs1 o+ (K + 1) Npsri1 o1,
=1

which after application of the induction hypothesis becomes

il
Z Z 1)/ (k j ]) hrp1—imjNiyjpts =

(r+ D Ngyrprp + (K +1) i (k +]1. - j) P N 14 k4145 -
j=0
The latter equation can be rewritten
i(—l) (kjj>Nk+] k+j TJFZI_JPZ hypgi—ioj =
j=0 i=1
(r + ) Negrirh — (K +1) i(—l)j (f j i) R 41— Nkt

j=1

Now the inner sum on the left-hand side is (41— j)h,41_; by the recurrence
relating the complete and power-sum symmetric functions, so we have

(r + 1) Nigrs16 — (1 + 1) Ny phpq =
r+1 . .

; [k+ k +
Z(_l)]hrJrlijkJrj,kJrj ((7” +1— j)( ; j) +(k+1) (j B i)) :
=1

and the conclusion follows after the observation that (k + 1) (k+] ) =17 ( )
O



Proof of Theorem 3. Rewrite Lemma 3 in the form

n—k .
n—1 :
Nn,k - Z ( k )(_1>n_k_2hien—i

i=0
and apply the homomorphism 3, using equation (6) and
2(221‘—1 _ 1)(_1>i—132i7r2
(2i)!

3(hi) =

3 Proof of Theorems 1 and 4

From the introduction we recall the statement of Theorem 1:

1 (2k—1
E(Qn,k)—m( 1 >C(2n)
155 |
1 2% —2j —1\ .. |
R ; 22k‘3(2j+1)32j( I )C(QJ)C(QW—QJ).

We note that Euler’s formula (2) can be used to write the result in the
alternative form

125

Bk — 3 (17 ¢(2n — 2j) (2k—2j— 1) )

o 222(25 4 1) k

which avoids mention of Bernoulli numbers.
We now expand out the generating function F'(¢,s). We have

1
F(t,s) = in(mvtv/1 —
(t,s) 1—SSin7T\/I_fSIH(7T s)
1) m2it ( 1 Y .
— Gr(
SlIl’/T\/_Z (27 +1) ZS w(t
where )
1)i 7% ¢
Gr(t) = (1)~ ( > 9
() = sm7T\/—Z (25 + 1)! )

10



Then Theorem 1 is equivalent to the statement that

1

. 1)ir2¢(2n —25) (2k — 25 — 1
Zt Z 22k 25— 2(2]_|_1) ( k >

n>k 7=0

for all k. We can write the latter sum as

1534)

—472t)d 2k —-25—1 N i
Z 221@(2(;4)_1)!( kj ) Z ¢(2n —25)t" 7 —
=0

n>j+1
Bl , k—1
(—4m?t)7 (Zk: —2j — 1)
_— (2n — 25)t"" I =
Y smas T > <(2n—2j)
= 22y + ) et

L554)

%(1 — mV/t cot /) 2::

< 2%-2(25 + 1)

(—4rn?t)? (Qk — zj — 1) B

1554

21\j o k—1 .
Z% —2%(__2?;]21)!(% 2‘7 1) S @ -2, (10)

n=j+1

where we have used the generating function
1 o0
51— mtcot mVt) = ; C(20)t°

Note that the last sum in (10) is a polynomial that cancels exactly those
terms in

|45

%(1 — mV/t cot m/t) Z

(—4m2t)!  [(2k—2j—1
sl ) w

k

of degree less than k. Thus, to prove Theorem 1 it suffices to show that
G (t) = terms of degree > k in expression (11).
From equation (9) it is evident that
T/t ' (—t)* . d_k (sinwﬁ)
sinmy/t k! dt* Tt .

We use this to obtain an explicit formula for G(t).

Gi(t) =

11



Lemma 4. For k > 0,
Gr(t) = Py(mt)mv/t cot v/t 4+ Qu(mt),
where Py, Q. are polynomials defined by
(—4x)’ 2k —25—1
P = — - 7
o)== 2 22h-1(2j 1 1)! k

=0

(—4z) (2k —2j
22k(29)! k '
Proof. In view of equation (12), the conclusion is equivalent to

B = (=DFEIE* Py (7?t) cos v/t + (=DFEIEFQu (7%t £ (1),

where f(t) = sinwv/t/m/t. Differentiating, one sees that the polynomials P,
and @)y are determined by the recurrence

15)

J=0

(k -+ 1)Pia(x) = kPu(r) — 2PL(x) — 5 Qu(a)

2k+1 x
(k4 1)Qur(e) = 7= Qul) — @) + 5 Aela)
together with the initial conditions Py(x) = 0, Qo(z) = 1. The recurrence
and initial conditions are satisfied by the explicit formulas above. O

Proof of Theorem 1. Using Lemma 4, we have

h) | .
: —4r?t) 2k—-25—-1
Gk(t):— Z m( L )7T tCOtﬂ'\/z
j=0 J

L5]

LN (AT (2 =27\
R\ K

ISES

<

|45

%(1 — mV/t cot m/t) Z

j=0

(—Ar2t)d (Qk —2j — 1)

22k=2(25 4+ 1)! k
+ terms of degree < k,

and this completes the proof. ]

12



Proof of Theorem 3. Using Theorem 1 in the form of equation (8), eliminate
¢(2n — 27) using Euler’s formula (2) and then compare with Theorem 3 to
get

1534]

5 (—=1)" 172 By, o; 2k —2j — 1\
22k=2n=1(2p — 24)1(25 + 1)! k B

=0
n—k .
(—1)n—k=lg2n n—1i\(2n+1 0i 1
(2n+1)! 2; k o)A~ DB

Now multiply both sides by (—1)""122¢=2n=17=27(2p + 1)! and rewrite the
factorials on the left-hand side as a binomial coefficient. O
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