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0. INTRODUCTIOCHN

During the last ten vears, quantum field theory and classical sta-
tistical mechanics have merged into a sincle subject and the same me-
thods are used in both fields. Accordingly, speaking of nonperturbative
methcds in quantum field theory one usually means methods of classical
statistical mechanics {other than standard perturbation theory). This
includes the Monte Carle method. Since this method is covered by other
lectures at the scheol, T will conéentrate on analvtical methods, chiefly
expansion methods. For illustraticn, applications to some models - ferro-
magnets and pure Yang Mills theory on a lattice - will be discussed.
Presentation of this material covered the first 3 lectures at the school.
For further reading I recommend E. Seilers book {1]. The 4-th lecture
dealt with the effective Z(N) theorv (vortex condensation theory) of
quark confinement, It is omitted in these notes, see refs. Za. Tests
of this theocry by Monte Carlc computations were performed by Pietarinen
and the author [2b]. -

In classical statistical mechanics and Euclidean guantum field
theory one wants to compute partition functions (-ee energies} and
correlation functions. This involves computation of «-dimensicnal in-
tegrals [ in the --volume limit). Expansion methods to achieve that fall
into two categories

a) sinple., By a sulitable expansion, the whole problem is reduced
to the computation of finite dimensional integrals.

b} sophisticated: The integration variables are divided into droups.
(OCften this step is preceded by variable transformaticns, and sometimes
by use of integral representations “or some of the factors in the inte-
grand, such as a Kramers Wannier duality transformation). Then the
groups of variables are treated individually (one after the other} by
suitable expansion methods of type a) (high temperature expansions, low
tesperature expansions, Maver expansions, cluster expansions of ccn-
structive field theory [3], to nparne the most important ones) . Renorma-
lization group caloulations [4] fall into this cateqgory, they involve

many idencical steps of type a). More genorally, after scome of the

¥ Lectures presented at the Artic Summer School, BEkidslompclo (Finland)
August 1982

integrations are done, the integrand Z still depends on the remaining
groups of variables. Zn & 1is then called an effective action. The pro-
cedure amounts to compute a sequence of effective actions by suitable
expansion methods.

Quite complicated systems have already been analyzed by this method,
and significant progress is still being made. Here are some examples.
Glimm, Jaffe and Spencer [5] have developed a method to deal with field
theories with spontanecusly broken discrete éymmetry, it uses a combi-
nation of low temperature - and cluster expansions. Brydges and Federbush
have established Debye screening in very dilute 3-dimensional Coulomb
gases [6]. Fréhlich and Spencer were able to analyze the Kosterlitz
Thouless phase of the two-dimensionale plane rotator model [7]. Gépfert
and the author have proven confinement of static guarks in 3-dimensional
U(1) lattice gauge theory for all values of the coupling constant (8] .
{The res®ts of this work will be described in lecture 3.) Finally,
Gawedzki and Kupiainen have announced a rigcrous renormalization group
treatment of the dipole gas and anharmonic crystal [9]. This was a par-
ticularly difficult problem because it requires an infinite number of
rencrmalization group steps to determine the long distance behavior of
correlation functions. All of this was achieved by combinétion of stan-

dard expansion techniques of classical statistical mechanics.
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1. EXPANSION METHODS

The derivation of any expansion for a free enerqy or correlatiocn
functions may be divided intc two steps: i) transformation of the model
intoc a'polymer system, and ii) application of expansion formulae for
polymer systems [10]. Different expansions (for instance high and low
temperature expansions) are based on different transformations into
polymer systems, while the second step ii} is always essentially the
same. I will illustrate the method first at the example of high tempe-
rature expansions for pure Yang Mills theory on a lattice. In the course
of this discussion I will also review the proof of confinement of static

quarks for strong coupling [11].

T.7. High temperature expansions,

and reasons to hope that their intrinsic limitations are not more
stringent than those of the Monte Carlo Methed if suitable "partially
summed" expansicns are used.

