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mass-degenerate resonances that couple predominantly to bosons.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A major goal of the physics programme at the Large Hadron
Collider (LHC) is the search for new phenomena that may become
visible in high-energy proton-proton (pp) collisions. One possible
signature of such new phenomena is the production of a heavy
resonance with the subsequent decay into a final state consist-
ing of a pair of vector bosons (WW, WZ, ZZ). Many models of
physics beyond the Standard Model (SM) predict such a signa-
ture. These include extensions to the SM scalar sector as in the
two-Higgs-doublet model (2HDM) [1] that predict new spin-0 res-
onances, composite-Higgs models [2-4] and models motivated by
Grand Unified Theories [5-7] that predict new W’ spin-1 reso-
nances, and warped extra dimensions Randall-Sundrum (RS) mod-
els [8-10] that predict spin-2 Kaluza-Klein (KK) excitations of the
graviton, Ggk. The heavy vector triplet (HVT) [11,12] phenomeno-
logical Lagrangian approach provides a more model-independent
framework for interpretation of spin-1 diboson resonances.

The search presented here focuses on TeV-scale resonances that
decay into pairs of high-momentum vector bosons which, in turn,
decay hadronically. The decay products of each of those vector
bosons are collimated due to the high Lorentz boost and are typ-
ically contained in a single jet with radius R = 1.0. While the use
of hadronic decays of the vector bosons benefits from the largest
branching ratio (67% for W and 70% for Z bosons) amongst the
possible final states, it suffers from a large background contami-
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nation from the production of multijet events. However, this con-
tamination can be mitigated with jet substructure techniques that
exploit the two-body nature of V — qq decays (with V =W or Z).

Previous searches for diboson resonances were carried out by
the ATLAS and CMS collaborations with pp collisions at /s = 7,
8 and 13 TeV. These include fully leptonic (¢vev, £veLl) [13-16],
semileptonic (vvqq, £vqq, €££qq) [17-19] and fully hadronic (qqqq)
V'V [17,19] final states. By combining the results of searches in the
vvqq, £vqq, ££qq and qqqq channels, the ATLAS Collaboration [17]
set a lower bound of 2.60 TeV on the mass of a spin-1 resonance at
the 95% confidence level, in the context of the HVT model B with
gy = 3 (described in Section 2). When interpreted in the context
of the bulk RS model with a spin-2 KK graviton and k/Mp = 1, this
lower mass bound is 1.10 TeV. The results presented here benefit
from an integrated luminosity of 36.7 fb~!, which is an order of
magnitude larger than was available for the previous search in the
fully hadronic final state at /s =13 TeV [17].

2. Signal models

The analysis results are interpreted in terms of different models
that predict the production of heavy resonances with either spin 0,
spin 1 or spin 2. In the case of the spin-0 interpretation, a heavy
scalar is produced via gluon-gluon fusion with subsequent decay
into a pair of vector bosons. For this empirical model, the width of
the signal in the diboson mass distribution is assumed to be dom-
inated by the experimental resolution. The width of a Gaussian
distribution characterising the mass resolution after full event se-
lection ranges from approximately 3% to 2% as the resonance mass
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increases from 1.2 to 5.0 TeV. The spin-0 model is referred to as
the heavy scalar model in the rest of this Letter.

In the HVT phenomenological Lagrangian model, a new heavy
vector triplet (W', Z’) is introduced, with the new gauge bosons
degenerate in mass (also denoted by V’ in the following). The
couplings between those bosons and SM particles are described
in a general manner, thereby allowing a broad class of models to
be encompassed by this approach. The new triplet field interacts
with the Higgs field and thus with the longitudinally polarised
W and Z bosons by virtue of the equivalence theorem [20-22].
The strength of the coupling to the Higgs field, and thus SM gauge
bosons, is controlled by the parameter combination gycy, where
cy is a multiplicative constant used to parameterise potential devi-
ations from the typical strength of triplet interactions to SM vector
bosons, taken to be gy . Coupling of the triplet field to SM fermions
is set by the expression g2cr/gy, where g is the SM SU(2); gauge
coupling and, like for the coupling to the Higgs field, cr is a mul-
tiplicative factor that modifies the typical coupling of the triplet
field to fermions. The HVT model A with gy =1, cy ~ —g?/gd
and cp ~ 1 [11] is used as a benchmark. In this model, the new
triplet field couples weakly to SM particles and arises from an ex-
tension of the SM gauge group. Branching ratios for W' — W Z and
Z' —- WW are approximately 2.0% each. The intrinsic width " of
the new bosons is approximately 2.5% of the mass, which results
in observable mass peaks with a width dominated by the exper-
imental resolution. In this model, the dominant decay modes are
into fermion pairs and searches in the ¢¢ and ¢v final states [23,
24| provide the best sensitivity. The calculated production cross
section times branching ratio (o x B) values for W — W Z with
W and Z bosons decaying hadronically are 8.3 and 0.75 fb for
W’ masses of 2 and 3 TeV, respectively. Corresponding values for
Z' — WW are 3.8 and 0.34 fb.

