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Abstract We present a first-principle computation of the
mass distribution of jets which have undergone the groom-
ing procedure known as Soft Drop. This calculation includes
the resummation of the large logarithms of the jet mass over
its transverse momentum, up to next-to-logarithmic accu-
racy, matched to exact fixed-order results at next-to-leading
order. We also include non-perturbative corrections obtained
from Monte-Carlo simulations and discuss analytic expres-
sions for hadronisation and Underlying Event effects.

Introduction. The study of jets at the Large Hadron Col-
lider (LHC) has recently taken a new turn with new sub-
structure observables [1, 2] amenable to precise theory cal-
culations [3–5], including genuine theory uncertainty bands,
and corresponding experimental measurements from both
the CMS [6] and ATLAS [7] collaborations. The substruc-
ture techniques we concentrate on are usually referred to as
grooming and they aim to reduce sensitivity to non-perturba-
tive corrections and pileup.

A first series of studies has focused on the jet mass after
applying the (modified) MassDrop Tagger (mMDT) [1, 8]
in dijet events, as measured by the CMS collaboration [6].
On the theory side, the description of this observable re-
quires to match a resummed calculation, important in the
small-mass region, to fixed-order results, which are impor-
tant for large masses. The former are obtained analytically,
including to all orders terms enhanced by the large loga-
rithms of p2

t /m2 with pt the jet transverse momentum and
m the (groomed) jet mass. The latter is obtained from fixed-
order Monte-Carlo simulations. To date, two theory calcu-
lations are available: a SCET-based next-to-leading loga-
rithmic (NLL) resummation in the small zcut limit, matched
to leading order (LO) results [4], and our previous study
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matching a leading logarithmic resummation, including fi-
nite (but small) zcut effects, to next-to-leading order results [5].
Comparing both predictions, we see a small NLL effect at
small mass and non-negligible NLO corrections at large mass.

The goal of the present letter is to extend our mMDT
study from Ref. [5] to the case of Soft Drop [2], i.e. allowing
for a non-zero value of the angular exponent β . When β 6= 0,
the logarithmic counting differs from the mMDT case, es-
sentially because Soft Drop retains soft-collinear radiation,
which is always groomed away by mMDT. In this case, the
SCET-based calculation from Ref. [4] reaches NNLL accu-
racy and it is matched, in the dijet case, to LO fixed-order
results. Here, we present the results of a NLL resummation
matched to NLO fixed-order accuracy.

After a brief review of the Soft Drop procedure, we will
present our results first in the resummation region, then match-
ed to fixed-order. We then provide an analytic estimate of
non-perturbative corrections, extending to the Soft Drop case
the analytic results obtained in Ref. [1] for the mMDT. We
conclude by providing and discussing our final predictions,
including the theory uncertainty bands. These have already
been compared to experimental data in [7], where a good
agreement was found, especially in the perturbative region.

Soft Drop. For a given jet, the Soft Drop procedure first re-
clusters the constituents of the jet with the Cambridge/Aachen
algorithm [9] into a single jet j. Starting from j, it then ap-
plies the following iterative procedure:

1. undo the last clustering step j→ j1, j2, with pt1 > pt2.
2. stop the procedure if the Soft Drop condition is met:

min(pt1, pt2)

pt1 + pt2
> zcut

(
θ12

R

)β

, (1)

where zcut and β are free parameters, θ 2
12 = ∆y2

12+∆φ 2
12

and R the original jet radius.
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3. otherwise, set j = j1 and go back to 1, or stop if j1 has
no further substructure.

The limit β → 0 corresponds to the mMDT.