Sites, links,plagquettes, cubes of the lattice will be denoted by
X, iy p, ¢ respectively. In pure Yang Mills theory on a lattice, the
basic variables U2 are attached to the links I of the lattice, they are
unitary matrices in the gauge group

Let C be a closed loop which consists of 1inks ¢ Lo Then the

1

paraliel transporter arcund C is defined by UC = UQ . UQ . In par-
i i
ticular, the boundary %p of a plaquetté consists of four links 11 . £4
and U = U, ... UF .
Ip w1 “4 k

Let D" be some representation of the gauge group, and Xy T tr D
the corresponding character. According to Wilson, static quarks which
transform according to representation Dk of the gauge group will be
confined by a linearly rising potential ar if the Wilsqn loop expectation

value <x, (U.) > obeys an area law [12],
<% (Up)> ~ expl-wa]

where A is the minimal area of a surface whose boundary 1is €. a is called
the string tension.

It will be usefull toc consider partition functicns %(X) that are
associated with subsets X of the lattice A. The acticn for such a subset
X in a typical pure lattice gauge theory model is

L () =PE£X2?F,(U) (o)

Summation extends only over those plaguettes p in A whose corners are
all in X.

IP(U)=%*U3P+CO"S£- for the SU{2} Wilson action (1.2)

The partition function Z(X) for an arbitrary sublattice XcA is defined
by

Ly (1)
= du X
2(x) SHX 1 € (1.3

The Wilson loop expectation values on A read in this notation

Lalu} .
= L \1rdu n
<Xk(uc)> Z(/\)Eie/\ 1 xt(uc)e (1.4)
Reformulation as a polymer system.
One writes
Lo ()
e” P = 4-+ﬁP(U) ) (1.5)

considerS'fp as "small", and expands in products of £ 's

Ly (U) .
¢ =1>]el><[H£"°(U)] i 1+13>:_5ng fp(u) {1.6)

Summation is over all nonempty sets B of plaguettes p on X; BiX is a
somewhat imprecise short hand notation to keep track of this restriction.

The partition functions become

. ™
400 1+BZ§X Sz?xd“x pex (W) (1.7)

Next one decomposes B intc connected pieces P, they will be called

polymers. A set B is said to decompose into two disjoint subsets B1 and

BZ if no plaguette p in B1 shares a link in its boundary with a plaquette
p' in Bz. A nonempty set P of plaguettes is called connected, or a polymer,
if it is not a union of two nonempty disjoint subsets B, and B,. Examples

1 2
are shown in figure 1.




I will use the symbcol I

for union of disjoint sub- . EE:]:]

sets.
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For polymers P ohe de-
A(P) by

;

fines "activities" not a polymer

pol.\J mer
Figure 1

A(P)=JT\'d {(1.8)

IpePf

". ¢P" is shorthand for "¢ is a link in the boundary of a plaguette p in PV

If 8 decompoes into disjoint pieces Pi' then the integral 1in eq.
1.7) factorizes. {If © is not in the boundary of any plaguette pe€B then
the integration over U, is trivial and gives a factor 1 because the Haar

measure dU. is normalized.} Therefore

2()= 1+ L I TARD

FeePN N DR OY (1.9)
IREX

Let us temporarily write X jfor the set of all plaquettes on X. Summation

(1.9}
and empty plaguettes.

in eq. extends over all partitions of X, into disjoint polymers
The reader is invited to think of a chessboard as
Xa and of an ample supply of polymers that are cut out of card boarad,
Each polymer can cover a certain number of plaguettes {sgquares) on the
chessboard. Any union of squares that ¢an be cut out of card board with-
out falling apart is a polymer. A certain weight p(P) can be given to
every such polymer by glueing pieces of lead on top af them; polymers
of the same shape are not distinguished and should have the same weight.
The

rule is that no squares may be covered by more than cne polymer, and

Now the chessboard can be covered or partly covered by polymers.
no two polymers may touch along a line. (They are allowed to touch at
corners.) Every such covering adds a contribution expi{total weight of
all polymers on the chessboard) to the partition function.
are A(P ) = e”(p)

An expression of the form (1.9)
polymer system.
not necessarily positive, but it is always required that Z(X) is positive
for all X. In our applications to lattice gauge theory this requirement
ts fulfilled by definition ({1.3) of Z({X).