The HVT model B with gy =3 and cy ~cr ~1 [11] is used
as another benchmark. This model describes scenarios in which
strong dynamics give rise to the SM Higgs boson and naturally in-
clude a new heavy vector triplet field with electroweak quantum
numbers. The constants cy and cg are approximately unity, and
couplings to fermions are suppressed, giving rise to larger branch-
ing ratios (~ 50%) for either W' — W Z or Z/ — WW decays than
in model A. Resonance widths and experimental signatures are
similar to those obtained for model A and the predicted o x B
values for W — W Z with hadronic W and Z decays are 13 and
1.3 fb for W/ masses of 2 and 3 TeV, respectively. Corresponding
values for Z’ — WW are 6.0 and 0.55 fb.

The RS model with one warped extra dimension predicts the
existence of spin-2 Kaluza-Klein excitations of the graviton, with
the lowest mode being considered in this search. While the origi-
nal RS model [8] (often referred to as RS1) is constructed with all
SM fields confined to a four-dimensional brane (the “TeV brane”),
the bulk RS model [8,9] employed here allows those fields to prop-
agate in the extra-dimensional bulk between the TeV brane and
the Planck brane. Although ruled out by precision electroweak and
flavour measurements, the RS1 model is used as a benchmark
model to interpret diphoton and dilepton resonance searches due
to the sizeable Ggx couplings to light fermions in that model. In
the bulk RS model, those couplings are suppressed and decays
into final states involving heavy fermions, gauge bosons or Higgs
bosons are favoured. The strength of the coupling depends on
k/Mp;, where k corresponds to the curvature of the warped extra
dimension, and the effective four-dimensional Planck scale Mp =
2.4 x 10'® GeV. The cross section and intrinsic width scale as the
square of k/Mp. For the choice k/Mp; =1 used in this search, the
o x B values for Ggx > WW with W decaying hadronically are
0.54 and 0.026 fb for Ggx masses of 2 and 3 TeV, respectively.
Corresponding values for Gxx — ZZ are 0.32 and 0.015 fb. In the

range of Gy masses considered, the branching ratio to WW (ZZ)
varies from 24% to 20% (12% to 10%) as the mass increases. Decays
into the tt final state dominate with a branching ratio varying from
54% to 60%. The Gk resonance has a I' value that is approximately
6% of its mass.

3. ATLAS detector

The ATLAS experiment [25,26] at the LHC is a multi-purpose
particle detector with a forward-backward symmetric cylindrical
geometry and a near 4w coverage in solid angle.! It consists of
an inner detector for tracking surrounded by a thin superconduct-
ing solenoid providing a 2 T axial magnetic field, electromagnetic
and hadronic calorimeters, and a muon spectrometer. The inner
detector covers the pseudorapidity range || < 2.5. It consists of
silicon pixel, silicon microstrip, and transition radiation tracking
detectors. A new innermost pixel layer [26] inserted at a radius of
3.3 cm has been used since 2015. Lead/liquid-argon (LAr) sampling
calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A hadronic (steel/scintillator-tile) calorimeter
covers the central pseudorapidity range (|n| < 1.7). The end-cap
and forward regions are instrumented with LAr calorimeters for
both the EM and hadronic energy measurements up to |n| = 4.9.
The muon spectrometer surrounds the calorimeters and features
three large air-core toroidal superconducting magnet systems with
eight coils each. The field integral of the toroids ranges between
2.0 and 6.0 Tm across most of the detector. The muon spectrom-
eter includes a system of precision tracking chambers and fast
detectors for triggering. A two-level trigger system [27] is used
to select events. The first-level trigger is implemented in hard-
ware and uses a subset of the detector information to reduce the
accepted rate to at most 100 kHz. This is followed by a software-
based trigger level that reduces the accepted event rate to 1 kHz
on average.

4. Data and simulation
4.1. Data

The data for this analysis were collected during the LHC pp col-
lision running at /s =13 TeV in 2015 and 2016. Events must pass
a trigger-level requirement of having at least one large-radius jet
with transverse energy Et > 360 GeV in 2015 and Et > 420 GeV
in 2016, where the jet is reconstructed using the anti-k; algo-
rithm [28] with a radius parameter of 1.0. Those thresholds cor-
respond to the lowest-Et, unprescaled large-radius jet triggers for
each of the two data-taking periods. After requiring that the data
were collected during stable beam conditions and the detector
components relevant to this analysis were functional, the inte-
grated luminosity of the sample amounts to 3.2 fb~—! and 33.5 fb™!
of pp collisions in 2015 and 2016, respectively.

4.2. Simulation

The search presented here uses simulated Monte Carlo (MC)
event samples to optimise the selection criteria, to estimate the

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in-
teraction point (IP) in the centre of the detector and the z-axis along the beam pipe.
The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the
azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the po-
lar angle 6 as n = —Intan(6/2). The rapidity is defined relative to the beam axis as
y= % In Ef‘;; Angular distance is measured in units of AR =/(An)% + (A¢)2.
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acceptance for different signal processes, and to validate the exper-
imental procedure described below. However, it does not rely on
MC event samples to estimate the background contribution from
SM processes.

