Single Shot Electron Diffraction on VELA

Mark Surman
Multi-MeV beam Electron diffraction

- Higher elastic scattering cross sections than X-rays
- Smaller energy transfer to sample than X-rays thus reduced sample damage
- Multi MeV beams provide sub-100 fs bunches with 1 pC charge (not possible at lower energies)
 - Dynamics time scale of making / breaking bonds
 - Pump – probe velocity matching
- Sufficient charge for single shot diffraction
Polycrystalline Al (DL)
1 sample grid only

Polycrystalline Au (DL)
1 sample grid only

Graphite particles (Agar)
1 sample grid only

Au single crystal
(Agar)

Uncoated TEM grid

Polycrystalline Au (DL)
2 sample grids stacked

Graphite particles (Agar)
3 sample grids stacked

Au single crystal
(Agar)
First diffraction patterns from VELA 4 MeV/c

York Platinum sample.
Sum 1000 shots at <1 pC
Au(poly) on VELA

Au(poly) on REGAE
Single Crystal Gold
Au(100)

Single shot,
40 fC transmitted
BUNCH LENGTH MEASUREMENTS USING A TRANSVERSE DEFLECTING CAVITY ON VELA

J.W. McKenzie, S.R. Buckley, L.S. Cowie, P. Goudket, N.J. Jenkins, B.L. Miltisyn, A.J. Moss, A.E. Wheelhouse, STFC ASTeC, Daresbury Laboratory, UK
G.C. Burt, Lancaster University and the Cockcroft Institute, UK
A. Wolski, University of Liverpool and the Cockcroft Institute, UK
Summary

• Succeeded in single bunch, ultra low charge diffraction from simple samples.

• Not yet observed dynamics
 • Pump laser conflicts

• Know how to reduce bunch length e.g move sample closer to gun
 • Conflict

• Need external science leader
Double-shot MeV electron diffraction and microscopy

P. Musumeci, D. Cesar, and J. Maxson
Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
(Received 14 March 2017; accepted 1 May 2017; published online 19 May 2017)