NLL resummation. We consider the cumulative cross-section
for the ratio m2/(ptR)2 to be smaller than some value ρ , in-
tegrated over the O(α2

s ) matrix element for the Born-level
production of 2 jets, in a given pt bin:

ΣNLL(ρ; pt1, pt2) =
∫ pt2

pt1

d pt ∑
i

dσ
(i)
jet,LO

d pt

e−Ri(ρ)−γE R′i(ρ)

Γ (1+R′i(ρ))
, (2)

where we have separated contributions from different flavour
channels, R′i is the derivative of Ri wrt log(1/ρ) and the ra-
diator Ri is given by

Ri(ρ) =
Ci

2παsβ
2
0

{[
W (1−λB)−

W (1−λc)

1+β
−2W (1−λ1)

+
2+β

1+β
W (1−λ2)

]
− αsK

2π

[
log(1−λB)−

log(1−λc)

1+β

+
2+β

1+β
log(1−λ2)−2log(1−λ1)

]
+

αsβ1

β0

[
V (1−λB)

− V (1−λc)

1+β
−2V (1−λ1)+

2+β

1+β
V (1−λ2)

]}
, (3)

where

λc = 2αsβ0 log(1/zcut), λρ = 2αsβ0 log(1/ρ), (4)

λ1 =
λρ +λB

2
, λ2 =

λc +(1+β )λρ

2+β
, (5)

and λB = 2αSβ0Bi appears due to hard-collinear splittings,
and W (x) = x log(x), V (x) = 1

2 log2(x)+ log(x).
Note that αs is calculated using the exact two-loop run-

ning coupling, at the scale ptR, and, in order to reach NLL
accuracy, it is evaluated in the CMW scheme [10]. Further-
more, compared to the original results [2], the hard-collinear
contributions have been expressed as corrections to double-
logarithm arguments. In practice, this is equivalent to replac-
ing Pi(z)→ (2Ci/z)Θ(z < eBi). This introduces unwanted
NNLL terms but has the advantage to give well-defined and
positive resummed distributions which, in turn, makes the
matching to fix order easier.

To avoid any potential issue related to the Landau pole,
appearing in a region anyway dominated by hadronisation,
we have frozen the coupling at a scale µfr = 1 GeV. Corre-
sponding expressions can be found e.g. in Ref. [11].

Matching to NLO. The Soft Drop mass distributions for the
dijet processes can be calculated at fixed order at O(α4

s ),
i.e. up to NLO accuracy. This is available for example us-
ing the NLOJet++ [12] generator to simulate 2→ 3 events

at LO and NLO. Jets are then clustered with the anti-kt al-
gorithm [13] as implemented in FastJet-3.2.2 [14]. In what
follows, we have used the CT14 PDF set [15].

NLO mass distributions need to be matched to our NLL
resummed results. For this, the LO jet mass distribution needs
to be separated in flavour channels, while the flavour separa-
tion of the NLO jet mass distribution is instead subleading.
At O(α3

s ) a jet has at most two constituent and the only case
where the flavour is ambiguous is when a jet is made of two
quarks (or a quark and an anti-quark of different flavours).
We (arbitrarily) treat this as a quark jet, an approximation
which is valid at our accuracy. To keep the required flavour
information in NLOJet++, we have used the patch intro-
duced in Ref. [16].

To avoid artefacts at large mass, the endpoint of the re-
summed calculation is matched to the endpoint of the per-
turbative distribution by replacing

log
( 1

ρ

)
→ log

( 1
ρ
− 1

ρmax,i
+ e−Bq

)
(6)

in the resummed results [17]. The endpoints of the LO and
NLO distributions are found to be (see Appendix B of Ref. [5])
ρmax,LO ≈ 0.279303 and ρmax,NLO ≈ 0.44974, for R = 0.8.

Finally, the matching between NLL and NLO results in
each pt bin can be done using log-R matching given by [16]

ΣNLL+NLO(ρ) =

[
∑

i
Σ
(i)
NLL exp

(
Σ
(i)
LO−Σ

(i)
NLL,LO

σ
(i)
jet,LO

)]
(7)

× exp

(
Σ̄NLO−ΣNLL,NLO

σjet,LO
−∑

i

(Σ
(i)
LO)

2− (Σ
(i)
NLL,LO)

2

σ
(i)
jet,LOσjet,LO

)
.

