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Abstract We present a first-principle computation of the

mass distribution of jets which have undergone the groom-

ing procedure known as Soft Drop. This calculation includes

the resummation of the large logarithms of the jet mass over

its transverse momentum, up to next-to-logarithmic accu-

racy, matched to exact fixed-order results at next-to-leading

order. We also include non-perturbative corrections obtained

from Monte-Carlo simulations and discuss analytic expres-

sions for hadronisation and Underlying Event effects.

Introduction. The study of jets at the Large Hadron Col-

lider (LHC) has recently taken a new turn with new sub-

structure observables [1, 2] amenable to precise theory cal-

culations [3–5], including genuine theory uncertainty bands,

and corresponding experimental measurements from both

the CMS [6] and ATLAS [7] collaborations. The substruc-

ture techniques we concentrate on are usually referred to as

grooming and they aim to reduce sensitivity to non-perturba-

tive corrections and pileup.

A first series of studies has focused on the jet mass after

applying the (modified) MassDrop Tagger (mMDT) [1, 8]

in dijet events, as measured by the CMS collaboration [6].

On the theory side, the description of this observable re-

quires to match a resummed calculation, important in the

small-mass region, to fixed-order results, which are impor-

tant for large masses. The former are obtained analytically,

including to all orders terms enhanced by the large loga-

rithms of p2
t /m2 with pt the jet transverse momentum and

m the (groomed) jet mass. The latter is obtained from fixed-

order Monte-Carlo simulations. To date, two theory calcu-

lations are available: a SCET-based next-to-leading loga-

rithmic (NLL) resummation in the small zcut limit, matched

to leading order (LO) results [4], and our previous study
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matching a leading logarithmic resummation, including fi-

nite (but small) zcut effects, to next-to-leading order results [5].

Comparing both predictions, we see a small NLL effect at

small mass and non-negligible NLO corrections at large mass.

The goal of the present letter is to extend our mMDT

study from Ref. [5] to the case of Soft Drop [2], i.e. allowing

for a non-zero value of the angular exponent β . When β 6= 0,

the logarithmic counting differs from the mMDT case, es-

sentially because Soft Drop retains soft-collinear radiation,

which is always groomed away by mMDT. In this case, the

SCET-based calculation from Ref. [4] reaches NNLL accu-

racy and it is matched, in the dijet case, to LO fixed-order

results. Here, we present the results of a NLL resummation

matched to NLO fixed-order accuracy.

After a brief review of the Soft Drop procedure, we will

present our results first in the resummation region, then match-

ed to fixed-order. We then provide an analytic estimate of

non-perturbative corrections, extending to the Soft Drop case

the analytic results obtained in Ref. [1] for the mMDT. We

conclude by providing and discussing our final predictions,

including the theory uncertainty bands. These have already

been compared to experimental data in [7], where a good

agreement was found, especially in the perturbative region.

Soft Drop. For a given jet, the Soft Drop procedure first re-

clusters the constituents of the jet with the Cambridge/Aachen

algorithm [9] into a single jet j. Starting from j, it then ap-

plies the following iterative procedure:

1. undo the last clustering step j → j1, j2, with pt1 > pt2.

2. stop the procedure if the Soft Drop condition is met:

min(pt1, pt2)

pt1 + pt2
> zcut

(θ12

R

)β
, (1)

where zcut and β are free parameters, θ 2
12 = ∆y2

12+∆φ 2
12

and R the original jet radius.

ar
X

iv
:1

7
1

2
.0

5
1

0
5

v
1

  
[h

ep
-p

h
] 

 1
4

 D
ec

 2
0

1
7



2

3. otherwise, set j = j1 and go back to 1, or stop if j1 has

no further substructure.

The limit β → 0 corresponds to the mMDT.

NLL resummation. We consider the cumulative cross-section

for the ratio m2/(ptR)
2 to be smaller than some value ρ , in-

tegrated over the O(α2
s ) matrix element for the Born-level

production of 2 jets, in a given pt bin:

ΣNLL(ρ; pt1, pt2) =
∫ pt2

pt1

d pt ∑
i

dσ
(i)
jet,LO

d pt

e−Ri(ρ)−γE R′
i(ρ)

Γ (1+R′
i(ρ))

, (2)

where we have separated contributions from different flavour

channels, R′
i is the derivative of Ri wrt log(1/ρ) and the ra-

diator Ri is given by

Ri(ρ) =
Ci

2παsβ
2
0

{

[

W (1−λB)−
W (1−λc)

1+β
−2W (1−λ1)

+
2+β

1+β
W (1−λ2)

]

−
αsK

2π

[

log(1−λB)−
log(1−λc)

1+β

+
2+β

1+β
log(1−λ2)−2log(1−λ1)

]

+
αsβ1

β0

[

V (1−λB)

−
V (1−λc)

1+β
−2V (1−λ1)+

2+β

1+β
V (1−λ2)

]

}

, (3)

where

λc = 2αsβ0 log(1/zcut), λρ = 2αsβ0 log(1/ρ), (4)

λ1 =
λρ +λB

2
, λ2 =

λc +(1+β )λρ

2+β
, (5)

and λB = 2αSβ0Bi appears due to hard-collinear splittings,

and W (x) = x log(x), V (x) = 1
2

log2(x)+ log(x).