Signal events for the heavy scalar model [29] were produced at
next-to-leading-order via the gluon-gluon fusion mechanism with
PowHEG-Box v1 [30,31] using the CT10 parton distribution func-
tion (PDF) set [32]. Events were interfaced with PyTHIA v8.186 [33]
for parton showering and hadronisation using the CTEQ6L1 PDF
set [34] and the AZNLO set of tuned parameters (later referred to
as tune) [35]. The width of the heavy scalar is negligible compared
to the experimental resolution.

In the case of the HVT and RS models, events were produced
at leading order (LO) with the MADGRAPH5_aMC@NLO v2.2.2 [36]
event generator using the NNPDF23LO PDF set [37]. To study
the sensitivity of the spin-2 resonance search to production from
quark-antiquark or gluon-gluon initial states as well as to differ-
ent vector-boson polarisation states, events were generated with
JHUGen v5.6.3 [38] and the NNPDF23LO PDF set. For these sig-
nal models, the event generator was interfaced with PyTHIA v8.186
for parton showering and hadronisation with the A14 tune [39].
The Ggx samples are normalised according to calculations from
Ref. [40]. In all signal samples, the W and Z bosons are longi-
tudinally polarised.

Multijet background events were generated with PyTHIA v8.186
with the NNPDF23LO PDF set and the A14 tune. Samples of W +
jets and Z + jets events were generated with Herwig++ v2.7.1 [41]
using the CTEQ6L1 PDF set and the UEEE5 tune [42].

For all MC samples, charm-hadron and bottom-hadron decays
were handled by EVTGEN v1.2.0 [43]. Minimum-bias events gener-
ated using PYTHIA 8 were added to the hard-scatter interaction in
such a way as to reproduce the effects of additional pp interac-
tions in each bunch crossing during data collection (pile-up). An
average of 23 pile-up interactions are observed in the data in ad-
dition to the hard-scatter interaction. The detector response was
simulated with GEANT 4 [44,45] and the events were processed
with the same reconstruction software as for the data.

5. Event reconstruction and selection
5.1. Reconstruction

The selection of events relies on the identification and recon-
struction of electrons, muons, jets, and missing transverse momen-
tum. Although the analysis primarily relies on jets, other particle
candidates are needed to reject events that are included in com-
plementary searches for diboson resonances.

The trajectories of charged particles are reconstructed using
measurements in the inner detector. Of the multiple pp colli-
sion vertices reconstructed from the available tracks in a given
event, a primary vertex is selected as the one with the largest
3" p2, where the sum is over all tracks with transverse momentum
pr > 0.4 GeV that are associated with the vertex. Tracks that are
consistent with the primary vertex may be identified as electron
or muon candidates. Electron identification is based on match-
ing tracks to energy clusters in the electromagnetic calorimeter
and relying on the longitudinal and transverse shapes of the elec-
tromagnetic shower. Electron candidates are required to satisfy
the “medium” identification criterion [46] and to pass the “loose”
track-based isolation [46]. Muon identification relies on matching
tracks in the inner detector to muon spectrometer tracks or track
segments. Muon candidates must also satisfy the “medium” selec-
tion criterion [47] and the “loose” track isolation [47].

Large-radius jets (hereafter denoted large-R jets) are recon-
structed from locally calibrated clusters of energy deposits in

calorimeter cells [48] with the anti-k; clustering algorithm using
a radius parameter R = 1.0. Jets are trimmed [49] to minimise
the impact of pile-up by reclustering the constituents of each jet
with the k; algorithm [50] into smaller R = 0.2 subjets and re-

moving those subjets with p3"”*/ pi* < 0.05, where p$™ and

pJTe ' are the transverse momenta of the subjet and original jet, re-
spectively. The clustering and trimming algorithms use the Fast]et
package [51]. Calibration of the trimmed jet pr and mass is de-
scribed in Ref. [52].

The large-R jet mass is computed using measurements from the
calorimeter and tracking systems [53] according to
trkﬂ trk

m
trk ?
Pt

my = Wcalmcal +w

where p}rk is the transverse momentum of the jet evaluated us-

ing only charged-particle tracks associated with the jet, m® and
m'™® are the masses computed using calorimeter and tracker mea-
surements, and w and w'* are weights inversely proportional
to the square of the resolution of each of the corresponding mass
terms. Ghost association [54] is performed to associate tracks to
the jets before the trimming procedure is applied. In this method,
tracks are added with an infinitesimally small momentum as addi-
tional constituents in the jet reconstruction. Tracks associated with
the jets are required to have pr > 0.4 GeV and satisfy a number of
quality criteria based on the number of measurements in the sili-
con pixel and microstrip detectors; tracks must also be consistent
with originating from the primary vertex [53]. Including informa-
tion from the tracking system provides improved mass resolution,
especially at high jet pt, due to the relatively coarse angular reso-
lution of the calorimeter.

The magnitude of the event’s missing transverse momentum
(E}“iss) is computed from the vectorial sum of calibrated elec-
trons, muons, and jets in the event [55]. For this computation
and the rejection of non-collision background discussed below, jets
are reconstructed from topological clusters using the anti-k; algo-
rithm with a radius parameter R = 0.4 and are required to satisfy
pr > 20 GeV and |n| < 4.9. Calibration of those jets is described
in Ref. [56]. The E‘T‘niSS value is corrected using tracks associated
with the primary vertex but not associated with electrons, muons
or jets.