In this expression, Σ
(i)
NLL is given by Eq. (2), trivially split

in flavour channels. Σ
(i)
NLL,LO and ΣNLL,NLO (summed over

flavour channels) are the expansion of Σ
(i)
NLL to LO (O(α3

s ))
and NLO (O(α4

s )), respectively. For the fixed-order part

Σ
(i)
LO =−

∫ 1

ρ

dρ
′ dσ

(i)
mass,LO

dρ ′
+σ

(i)
jet,NLO, (8)

Σ̄NLO =−
∫ 1

ρ

dρ
′ dσmass,NLO

dρ ′
, (9)

where dσmass,(N)LO/dρ denotes the mass distribution at (N)LO
as obtained from NLOJet++ and σjet,(N)LO the (N)LO cor-
rection to the inclusive jet cross-section in the pt bin un-
der consideration. These expressions also require the inclu-
sive jet cross-section, both at LO and NLO, to be split in
flavour channels. This is done as for the 3-jet LO distribu-
tion above using the flavour-aware NLOJet++ version used
in [16]. Alternatively, we have also used the (R-)matching
scheme given by Eq. (3.28) of [16].
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Fig. 1 Comparison of our theoretical estimate of hadronisation corrections to what is implemented in a standard Monte-Carlo parton shower, for
different values of the angular exponent β , zcut = 0.1 and R = 0.8. Quark jets are considered and hadron masses are neglected. Left: hadronisation
corrections (i.e. ratio of hadron level to parton level) for Λhadr = 0.4 GeV; right: Underlying Event corrections (i.e. ratio of distributions with and
without UE) for ΛUE = 1 GeV.

From Eq. (7) it is trivial to obtain differential distribu-
tions in bins of ρ . Normalised distributions can then be ob-
tained by dividing the result by the NLO inclusive jet cross-
section σjet,LO +σjet,NLO.1

The uncertainties on the distributions come from four
sources: renormalisation and factorisation scales, resumma-
tion uncertainty and matching uncertainty. The first two are
estimated using the 7-point rule [18]. The resummation un-
certainties are obtained by varying ρ in Eqs. (2) and (3) be-
tween ρ/2 and ρ , introducing the appropriate correction —
± log(2)R′ in the exponent in (2) — to maintain NLL accu-
racy. The matching uncertainty is estimated by considering
both the log-R and R matching schemes. We take the central
value from the central scale choice and the uncertainty from
the envelope of the 11 scale variations.2

Non-perturbative corrections. Power corrections induced by
non-perturbative (NP) effects can be estimated for Soft Drop
using the same approach as the equivalent calculation for
mMDT presented in Section 8.3.3 of Ref. [1]. We have to
take into account two effects: (i) the mass of the SD jet will
be affected by NP corrections, (ii) NP effects can shift the
momentum of the subjets and alter the SD condition.

First, the mass shift can be written as (see [19]) δm2 =

CRΛhadr ptReff, where Reff is the effective jet radius after groom-
ing, i.e. for a mass m and subjets passing the Soft Drop con-
dition with a momentum fraction z, Reff =m/(pt

√
z(1− z)).

1Note that this normalisation procedure gives consistent results when
computing the uncertainties on the matched distributions.
2Seven factorisation and renormalisation scales, two resummation
scales and two matching schemes.

Following the same steps as in Ref. [1] we obtain3

dσ

dm

∣∣∣∣(m shift)

hadr
=

dσ

dm

∣∣∣∣
pert

(
1+

CRΛhadr

m
z−1/2

SD −∆i

LSD +Bi

)
, (10)

with zSD = z
2

2+β

cut
( m

pt R

) 2β

2+β , LSD = log(1/zSD) and

∆q =
3π

8
and ∆q =

(15CA−6n f TR)π

32CA
. (11)

Then, hadronisation will shift the momentum of the softer
subjet by an average δ pt = −CAΛhadr/Reff, where we have
taken into account that the softer subjet typically corresponds
to a gluon emission. This means that emissions which were
perturbatively passing the Soft Drop condition, with zSD <

z < zSD − δ pt/pt , will fail the Soft Drop condition after
hadronisation, leading to a reduction of the cross-section

dσ

dm

∣∣∣∣(pt shift)

hadr
=

dσ

dm

∣∣∣∣
pert

(
1− CAΛhadr

m
z−1/2

SD
LSD +Bi

)
. (12)

The final hadronisation correction includes both (10) and (12).