The activities
in this example.

is calleg partition function of a

It is sometimes useful to admit activities which are

Extension to Wilson loops,
Suppose the loop C consists of links " m 59 that U, = U, U

The same steps that lead te eq. (1.7) give

_5_

Z{AM)<x, (UDYY = S(T:Adul Xk(Ug )]1+Z

peB ﬁ }

(1.10]}

We want to exploit the factorization properties of the integral again,

to do so we introduce a suitable new definition of polymer. Every set B

of plaquettes on & specifies a set of n+t % 1 polymers. We decompose B

into connected pieces as before. Polymers PO consists of all {possibly

none) those connected pieces of B that touch the Wilson loop C along a
link. An example 1s shown in figure 2. It is convenient to consider the
links in the loop C as part of PO also. (It can happen that PO consists
only of C.)
%7%@%% 7
4//, ///2/& P - loop ¢ and disp}ajcd ‘Jolo.cfueﬂcs
Ll 1 Yl
A//‘ ,;;}_? e ///,/é )\-ﬁ, v shaded 'Plaqueﬂes
[ "%, | %%
17
y 77
/// Tapivinini s i
figure 2
P], ey Pn are the other connected pieces of B. They do not touch the

loop C along any link. An activity KC[PO) is defined by

k. (7)) = ST du, %, (U) ﬁP(U) (1.11)

The activities of the other polvmers which do not touch C are defined

by eg. (1.8} as before.

BProceeding as in the derivation of eg. {(1.9) one obtains

n
ZM<x (U = 2 K (RYTT AR) (1.12)
n30 (7,70 e
An ernty product, which arises when n = {, is read as 1. Summation is

over partitions of A into disjoint polymers Po' R Pn The loop C is

considered as part of PO, and disjoint means that different polymers may
not overlap or touch along a link.

The next step is a partial resummation [11]: One sums over all

those partitions (PO, P Pn} with a fixed Py They are in cne to
.o P of A= P LA - D
consists ef all those plaguettes on A which do not touch Py along a tink

I
one correspondence with partitions [P1
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(see figure 2). Making use of eq. (1.9) the result of this partial re-
summation takes the form
Z (A-B)
<%, (U = }% Ty K. (R) (1.13)
=]

Summation is over polymers PO as described above; they contain the path C.

Proof of confinement of static quarks (with nontrivial
A R T S Aenrrivras
transformation law under the center of the gaudge group )
TS g el TAE center of the dauge group

for small B (strong ccupling) [11].

To be specific, let us consider a theory with gauge group sU({2)
and Wilson action. I choose the additive constant in expression (1.2)
for Ip so that

IP(U)zfzi[&uaP»fz] 0 (1.14)

Then

[op4 U) € =
fp V) f (1.15)
for a constant 3 z 1 and sufficiently small B. Since integrations over

U. for #¢X are trivial, expression (1.3} for Z{(¥) is equivalent to

z(xy= § 1 dy, 7 1 (0]

with

[

~ | .F if pe X
N { g

O otherwise

Since fp % 0 it follows that

0<2(x) ¢zZ(A) Jor XA

Consequently, eqg. {1.713) tells us that

[ <, ()]« Z 1K, (@] (.16)
3

]

The crucial question is now: For which P, is KC(Pé) # 0? Here the center
of the gauge group comes in.