5.2. Selection

Events used in complementary searches for diboson resonances
in different final states are removed, in anticipation of a future
combination. Accordingly, events are rejected if they contain any
electron or muon with pt > 25 GeV and |n| < 2.5. Furthermore,
events with E}“iss > 250 GeV are rejected.

Events with jets that are likely to be due to non-collision
sources, including calorimeter noise, beam halo and cosmic rays,
are removed [57]. Events are required to contain at least two
large-R jets with |n| < 2.0 (to guarantee a good overlap with the
tracking acceptance) and mass mj > 50 GeV. The leading (high-
est pr) large-R jet must have pr > 450 GeV and the subleading
(second highest pt) large-R jet must have pr > 200 GeV. The in-
variant mass of the dijet system formed by these two jets must
be my; > 1.1 TeV to avoid inefficiencies due to the minimum jet-pr
requirements and to guarantee that the trigger requirement is fully
efficient. Only jets in this system are considered in the rest of this
Letter. Events passing the above requirements are said to pass the
event “preselection”.

Further kinematic requirements are imposed to suppress back-
ground from multijet production. The rapidity separation between
the leading and subleading jets (identified with subscripts 1 and 2
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Fig. 1. Signal acceptance times efficiency as a function of resonance mass for (a) Scalar — WW in the heavy scalar model, (b) Z/ — WW in the HVT model, and (c)
Gkk — WW in the bulk RS model. The acceptance times efficiency is shown at successive stages of selection with the final stage (ny) corresponding to the signal region.

in the following) must be sufficiently small, |[Ay| =|y1 — y2| < 1.2,
which is particularly aimed at suppressing t-channel dijet pro-
duction. The pr asymmetry between the two jets A = (pr1 —
p12) /(P11 + pr2) must be smaller than 0.15 to remove events
where one jet is poorly reconstructed.

Jets must be consistent with originating from hadronic decays
of W or Z bosons. Discrimination against background jets inside
a mass window including the W /Z mass is based on the variable
D,, which is defined as a ratio of two-point to three-point en-
ergy correlation functions that are based on the energies of and
pairwise angular distances between the jet’s constituents [58,59].
This variable is optimised with parameter g =1 to distinguish be-
tween jets originating from a single parton and those coming from
the two-body decay of a heavy particle. A detailed description of
the optimisation can be found in Refs. [52,60]. The boson-tagging
criteria—the jet-mass window size and maximum D, value—are
simultaneously optimised to achieve the maximal background-jet
rejection for a fixed W or Z signal-jet efficiency of 50%. The opti-
misation uses signal jets from simulated W — W Z — qqqq events
and background jets from simulated multijet events, and depends
on the jet pr to account for varying resolution as a function of jet
pt. The size of the W (Z) mass window varies from 22 (28) GeV
near pt = 600 GeV to 40 (40) GeV at pt > 2500 GeV and the max-
imum D; value varies from 1.0 to 2.0 as the jet pr increases. An
event is tagged as a candidate WW (ZZ) event if both jets are

within the W (Z) mass window. It can also be tagged as a can-
didate WZ event if the lower- and higher-mass jets are within
the W and Z mass windows, respectively. Because the mass win-
dows are relatively wide and overlap, jets may pass both W- and
Z-tagging requirements.

To specifically suppress gluon-initiated jets, the number of
tracks associated with each jet must satisfy ngi < 30. The tracks
used must have pr > 0.5 GeV and |n| < 2.5, as well as originate
from the primary vertex.

The above set of selection criteria constitutes the signal region
(SR) definition. Fig. 1 illustrates the kinematic acceptance times se-
lection efficiency (A x ¢) at different selection stages for simulated
heavy scalar resonances, heavy gauge bosons and KK gravitons de-
caying to the WW final state. Similar .4 x ¢ values are obtained in
the W Z final state for the HVT model and in the ZZ final state for
the heavy scalar and bulk RS models. Multijet background events
are suppressed with a rejection factor of approximately 2 x 10°, as
determined from simulation. The figure shows that, among the dif-
ferent selection criteria described above, the boson tagging reduces
the signal A x & the most. However, this particular selection stage
provides the most significant suppression of the dominant multijet
background.

Table 1 summarises the A x & values for a number of models
at resonance mass values of 2 and 3 TeV for the WW final state;
similar results are obtained for the other diboson final states. In
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Table 1

Signal acceptance times efficiency for resonances with masses of 2 and 3 TeV decay-
ing into the WW final state in different models. The first three rows correspond to
values obtained with the nominal signal MC samples described in Section 4.2 and
the values in the last four rows are obtained with the alternate signal MC samples
generated with JHUGen.