Note that αs is calculated using the exact two-loop run-

ning coupling, at the scale ptR, and, in order to reach NLL

accuracy, it is evaluated in the CMW scheme [10]. Further-

more, compared to the original results [2], the hard-collinear

contributions have been expressed as corrections to double-

logarithm arguments. In practice, this is equivalent to replac-

ing Pi(z) → (2Ci/z)Θ(z < eBi). This introduces unwanted

NNLL terms but has the advantage to give well-defined and

positive resummed distributions which, in turn, makes the

matching to fix order easier.

To avoid any potential issue related to the Landau pole,

appearing in a region anyway dominated by hadronisation,

we have frozen the coupling at a scale µfr = 1 GeV. Corre-

sponding expressions can be found e.g. in Ref. [11].

Matching to NLO. The Soft Drop mass distributions for the

dijet processes can be calculated at fixed order at O(α4
s ),

i.e. up to NLO accuracy. This is available for example us-

ing the NLOJet++ [12] generator to simulate 2 → 3 events

at LO and NLO. Jets are then clustered with the anti-kt al-

gorithm [13] as implemented in FastJet-3.2.2 [14]. In what

follows, we have used the CT14 PDF set [15].

NLO mass distributions need to be matched to our NLL

resummed results. For this, the LO jet mass distribution needs

to be separated in flavour channels, while the flavour separa-

tion of the NLO jet mass distribution is instead subleading.

At O(α3
s ) a jet has at most two constituent and the only case

where the flavour is ambiguous is when a jet is made of two

quarks (or a quark and an anti-quark of different flavours).

We (arbitrarily) treat this as a quark jet, an approximation

which is valid at our accuracy. To keep the required flavour

information in NLOJet++, we have used the patch intro-

duced in Ref. [16].

To avoid artefacts at large mass, the endpoint of the re-

summed calculation is matched to the endpoint of the per-

turbative distribution by replacing

log
( 1

ρ

)

→ log
( 1

ρ
−

1

ρmax,i
+ e−Bq

)

(6)

in the resummed results [17]. The endpoints of the LO and

NLO distributions are found to be (see Appendix B of Ref. [5])

ρmax,LO ≈ 0.279303 and ρmax,NLO ≈ 0.44974, for R = 0.8.

Finally, the matching between NLL and NLO results in

each pt bin can be done using log-R matching given by [16]

ΣNLL+NLO(ρ) =

[

∑
i

Σ
(i)
NLL exp

(

Σ
(i)
LO −Σ

(i)
NLL,LO

σ
(i)
jet,LO

)

]

(7)

× exp

(

Σ̄NLO −ΣNLL,NLO

σjet,LO

−∑
i

(Σ
(i)
LO)

2 − (Σ
(i)
NLL,LO)

2

σ
(i)
jet,LOσjet,LO

)

.

In this expression, Σ
(i)
NLL is given by Eq. (2), trivially split

in flavour channels. Σ
(i)
NLL,LO and ΣNLL,NLO (summed over

flavour channels) are the expansion of Σ
(i)
NLL to LO (O(α3

s ))

and NLO (O(α4
s )), respectively. For the fixed-order part

Σ
(i)
LO =−

∫ 1

ρ
dρ ′

dσ
(i)
mass,LO

dρ ′
+σ

(i)
jet,NLO, (8)

Σ̄NLO =−

∫ 1

ρ
dρ ′ dσmass,NLO

dρ ′
, (9)

where dσmass,(N)LO/dρ denotes the mass distribution at (N)LO

as obtained from NLOJet++ and σjet,(N)LO the (N)LO cor-

rection to the inclusive jet cross-section in the pt bin un-

der consideration. These expressions also require the inclu-

sive jet cross-section, both at LO and NLO, to be split in

flavour channels. This is done as for the 3-jet LO distribu-

tion above using the flavour-aware NLOJet++ version used

in [16]. Alternatively, we have also used the (R-)matching

scheme given by Eq. (3.28) of [16].
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