The center  Z, of $U(2} consists of the two matrices * 1, and the

- 7 -

character X of the (2k+1}-dimensional representaticn of 5U(2) obevs

2k
4 (FU) = 0 (U) (A
The static quarks transform nontrivially under the center of the gauce
group 5U(2) if they have fracticnal colour-isospin k = %, %, It
follows from eg. {1.17} that
Ke(R) =0 (1.18)

unless F, contains all plaquettes in a surface with boundary C,

Idea of the proof of assertion (1.18) {1ﬂ . Suppose PO leaves a hole.

Then I can find a coclosed set T of plaguettes which winds arcund C and
shares no plaquette with Po' "Coclosed” means that every 3-dimensional
cube in A has an even number of plaguettes in PO in its boundary., An
example is shown in fig. 3.

Because T is coclosed,

there exists a variable trans- -C
formation CQ ﬁ D U U ﬂ &
Ug“"U{’=U4?1 Y e, (1.19) - g —
P Pare Patorg
with the propertv that é > L7 UT
L7 7
- Uy, i per 000006
UBP** { (1.20)

UBP otheruise figure 3

For instance, 1f T is as in

figure 4, one chooses y = -
for ‘28, and Y o= +1 otherwise. CQQUUUO&
Moreover, since T winds around PV A B S g PeT
C, the transformation takes LTSS LT
LRSS ~des
, Vaaw gl 4P P SV
Uc— Ug= ~U, ti.21) Par QPN PN

“oaddade”

figure 4

Finally, because of invariance

of Haar measure

4

dut = dul (1.22)

Since T does not intersect PO, fp{U) = £ _(U') for pEPO.
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On the other hand, because of eq. {(1.17), xk(U'c} - xk(UC) if
k = %, %, Therefore the integrand of expression (1.11} for KC(PO}
changes sign under the above variable transformation., In conclusicn,
KC(PO) = 0 if P leaves a hole, g.e.d.

If the static guarks carry integral isespin k = 1, 2, ... then

assertion (1.17) doces not hold. In this case KC{POJ # 0 for Pd as shown

in figure 5b,

r T
—1p —
i L 11 ° L |-
r C +
b 1 L 1A
a) k= 'T b) k=1
fig. 5 leading contributions to (1.13)
Now we return to inequality (1.16). Suppose that C bounds a rectandle

if size L T. Then a surface with boundary C contains at last L - T

plaquettes. Therefore (1.18) implies that

J<n, (udyl o« é | Ko (B

Q
1Py LT
if k = %, %, ... . 1 write |PO for the number of plaguettes in P_.
Since sdu. = 1 and 0 < fp g wp, if follows from definition (1.171)
that
P
LK (P < 'Xk(") (“[3) {(1.23)

Finally we need a combinatorial estimate. It is a corollary cof Eulers
solution of the K&nigsberg bridge proklem [14] and says that the number

of polymers Po with a given number n =

i?o of plaguettes is bounded by
x‘]\c‘*n

, where € is the length of C (= 2{(L+T}} and x, is some con-

stant. It follcws that

c)

<, (U (e, 307 2, (0

"

I o=,
ny LT

= x;'C; (31){/5 )L-T (1- uu.‘[i)‘1 »xk(ﬂ

- LT
const - “1ICI e %a {1.24}

L

if B is small, and k = %, %,

the promised area law. If k is integer, the contribution of the polymer

, with a, = —h\xx]ﬂ » 0., This is
PO of figure 5b produces a perimeter law.