Model/process Acceptance x efficiency

m=2TeV m=3 TeV
Heavy scalar 7.3% 7.2%
HVT model A, gy =1 13.8% 13.9%
Bulk RS, k/Mp; =1 12.7% 13.6%
gg — Ggk — WW (longitudinally polarised W) 12.3% 13.4%
gg — Ggx —> WW (transversally polarised W) 1.8% 1.9%
qq — Ggx — WW (longitudinally polarised W) 5.4% 5.4%
qq — Ggx — WW (transversally polarised W) 5.2% 5.8%

the case of the bulk RS model, the KK gravitons are mostly pro-
duced via gluon-induced processes and decay into longitudinally
polarised W bosons. The polarisation affects the angular separa-
tion and momentum sharing between the decay products in the
W — qq decay and thus affects the boson-tagging efficiency. To
test the impact of the polarisation, the A x ¢ values are evalu-
ated with dedicated signal MC samples initiated by only gluons or
quarks, and with W bosons either fully longitudinally polarised or
transversely polarised. Significant differences in the signal A x ¢
are observed, as can be seen in Table 1, and these may need to
be taken into account in reinterpretations of the results presented
in this Letter. Little dependence is observed on the resonance
mass. Differences in A x ¢ for gluon- and quark-initiated produc-
tion arise primarily from differences in the acceptance for selection
on the jet |n| of the two leading jets and their rapidity separation.
The boson-tagging efficiency for transversely polarised W bosons
is approximately half that for longitudinally polarised W bosons
and does not depend appreciably on the heavy-resonance produc-
tion mechanism. In the case of quark-initiated production, A x &
is similar for longitudinally and transversely polarised W bosons,
as the reduction in kinematic acceptance is approximately com-

Table 2

pensated by an increase in boson-tagging efficiency. In the case of
gluon-initiated production, both kinematic acceptance and boson-
tagging efficiency favour longitudinally polarised W bosons.

5.3. Validation

In addition to the nominal SR, several validation regions (VRs)
are defined to check the analysis procedure and estimate some of
the sources of systematic uncertainty.

The definitions of the signal and validation regions are sum-
marised in Table 2. A check of the statistical approach described in
Section 6 is performed in the three different sideband validation
regions. These correspond to the same selection as for the signal
region except for requiring the jet mass to be in one of two side-
bands. Both jet masses must be below the W boson mass with
50 < my < 60-72 GeV (low-low sideband), or above the Z boson
mass with 106-110 < mj < 140 GeV (high-high sideband), or with
one jet mass belonging to the low-mass range and the other to
the high-mass range (low-high sideband). These mass ranges are
chosen to have no overlap with the pr-dependent W and Z mass
windows applied to define the signal regions. The pr-dependent
mass windows imply a range of 60-72 GeV for the upper edge of
the lower sideband and 106-110 GeV for the lower edge of the
higher sideband.

A V + jets validation region is defined primarily to compare
the observed and simulated V + jets event yields as a function of
the number of tracks associated with the large-R jets and thereby
derive an uncertainty in the efficiency for the nyy requirement.
There is no attempt at using this validation region to constrain the
V + jets contribution to the signal regions as the total background
there is estimated from an empirical fit to the dijet mass distri-
bution. The V + jets validation region requires the presence of at
least two large-R jets with |n| < 2.0. The leading jet must satisfy
pr > 600 GeV and the subleading jet pt > 200 GeV. A higher min-
imum pr requirement is imposed on the leading jet than in the
nominal event selection to obtain a sample with higher average
leading jet pr that better corresponds to the jet pr values probed

Event selection requirements and definition of the different regions used in the analysis. Different require-
ments are indicated for the highest-pt (leading) jet with index 1 and the second highest-pt (subleading) jet
with index 2. The jet mass boundaries applied in the definition of the sideband validation regions depend

on the jet pr.

Signal region

Veto non-qqqq channels:

No e or u with pr > 25 GeV and |n| < 2.5
EIMisS < 250 GeV
Event preselection:
> 2 large-R jets with |n| < 2.0 and m; > 50 GeV
pr11 > 450 GeV and prz > 200 GeV
my > 1.1 TeV
Topology and boson tag:
[Ayl=1y1—y2l <12
A= (pt1 — pr2)/ (p11 + p12) <0.15
Boson tag with D, variable and W or Z mass window
N < 30

Low-low sideband validation region

Same selection as for signal region, except:

50 <my < 60-72 GeV and 50 < my < 60-72 GeV

High-high sideband validation region

Same selection as for signal region, except:

106-110 < m; < 140 GeV and 106-110 < m; < 140 GeV

Low-high sideband validation region

Same selection as for signal region, except:

50 <mq < 60-72 GeV and 106-110 < m;, < 140 GeV, or
106-110 < m; < 140 GeV and 50 < m; < 60-72 GeV

V + jets validation region

Veto non-qqqq channels (see above)

V + jets selection:
> 2 large-R jets with |n| < 2.0
pr1 > 600 GeV and pry > 200 GeV
Boson tag with D, variable only applied to leading jet
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Fig. 2. Leading-jet mass distribution for data in the V + jets validation region for two different ranges of track multiplicity after boson tagging based only on the D; variable.
The result of fitting to the sum of functions for the V + jets and background events is also shown, and described in the text. The error band around the fit result corresponds

to the uncertainty in the jet mass scale.

in the search. Finally, the leading jet must pass the boson-tagging
requirements based on the D, variable only (i.e. the jet mass is
not included in the tagging); no boson tagging is applied to the
subleading jet. The resulting event sample in this validation region
is approximately an order of magnitude larger than the samples
selected in the different signal regions. Fig. 2 shows the leading
jet mass distribution in the range 50 < mj < 150 GeV for events in
this V + jets validation region for nyy < 30 and nyy > 30. A clear
contribution of W /Z events is visible for ny, < 30 but it is much
less apparent for ny > 30, supporting the use of an upper limit on
the number of tracks in the signal region.

