

European XFEL procurement strategy – lessons learned

Detlef Reschke – DESY (with J. Iversen, A. Matheisen, H. Weise)

FEL Cavity production: Preparation Phase

- Define final cavity design
 - => TESLA design with minor design changes
- Establishing surface treatment recipes
 - => based on app. 50 prototype cavities
- Industrialization of main Electropolishing surface treatment
 - => set up of EP facilities at 2 companies
- Preparation of detailed specifications
 - => mechanical fabrication, surface treatment, HT integration, transport concept
- Finalize a concept for documentation and data transfer
- Qualification + selection of Nb / NbTi material vendors in 3 steps => 2 new companies
- Concept for fulfilling PED requirements
- Establishing "Long pulse" vertical acceptance test
 - => protect HOM feedthroughs
- Single-cell cavity R&D program (several aims)
- R&D on Large Grain Nb material

Courtesy W. Singer

Cavity production

- Contract allocated to Research Instruments (RI, Germany) and E.Zanon (EZ, Italy) in equal shares end 2010:
 - 560 series cavities
 - 24 cavities w/o He-tank for QC and further R&D (EU funded: "ILC-HiGrade")
 - Option: 240 series cavity
 Order allocated end 2012/beginning 2013 in equal shares
- All Nb / NbTi material provided by DESY (~ 24420 pieces)
 => includes ordering, PED-applicable QC + parts tracking, shipment
- Order placed following "Build-to-Print" strategy:
 - Production has to follow specifications precisely
 => close supervision by expert team + frequent visits + regular reporting (no resident expert at vendor)
 - No performance guarantee by vendors

Cavity Surface Preparation

- **Two schemes** for the final surface treatment:
 - E. Zanon: Final 10µm BCP ("BCP Flash")
 - Research Instr.: Final 40µm EP

Successful mechanical production and surface preparation at both

No performance guarantee resulted in DESY taking responsibility for:

- the risk of unexpected low gradient or field emission
- retreatment

(good cooperation/agreements with both vendors)

Quality Management + Documentation

- Key technical documents: Technical Specifications + Change Reports
- Quality Process based on Quality Control Plan (also for PED) including:
 - Vendor internal QA, QM system
 - Microsoft Project Plan for tracking of progress + schedule
 - Non Conformity Reports NCR: Documentation of all NC's including a proposal for correction procedure
 - Stepwise release of production (Acceptance Levels 1, 2, 3)
- All production documents (specifications, protocols, PED data, etc.) recorded electronically in data management system (EDMS)
- Data analysis in cavity data base

Request Tracked e-mail communication ("tickets")

Courtesy W. Singer

_ Lessons Learned

- Concept of Preparation Phase successful
 - Pre-Qualification of cavity vendors and Nb/NbTi suppliers important
 - Surface treatment recipes worked well
- Communication with cavity vendors and notified body of upmost importance
 - Trustful cooperation from tendering until (beyond) last cavity extremely helpful incl. solving problems together
 - Frequent meetings + visits; request tracked e-mails; good balance between personal contact and well-defined documentation; ...
 - Rough estimate: team of about 20 colleagues (INFN Milano + DESY)
- Specification successful => make it precise wrt. to critical values and tolerances, but keep the infrastructure as generic as possible
 - Few mechanical tolerances to tight (inner cell shape)
 - RGA spec for m>50 to tight (modified on request from 1:1000 to 1:300)

Lessons Learned II

- Effort of documentation and data transfer underestimated
 - Started late and not enough man power available
 - Post-documentation required a lot of additional effort
- Provision of "Cavity Tuning Machine" and "HaZeMeMa" by DESY
 - Successful, but labor-intensive (now used for LCLS2, Mesa, Tarla cavities)
- Pores in longitudinally welded Ti "2-phase pipe" caused significant rework
 - Lonigitudinally welded pipes fulfilled Spec + PED, but during orbital weld pores "widened up" => out of PED => surprise, surprise ...
 - Solution: Rework with seamless pipes

XFEL Additional slides

FEL Transportation + Incoming Inspection

Transportation:

- "Cavity ready for test" requires well-defined transport concept
- Transport under vacuum=> avoid particle transport
- Dedicated boxes for horizontal transport by truck (Vendor => DESY => Saclay)
- No performance degradation observed

Incoming inspection at DESY

- Basic mechanical, electrical, RF checks + final vacuum leak check before test
- Idea: Check for damages during transport
- Found: Assembly errors + contaminations
 - Mechanical + electrical damages
 - Few leaks
- Incoming Inspection is mandatory

=> 54 Cv's back to vendor

XFEL 2-Phase Line (Service Pipe) Repair Work

RF Measurement and Field Flatness Tuning using DESY-provided Tools

- ■Both machines ready to be used at the companies (CE certified).
- Machines can be operated by Non-RF-Experts.
- **■**Considerably shorter measurement / tuning time.
- Automation and documentation guaranteed.

