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DLW overview

* Dielectric-lined waveguides (DLW)

Around since 60s, applications to
communication and data transfer.

Wakefield application came in mid-to-late
1980s, see W. Gai.

First experiments in early 90s.

Fundamental mode is a deflection mode
which has limited their use for e.g. collider
applications.
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Beam-driven Wakefields

e Charged particles can excite modes in
DLWs.

« Assuming an on-axis electron bunch, the
excited TM (accelerating mode) can be
calculated with the convolution of the
current profile with the Green'’s function of
the structure.

e The spectral content of the electron bunch
determines the mode coupling and i.e.
wakefield amplitude to a particular mode.
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Self-Wake Interactions at Low Energy

* Photo-Injector Source:

— ~ 100 Amp currents.

— < 10 MeV energy out of gun (L-Band(1.3GHz - 60 MV/m) vs
S-Band(2.856 GHz - 140 MV/m), X...)

— Emittance at um-level. Brightness effectively determines the

* Ballistic bunching, shaping+
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Density modulation at 1 THz

* S-Band Gun

DLW parameters (a, b, €, L) =(350
um, 363 um, 5.7, 11 cm)

F. Lemery and P. Piot, PRST 17, 112804 (2014).
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500 GHz DLW - (350 um, 393 um, 5.7)
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Experiment at PITZ

Setup allowed for precise beam alignment
and transmission through DLWs:

"DLWs holder equipped with YAG:Ce
screens

"Gun quad system improved beam
symmetry and enabled full transmission

“Two steerers between gun and DLW.
"PITZ flat-top pulses improved results
significantly.
» Coated DLW (4 = 1.03 mm)
(a,b,L,€,) = (450 um, 550 um, 5 cm, 4.41)

* Uncoated DLW (4 = 1.60 mm)
(a,b,L,€.) = (750 um,900 um, 8 cm, 4.41)
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Experiment at PITZ
o Excellent machine

> HIGH1.Scr1 measurements

preparation before 7 HEON mesewemens | -
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» Engineering support
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Wa S fa nta Stl C 9 S I m p I e ) gg‘l’":‘se":’:n el E-beam at LOW.Ser3/HIGH1.Serl (BSA=2.0mm) ' > Some measurements for the DW experiments at PITZ have been taken:
e . = Pgun=6 4MW -»Pz=6.5MeVc at MMMG phase
D LW m O u nt Wa S = BSA=2.0mm and 4.0mm (rough), laser is rather inhomogeneous for larger BSAs
®
nlaced in actuator
nolder.

= Qbunch=1.1nC - no problem with charge production
> Electron beam transverse distributions
= At LOW.Scr3: focus ~200 (300)um rms for BSA=2.0(4.0)mm at Imain~-4004

Xrms=0.89mm 7 = Beamis X-Y asymmetric (as usual)
¥rms=0.85mm

= Rather large beam for these settings at HIGH1.Scr1 with nominal booster settings

> Measurement program to be refined:
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Experiment at PITZ 03] DLW in

_____________________ - ~120A

Demonstrated the formation of ~ps
bunch trains at ~6 MeV with resolution
limited peak currents up to ~150 A

current (arb. units)

Directly measured the longitudinal
phase space downstream of the DLW

structure DLW in

Passed a bunch train with up to 200 (coated) g

bunches per pulse through the structure
and monitored energy modulations

no dynamical effects observed.

energy




Control of longitudinal phase

* Booster phase provides a
knob to control the
longitudinal phase space
correlation

* Possible applications as:

* an injector for multicolor
radiation source (e.g. FEL)

* Time resolved ultrafast
electron diffraction (UED)
single-shot!

momentum—>



Test 4. Full simulation of dielectric insert.

Longitudinal phase space
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Future DLW possibilities at PITZ
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Passive Compressor for _=
beam-driven applications &

Bunch larger portion of the bunch (50%)

Extremely scalable: higher charge — longer
bunches = larger structures.
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THZ RADIATION 100

* Microbunched beams have A |
—_ | | | | | || TN ol | i » I ’
excellent bunch form factors ~ & T o]
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— Using two DLWs of same (or
higher harmonic) frequency.

— Or undulator.



Solenoid #1 Solenoid #2
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"\ —2-particle

% O Multiparticle
% ---Fixed Q=1nC
1L % - Fixed Q=10nC
"----Fixed Q=100nC

Choice of Structure

stable region .=
ocylindricalDlW 4 L
OLargest gradients
OCylindrically symmetric ( round beams )
OBeam breakup (BBU) (C. Li et. al PhysRevSTAB.17.091302) o
©
0Slab DLW 10
OSlightly less gradient ~ (80 % cylindrical) %
OCylindrically symmetric ( round beams ) % 'T'\
OSignificant dipole suppression :'10“ ’
OA. Tremaine et al., Phys. Rev. E 56, 7204 (1997). 5
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10 10 107

peak accelerating field (MV/m/nC)



THANKS!

 Thanks to the fantastic support of the PITZ team ! Your hard
work and smart minds made this experiment go very smoothly.

e Papers in preparation, intend to submit to PRL.