To establish the efficiency in data of the nyy < 30 selection,
the leading-jet mass distribution is analysed in eight multiplic-
ity subsamples, covering 0 < ngx < 39 in groups of five tracks
each. Events originating from W + jets and Z + jets processes are
modelled using a double-Gaussian distribution with the shape pa-
rameters determined from simulation, while background events
not originating from V + jets processes are fit to data indepen-
dently in each subsample using a fourth-order polynomial (de-
noted “Fit bkd.” in Fig. 2). The relative normalisation in each ngy
bin is controlled by a function which has a scaling parameter, al-
lowing a variation in the track efficiency. The relative W and Z
boson event contributions are fixed to the prediction from the sim-
ulation but the total W + Z event normalisation is determined in
the fit. A small upward shift in the W /Z boson peak position is
observed as ngg increases, which is well modelled by the simu-
lation. An overall data-to-simulation scale factor of 1.03 &+ 0.05 is
extracted for the nyy requirement per V jet. As this factor is con-
sistent with unity, no correction is applied.

6. Background parameterisation

The search for diboson resonances is performed by looking for
narrow peaks above the smoothly falling my; distribution expected
in the SM. This smoothly falling background mostly consists of SM
multijet events. Other SM processes, including diboson, W /Z + jets
and tt production, amount to about 15% of the total background.
They are also expected to have smoothly falling invariant mass
distributions, although not necessarily with the same slope. The
background in this search is estimated empirically from a binned
maximume-likelihood fit to the observed myj; spectrum in the signal
region. The following parametric form is used:

d_n =pi(1— X)P2—§P3X—P3’

dx (1)

where n is the number of events, x =my;/+/s, p1 is a normalisation
factor, po and ps are dimensionless shape parameters, and & is a
constant chosen to remove the correlation between p, and ps3 in
the fit. The latter is determined by repeating the fit with different
& values. The observed my distribution in data is histogrammed
with a constant bin size of 100 GeV and the parametric form above
is fit in the range 1.1 <my < 6.0 TeV. Only p, and p3 are allowed
to vary in the fit since p; is fixed by the requirement that the in-
tegral of dn/dx equals the number of events in the distribution.
This function has been successfully used in previous iterations of
this analysis [17]. Other functional forms were tested and no sig-
nificant improvement in the fit quality was observed.

The ability of the parametric shape in Eq. (1) to model the ex-
pected background distribution is tested in the three background-
enriched sideband validation regions defined in Table 2. The results
of the fits to data are shown in Fig. 3 along with the x? per degree
of freedom (DOF). Bins with fewer than five events are grouped
with bins that contain at least five events to compute the number
of degrees of freedom. The fit model is found to provide a good
description of the data in all of the VRs.

A profile likelihood test following Wilks’ theorem [62] is used
to determine if including an additional parameter in the back-
ground model is necessary. Using the simulated multijet back-
ground with the sample size expected for the 2015+ 2016 dataset,
as well as large sets of pseudo-experiments, Eq. (1) is found to
be sufficient to describe the data. Possible additional uncertainties
due to the choice of background model are assessed by perform-
ing signal-plus-background fits (also called spurious-signal tests)
to the data in the sideband validation regions, where a signal con-
tribution is expected to be negligible. The background is modelled
with Eq. (1) and the signal is modelled using resonance mass dis-
tributions from simulation. The signal magnitude obtained in these
background-dominated regions is less than 25% of its statistical un-
certainty at any of the resonance masses considered in this search.
Therefore, no additional uncertainty is assigned.

7. Systematic uncertainties

Systematic uncertainties in the signal yield and my distribu-
tion are assessed, and expressed as additional nuisance parameters
in the statistical analysis, as described in Section 8.2. The dom-
inant sources of uncertainty in the signal modelling arise from
uncertainties in the large-R jet energy and mass calibrations, af-
fecting the jet pr, mass and D, values. The correlations between
the uncertainties in these jet variables are investigated by calcu-
lating the resulting uncertainties in the yield at a variety of signal
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Fig. 3. Dijet mass distributions for data in the sideband validation regions. The solid lines correspond to the result of the fit and the shaded bands represent the uncertainty
in the background expectation. The lower panels show the significance of the observed event yield relative to the background fits taking their uncertainties into account as

described in Ref. [61].

mass points for three different configurations: “strong”, with all
three variables fully correlated; “medium”, with pr and my corre-
lated, whilst the D, is uncorrelated; and “weak”, with all three
variables fully uncorrelated. The “medium” configuration is chosen
as it results in the most conservative (largest) uncertainty in the
yield.

Uncertainties in the modelling of the jet energy scale (JES),
jet mass scale (JMS) and D, scale are evaluated using track-to-
calorimeter double ratios between data and MC simulation [63].
This method introduces additional uncertainties from tracking. Un-
certainties associated with track reconstruction efficiency, impact
parameter resolution, tracking in dense environments, rate for fake
tracks and sagitta biases are included. The size of the total corre-
lated JES (JMS) uncertainty varies with jet pr and is approximately
3% (5%) per jet for the full signal mass range. The uncorrelated
scale uncertainty in D, also varies with jet pr and is approxi-
mately 3% per jet for the full signal mass range.