MBbius inversion [15]

So far we have obtained only an upper bound on the Wilson locop
expectation value. If one wants to actually qalculate <xk(UC)> one needs
Z(X)/2(A) for subsets XeA since

. _ z (A-B) 3
<X ()2 % Z{ry © %

by eg. (1.13). This leads us to ask for expansions for free energies

-:n Z{X), since

z(x)/Z () = exP[inZ(X)*ﬁnZ(/\)-] (1.25)

7Z(¥) has been exhibited as partition function of a polymer system
in eq. {1.9), for XcA. From now on we will regard X and A as sets of
claquettes. We look for a "Lagrangean" L(Y) of our polymer system which
is defined for all subsets ¥cA and has the property that

az (%) = Z LY (1. 26)
YeX '

L(Y) is uniquely determined by this equation, since it can be inductively
computed from it. The explicit inversion formula is given in eq. (1.27)

below. Eq. (1.26) provides an inductive specification of localization of

Zree energy . -L(Y) is the part of the free energy of a system in Y that is

spread out throughout ¥, i.e., equal to the free energy in Y minus whatever
part of it is already localized in some proper subsets of Y.

The inversion formula for L{(Y}) reads

. 1¥1 - 1w
L(Y) = 2 'Q‘Yw An Z(W) ¥ty &YW - (-4}
weY (1.27)
¥’ = number of plaquettes in Y. L{Y) has the important property that
Li(Y) = 0 if ¥ is not polymer-ccnnected. (1.28)

v is "not polymer connected" if it is union of two nonempty subsets Y1,

[ such that there exists no polymer which is a subset of ¥ and intersects
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both Y1 and Yz. We say that Y1, Y2 are "polymer disjoint” in this case.
The M&bius inversion formulae (1.26), (7.27) have been known for

a long time, but they appear to be not as generally known as they ought
to be. We pause to give the proof of (1.27} and (1.28}.

The proocf of eq. (1.27) proceeds in two steps, First one notes
that
t 4f x=x%'
1 =
Loy, =
Y . 0 ow\zrm'se £1.29)
Xevyex

Then one uses this to show that expression (1.27) statisfies (7.26). By
uniqueness of L{Y) it must therefore be true. Inserting (1.27) into
[1.26}) we cbtain

vhs of (126) = % QYW&Z(W) = In Z{x)
yex

by eq. {1.29}). The proof

we ﬁ%?ﬂ

Let s = X, t = X'', n IY' be the number of plaquettes in X, X', Y,
respectively. Then 8., = (-1077%. v is fixed by selecting n-s elements
of X'-X. This can be done in (E:z) ways. So
n-s $-3 t-s kooL_g
dhs of (12a) = 2 (-0 (h_s) = 2 (-1) k)
n k=0
s¢ng¢k

) (4f4)k_s _ { t af t=s

O otherwise

Since X¢X', t = s implies X = X'. 0O
Next, I give the prcof of (1.28). Suppose that Y is not polymer

connected, so that it is unicn of two pol-mer disjoint subsets ¥ Y

‘I’
Let ¥ be anv subset of ¥, Then X1 = Y1 N ¥ and X2 = Y2 1 X are also

polymer disjeint if they are both nonempty. It follows from formula

2-

[(1.9) for the partition function that in this case

Z(x) = Z(X1}Z(X2)
If X1 or x2 is empty, the same is also true because Z{¢) = 1. From its
definition it follows that SYX also factors: BYX = aY1X1aY2Xé Therefore

Lv) =L Z %, d o [z () Az (x)]
Y X_CY. HX, MK, 1.30)
KN A5y (.
Y1 and Y2 are nonempty by hypothesis. It follows from eg. (1.29) with

X = empty set that both terms in (1.30) are zero. Thus L{¥) =¢. O

eg. (1.29) follows from the binomial theorem.
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Use as an expansicn formula

I propese to use eg. {1.26) as an expansion formula for the free

energy

An 2 () = 5 L)

(vyex}

(1.286)

To obtain a useful approximation for the free energy of an arbitrarily
large system X, cne should truncate the sum over Y. For instance, one
may consider omitting all subsets ¥ with a diameter bigger than some d.
To use a truncated expansion {1.26) for computational purposes, one
has to compute LY} for small sets Y from eg. (1.27) combined with eq.
(1.9} for Z(W), see eg. (1,32) below. Both eguations involve finite sums.