Both terms are proportional to Λhadr
pt

( pt
m

) 2+2β

2+β , which increases
with β and has the appropriate limits for β →∞ and β → 0.

A similar calculation can be carried out for the Underly-
ing Event (UE) contamination. In this case we have δ pt =

ΛUEπR2
eff and δm2 = 1

2ΛUE ptR4
eff. Following the same steps

as above, we find

dσ

dm

∣∣∣∣
UE

=
dσ

dm

∣∣∣∣
pert

(
1+

ΛUEm2

p3
t R3

z−2
SD(1− fm,i)

LSD +Bi

)
, (13)

3Although, instead of averaging Reff over z, we have kept explicit the z
dependence of Reff and averaged the final correction over z.
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Fig. 2 Resummed and match theoretical predictions for the Soft Drop jet mass distribution, for two different values of the angular exponent β = 1
(left) and β = 2 (right), zcut = 0.1 and R = 0.8. The colours correspond to different accuracy of the calculation, as detailed in the legend.

where the 1 in the numerator corresponds to the pt shift and
the fm,i term corresponds to mass-shift effects, with

fm,q =
1+3zSD +2z2

SD(3LSD−2)
4

, (14)

fm,g =
1+2zSD +3z2

SD(2LSD−1)
4

+
n f TR

CA
zSD(1− zSD).

This time, both sources of corrections give an effect propor-

tional to ΛUE
pt

( pt
m

) 2β−4
2+β , which increase with β and has the

expected ΛUE pt/m2 behaviour in the limit β → ∞.
In Fig. 1, we compare our analytic findings (dashed lines)

with the Monte-Carlo simulations, obtained with Pythia 8.223
[20] (Monash 13 [21] tune, solid lines). We consider both
hadronisation corrections (left) and UE effects (right), for a
range of β values. UE effects are seen to be much smaller
than hadronisation corrections. In the region where Λhadr,UE�
m� pt , our analytic calculation captures the main features
observed in the simulations, including the increase with β

and the global trend in ρ . At smaller mass, Pythia simula-
tions exhibit a peak in the hadronisation corrections which
is beyond the scope of our power-correction calculation.

Even if the above analytic approach to estimating NP ef-
fects is helpful for a qualitative understanding, it is unclear
how reliable it would be for phenomenology. For example,
hadron masses, which are neglected here, would have an ad-
ditional effect, even at large mass. Thus, the analytic esti-
mates can, at best, be trusted up to a fudge factor and ana-
lytic results can not be trusted at small mass (see also [22]).

As for our mMDT calculation [5], for our final predic-
tions, we have therefore decided to estimate NP corrections
using different Monte-Carlo simulations: Herwig 6.521 [23]
with the tune AUET2 [24], Pythia 6.428 [25] with the Z2 [26]
and Perugia 2011 [27] tunes, and Pythia 8.223 [20] with

the 4C [28] and Monash 13 [21] tunes. For each Monte-
Carlo, we compute the ratio between the full simulation and
the parton level. The average result is taken as the average
NP correction, and the envelope as the uncertainty which is
added in quadrature to the perturbative uncertainty.

Final predictions and conclusions. Our final predictions, are
presented for β = 1 (left) and β = 2 (right) in Fig 2. To
highlight our key observations, we present our final results
at NLL matched to NLO and including NP corrections (la-
belled NLL+NLO+NP), as well as pure perturbative results
(NLL+NLO) and results obtained when matching to LO only
(NLL+LO). The most striking feature that we observe is that
matching to NLO not only affects quite significantly the cen-
tral value of our prediction, but also significantly reduces the
uncertainty across the entire spectrum.

Then, we see that NP corrections remain small over a
large part of the spectrum, although they start being sizeable
at larger mass when the angular exponent β increases. The
fact that Soft Drop observables can be computed precisely in
perturbative QCD, with small NP corrections, makes them
interesting for further phenomenological studies, including
other observables like angularities or attempts to extract the
strong coupling constant from fits to the data.

Finally, we note that these predictions have recently been
compared to experimental results obtained by the ATLAS
collaboration in Ref. [7]. A good overall agreement between
data and theory is observed, especially in the region where
NP corrections are small.
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