Uncertainties in the modelling of jet energy resolution (JER), jet
mass resolution (JMR) and D, resolution are assessed by applying
additional smearing of the jet observables according to the uncer-
tainty in their resolution measurements [52,63|. For the JER a 2%
absolute uncertainty is applied per jet, and to mass and D, rela-
tive uncertainties of 20% and 15% are applied per jet, respectively.
The response of the D, requirement is not strictly Gaussian and
therefore the RMS of the observed distribution is taken as an ap-
proximation of the nominal width. There are sufficient dijet data
to derive jet-related uncertainties up to jet pr values of 3 TeV
[64].

The efficiency of the nyx < 30 requirement in data and MC sim-
ulation is evaluated in the V + jets VR defined in Section 5.3. The
nyy efficiency scale factor is predominantly extracted using jets

with pr &~ 650 GeV, whereas signal jets in the analysis extend to
pr > 1 TeV. Examining the distribution of the number of tracks
associated with jets as a function of jet pt reveals similar increas-
ing trends in data and MC simulation. However, the average track
multiplicity in the simulation is 3% larger at high pr. Combining
the 5% track multiplicity scale uncertainty with the ny, modelling
uncertainty leads to a total 6% uncertainty per tagged jet in the ef-
ficiency of the ny requirement. The uncertainty from the trigger
selection is found to be negligible, as the minimum requirement
on the dijet invariant mass of 1.1 TeV guarantees that the trigger is
fully efficient.

Uncertainties affecting the signal prediction are as follows. The
uncertainty in the combined 2015 + 2016 integrated luminosity is
3.2%. It is derived, following a methodology similar to that detailed
in Ref. [65], from a calibration of the luminosity scale using x-y
beam-separation scans performed in August 2015 and May 2016.
Theoretical uncertainties in the signal prediction are accounted for
via their impact on the signal acceptance. The uncertainty asso-
ciated with PDFs at high Q? values is modelled by taking the
envelope formed by the largest deviations produced by the error
sets of three PDF sets, as set out by the PDFALHC group [66]. For
the HVT model, the uncertainty ranges from 0.5% to 6% depend-
ing on the mass being tested, while a constant 0.5% uncertainty is
determined in the case of the heavy scalar and bulk RS models.
Uncertainties arising from the choice of A14 tuning parameters are
covered by producing samples with variations of the tuning pa-
rameters describing initial-state radiation, final-state radiation, and
multi-parton interactions. The uncertainty in the signal acceptance
is then evaluated at MC generator level, before boson tagging or
ngk cuts, resulting in a constant uncertainty of 3% for the HVT
model and 5% for the heavy scalar and bulk RS models.
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Fig. 4. Dijet mass distributions for data in the (a) WW, (b) WZ, and (c) ZZ signal regions, as well as in the combined (d) WW + W Z and (e) WW + ZZ signal regions. The
solid lines correspond to the result of the fit and the shaded bands represent the uncertainty in the background expectation. The lower panels show the significance of the
observed event yield relative to the background fits. Expected signals are shown for the HVT model B with gy =3 and the bulk RS model with k/Mp = 1. The predictions for
Gk production are multiplied by a factor of 10. The lower panels show the significance of the observed event yield relative to the background fits taking their uncertainties

into account as described in Ref. [61].

8. Results
8.1. Background fit

The fitting procedure described in Section 6 is applied to the
data passing the WW, WZ and ZZ selections described in Sec-
tion 5.2, and resulting dijet mass distributions are shown in Fig. 4.
The mass spectra obtained in combined WW + WZ and WW +
ZZ SRs are also shown. A total of 497, 904, 618, 980, and 904
events are found in the WW, WZ, ZZ, WW + WZ, and WW +
ZZ SRs. Approximately 20% of events are included in all three re-
gions: WW, WZ and ZZ. The requirements of the WW (ZZ) SR
are satisfied by 47% (57%) of the events in the W Z SR. The fitted
background functions shown, labelled “Fit”, are evaluated in bins
between 1.1 and 6.0 TeV. No events are observed beyond 3.1 TeV.

The dijet mass distributions in all signal regions are described well
by the background model over the whole range explored.

As a test of the background model, the fit is also performed on
dijet mass distributions obtained with no boson tagging applied
but with weights corresponding to the probability for each jet to
satisfy the boson tagging requirements. This probability is derived
from the data as a function of the jet pr and the resulting fits are
consistent with the nominal background fits within uncertainties.
The use of untagged data allows to validate the model with a suf-
ficiently large number of data events up to dijet masses of 6 TeV.