Expansion {1.26) has the essential property that it is a finite
sum for a finite lattice X. It can therefore be expected to converge fast
for an infinite system if the polymer system has no long range corre-
lations. This is in sharp contrast with the standard high temperature
expansions {s. below). They involve infinite sums on finite lattices X
already, and thev may diverge on a finite lattice. Their divergence is
therefore not in general indicative of any kind of long range corre-
lations in the polymer systems. This is important for instance in the
SUI(Z2) lattice gauge theory model (1.2). This model is thought (or hoped)
not to have infinite range correlations for any finite value of the
coupling parameter (. Nevertheless the standard high tempera-
ture expansions appear tc diverge cutside the strong coupling regime
B < 2.2. It is noped that use of the expansion (1.26) offers a way to
overcome this limitation. As we shall see in the next subsection, {1.26)
may be regarded as a partially summed form of the standard high tempe-
rature expansions.

In the expansions (1.26) we expect "divergence" {or very slow
convergence) only if the polvimer system has leng range correlations,

for instance
Z{A-A-B)

7z {A-A) Z(A-B)
- o] (1.31a)
FAGY) 2 T Z(A) fa

when distance [A,B) -+ =

that is

Z{(A-A-BYZ (A)

SN ATRILAVYS - 2 L{¥) 0 (1.31b)
Z(A-A)Z (A-B)Y s

Y
AUBCYEA



_‘12_
The r.h.s. of eg. (1.31b) involves the sum cver (large) polymer—-connected
cets Y that contain both the widely separated subsets A and B. Ex-

pressions of the form on the r.h.s. of {1.31a) are called reduced corre-
lation functions in the theory of polymer systems o]

The relation between convergence and long range correlations in
expansions (1.26) for infinite systems deserves further study.

Tt is amusing to see how the expansions react when the additive
constant in the Lagrangean Xp of our lattice gauge theory model is
changed: Ip - Zp+c. 1f fp = e Py i3 small for some choice, it is
not small for another choice. As a result, the convergence of the
standard high temperature expansions is affected py such a change. Not
so for the expansions (1.26). The change
2(x) » 210 e %,

while L(Y} for all other sets ¥ are unchanged. (To see this it suffices

7 - I _+c changes
P P

As a result L(Y) - Li(Y)+c if v is a single plagquette,
to note that eg. (1.26) remains valid for any finite X after these sub-
stitutions, if it was valid before.) Therefore, convergence properties

of {1.26) are unaffected.

The standard high temperature expansions

They can be obtained from eq. (1.26) pv further expansion. One
starts from expansion (1.26) with egs. {1.27), (1.9) for L(Y) inserted,
viz.

AnZiN) = %L(Y) (1.26)

with

= fn + Z ‘]— P
L Eéyjsyx (1 ( TACRD) (1.32}

BP0 8
ZPeX

x!

Now one expands L(Y)} in powers of the activities using In(li+x) =x-5+ ...

and the multinominal thecrem. As a result one obtains an expression of

the form f101]

L{v) - é a(a)A(@) (1.33)

Summation is over sets Q of not necessarily distinct polymers, polymer
Pi may occur with multiplicity n,. Every plaguette in Y must be con-
tained in at last one polymer Pi in Q. a(Q) are combinatorial coeffi-

cients independent of the activities, and

- 13 -

A(Q} A(E)ﬂ'...A(Pk)nk ,'F Q= (1;)1“1,“7:?:&)

The set Y of plaquettes which are contained in at least one polymer in
0 is called the shadow of Q.
Inserting (1.33) into (1.26) one obtains the final result

a2 (A) = % afayA(x) ' (1.34)

Summation is over all O whose shadow is polymer connected and contained
in A.

Expansion (71.34) may diverge on a finite lattice.
Example: A = a single plaquette, a single polymer P = A with activity A.

BT

fnZ(/\):fn (I-c—A)-_: Z:(__"n‘_)_ An Al

divcrﬂes -for
Sufficient conditicns for convergence of expansions (1.34) are known.
(They are derived by use of Kirkwood Salsburg equations, cp ref. 10.}

Convergence is assured if there exists a number E > 1 such that

12!
Lt e K5 A <
5 Pt (1.35)
summation is over all polymers which contain a given plaguette (in case

the polymers. are made of plaguettes).

The problem of the roughening transition

Let us now return to the expansion for Wilson loop expectaticn
values, eg., (1.13). In the high temperature regime (B small enough) only
polymers PO {with boundary ¢ = Wilson loop) which differ from the minimal

surface with boundary ¢ by small deformations need be taken into account.

An example is given in figure 6.

One can make use of this to obtain an expansion for £n<xk(Uc)>
in the limit of large loops, that is for the string tension a. This is
done by performing ancther high temperature expansion in which the de-
formations in Po {and the clusters which come from the expansion of
in Z{A—PO]/Z[A) ) are treated as the polymers. Series expansions for the
string tensicn o were computed in this way by Minster [161.

This series for the string tension a itself must be expected to

diverge when § > B . where B, is the roughening transition point [171.

A roughening transition is expected to take place on the basis of general
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arquments [18]. It means the following. One mav look at fluctuations
of the surface PO, i.e. the average deflection d squared,see figure 7.
It is determined by the relative size of the contribution from surfaces

Po in expansion (1.13). For B < BR, d is bounded

o o
e 77 1 ¢

figure 6 fiaqure 7

independent of the side length T of the Wilson loop. In contrast, for
N (*)
B> By

increasingly larger deformations in PO become important for increasing

is grows logarithmically with T: de ZnT. This means that
T and therefore the series expansion for a, which is an expansion in
increasing size of the deformation for infinitely large loops C, cannot

converge for B » B In SU{2) lattice cauge theory will Wilson action,

BR = 2. according ti ref. 17. On the other hand, the roughenina transi-
tion is a change in asymptotic behavior for large Wilson loop, it is
not expected to correspond to nonanalvtic behavier of <xk{U(C))“ for
fixed finite C. i

-Conclusion: If one wants to use series expansions beybnd B = BR'
one must be content with expansions for finite Wilson lcops, and the
"partially summed" high temperature expansions which I have described
earlier in this lecture should be used. The larger the loop, the more
terms in the expansion will be needed.

Let us note that the Mcnte Carlo Method is also‘limited to finite

Wilson loops (3 %X 3 or so}.

1.2 Other expansiocons

I will very bfiefly mention two other expansions.

1) Low temeprature expansions, e.g. for lattice gauge theories with

discrete gauge group G 19
example: (G = z, , ','-! =¥1
Z= L oexp L, Aluy ~q]

30 that

(*}) The roughening transition can alsc be defined without recourse to

expansions in terms of the behavior of expectaion values <+fUC %-U3P>

- 15 -~
-~ 2/31B!}
Z = 41+ 2 e /2 {1.36)
B
B is the set of plaquettes where U = - 1. It is coclosed, i.e., every

J-dimensiocnal cube ¢ in A containspan even number of plaquettes in B
in its boundary. [B{ is the number of plaguettes in B. B can be decom-
posed into connected components P. In this way the partition function
is found to equal the partition function of a polvmer system, The po-

lymers P are connected coclosed sets of plagquettes. An example is shown
P £Z7
{1.37) A£E1E][jﬁg7

figure 8

in figure 8. Their activities are

AR) - e ~2/3!’E’E

2. jlaver expansion for dilute gases [20]

example: A gas of particles with "charces" qj = X 1 which interact

threcugh a potential qiqju(xi—xj) of finite ranvge.