8.2. Statistical analysis

The final results are interpreted using a frequentist statisti-
cal analysis. The parameter of interest is taken to be the signal
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Fig. 5. Upper limits at the 95% CL on the cross section times branching ratio for (a) WW + W Z production as a function of V' mass, (b) WW + ZZ production as a function
of Ggx mass, and (c) WW + ZZ production as a function of scalar mass. The predicted cross section times bran_ching ratio is shown (a) as dashed and solid lines for the
HVT models A with gy =1 and B with gy = 3, respectively, and (b) as a solid line for the bulk RS model with k/Mp = 1.

strength, u, defined as a scale factor to the number of signal
events predicted by the new-physics model being tested. A test
statistic A(u), based on a profile likelihood ratio [67] is used to
extract information about p from a maximum-likelihood fit of the
signal-plus-background model to the data. The likelihood model is
defined as

L= 1_[ PPOiS(anslnéxp) x G(o) x N (8),
i

where Ppois(nf)bsmgxp) is the Poisson probability to observe nf)bs
events in dijet mass bin i if néxp events are expected, G(«) are a
series of Gaussian probability density functions modelling the sys-
tematic uncertainties, «, related to the shape of the signal, and
N(0) is a log-normal distribution for the nuisance parameters, 6,
which model the systematic uncertainty in the signal normalisa-
tion. The expected number of events is the bin-wise sum of those
expected for the signal and background: nexp = nsig + npg. The ex-
pected number of background events in bin i, ngg, is obtained by
integrating dn/dx obtained from Eq. (1) over that bin. Thus, nyg is a
function of the background parameters p1, p2, and p3. The number
of expected signal events, ngjg, is evaluated based on MC simula-

tion assuming the cross section of the model under test multiplied
by the signal strength w.

The significance of any deviation observed in the data with re-
spect to the background-only expectation is quantified in terms of
the local po value. This is defined as the probability of fluctuations
of the background-only expectation to produce an excess at least
as large as the one observed. The largest deviation from the back-
ground model occurs in the ZZ SR for a heavy scalar with mass
of 2.4 TeV. The local significance of this deviation is 2.0 o and the
corresponding global significance is less than 1 o. No statistically
significant excess is observed and upper exclusion limits are placed
on the cross section times branching ratio for the production of
heavy resonances decaying into diboson final states. A correction
to account for the branching ratio of V decays into hadronic final
states is applied in the results below. The limits are set with the
CLs method [68] using large sets of pseudo-experiments.

Limits on o x B are set in each combined diboson channel as
a function of the resonance mass. The HVT models A and B with
degenerate W’ and Z’ are used as benchmarks for the combined
WW + W Z signal region, and the bulk RS or heavy scalar models
are used for the WW + ZZ signal region. Fig. 5(a) shows the ob-
served limits on the production of a spin-1 vector triplet as a func-
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Table 3
Observed excluded resonance masses (at 95% CL) in the individual and combined
signal regions for the HVT and bulk RS models.

Model Signal region Excluded mass range [TeV]
HVT model A, gy =1 ww 1.20-2.20
wz 1.20-3.00
WW+wz 1.20-3.10
HVT model B, gy =3 ww 1.20-2.80
wz 1.20-3.30
WwW+wz 1.20-3.50
Bulk RS, k/Mp, =1 ww 1.30-145
zZZ none
WW +27Z 1.30-1.60

tion of resonance mass in the WW + W Z signal region. A spin-1
vector triplet with couplings predicted by the HVT model A (B)
with gy =1 (gy = 3) is excluded in the range 1.2 <m(V') < 3.1
(1.2 <m(V’) < 3.5) TeV, at the 95% confidence level (CL). Fig. 5(b)
shows the observed limits on the production of a Ggk as a func-
tion of m(Ggg) in the WW + ZZ signal region. Production of a
Gy in the bulk RS model with k/Mp; = 1 is excluded in the range
1.3 < m(Ggg) < 1.6 TeV, at the 95% CL. Fig. 5(c) shows the ob-
served limits on the production of a new heavy scalar as a function
of m(Scalar) in the WW + ZZ signal region. Table 3 presents the
resonance mass ranges excluded at the 95% CL in the various signal
regions and signal models considered in the search. In the search
for heavy scalar particles, upper limits are set on o x B at the
95% CL with values of 9.7 fb at m(Scalar) =2 TeV and 3.5 fb at
m(Scalar) =3 TeV.

9. Conclusions

This Letter reports a search for massive resonances decaying via
WW, WZ and ZZ into hadrons with 36.7 fb~! of /s =13 TeV
pp collisions collected at the LHC with the ATLAS detector in
2015-2016. The search takes advantage of the high branching ratio
of hadronic decays of the vector bosons and covers the resonance
mass range between 1.2 and 5.0 TeV. In this kinematic range, the
vector bosons are highly boosted and are reconstructed as single
large-radius jets that are tagged by exploiting their two-body sub-
structure. The invariant mass distribution of the two highest-pr
large-radius jets in each event is used to search for narrow res-
onance peaks over a smoothly falling background. No significant
excess of data is observed and limits are set on the cross section
times branching ratio for diboson resonances at the 95% confidence
level. In the case of the phenomenological HVT model A (model B)
with gy =1 (gy = 3), a spin-1 vector triplet is excluded for masses
between 1.2 and 3.1 TeV (1.2 and 3.5 TeV). For the bulk RS model
with k/Mp; =1, a spin-2 Kaluza-Klein graviton is excluded in the
range between 1.3 and 1.6 TeV. Upper limits on the production
cross section times branching ratio for new heavy scalar particles
are set with values of 9.7 fb and 3.5 fb at scalar masses of 2 TeV
and 3 TeV, respectively.
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