The canoncial partition function of ¥ particles is

- ox, ... dx_ ex [— 2. cw ()

Zn Z. ! n STF ﬂ(m - ; 1 (1.38)
{9;} ]

Polvmers P are subsets of the N particles {1 ... N}, their activities

will only depend on the number of particles that are selected. We may

label them by 1 ... n = |p’
(1.39)

i = 2 dxt"‘dxn Z‘ ‘W 1€t”
A(P) S S lqj}(u)gs ]

with

fo= -1+ exp ['ﬂ?i‘?j”("i‘xj)]

i (1.40C})

A araph § on n vertices {1 n} is specified by prescribing the pairs

(i3} of vertices which are joined by a line. These palrs are considered

u

g the elements (ij)eq of (. Summation in (1.39) is over all connected
grachs on vertices {1 ... n!. There exists a useful fermula {the "tree
formula") with which the sum over graphs can be reexpressed, see ref. 21,

A simplification occurs when one considers the grand canoncial
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partition function with fugacity 3 = EBI'L (4 = chem. potential}
N
3
Z= 2 1PN
It is expressed in terms of the activities by

£z - & 3F A
P

provided the sum is absolutely convergent.
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2. THE NOTION OF AN EFFECTIVE ACTION (WITH ILLUSTRATION USING A
SIMPILE APPROXIMATION}

I will consider lattice models (ferromacnets) with n-componeant
spin variables w(x) = (@1{x), ‘s wn[x)}, and with partition function

of the form

n Lo (@)
Z = S?d p{x) e I ¥ (@ (x)) {2.1a)
with f(@{x)) 2 0 and
L, (%) = ﬂiﬂf le gu(pi(x)\?tq:i(x) + consh. (2.1}

Example 1. 0{n)-symmetric Heisenherg ferromacgnet:
z
(e = 8 (1ol -1) (2.2a)

Example 2. Discrete Gaussian Model = Z-ferromacnet: n = 1, and

® = Xy TFJ(
79 () kZ “.S(@() 2l ) .

Let us write ®(k) for the Pourier transform of @(x). Instead over w(x)
we may integrate $(k). Suppose that the integrations over @(k} with

k M have been done. Let @(x) be the sum of the Fourier compeonents
@(k)eikx with 'k} < M, i.e, equal to @(x} minus its high frequency com-

ponents. Then the result of the integrations will be of the form

S 594’ , Lefr (#)

(2.3)

This defines the effective action Leff' It is convenient to take out a

kinetic term from Leff(¢) and to write

~Vepe (4 (2.4)

Z = Jdu @y e
duC is a free field measure with UV-cutoff M. (This means that it con-
tains S-functions which constrain the Fourier componénts ®(k) with

k M to zeroc.)
It i§ of importance to study the localization properties of Leff'
(Because of the integrations that have been performed, Leff will include

nonlocal terms.) [41.By using the technique of M8bius inversion of
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section 1 one can exhibit bLopg @5 @ sum of terms which are localized
in regions Y of space (Buclidean spacetime if we consider QFT) . As an
example, the complete effective action for the Z-ferromagnet with
UV-cutcff M is exhibited in eq. (3.2). {For technical reasons, a Pauli
Villars UV-cutoff is used there instead of a sharp momentum cutoff
k' < M, and @ is rescaled by a factor B’

In this section I will use a simple approximation to illustrate how
{approximate) computations of effective actions can be used to determine

the phase structure of a model.

2.1 Normal c¢rdering.

A free field theory is uniquely determined by its propagator

Cn pl-bemt)!

without UV-cuteoff or on a lattice (2.5a)

or
c =/3[(_A+mz)‘t (_A*‘Ml)d]. with a Pauli-Villars cutoff M (2.5b)
etc. . -A should be read as k*® {continuum) or —EE cos kua—1] {lattice)

to obtain the propagator in momentum space. The factor B could be abe-
sorked by rescaling the field.

The corresponding Euclidean free field measure is
(e, c e ]

duc (9) = 3 T d'g (0 exp [-

Z, (2.6)

C is also called the covariance of this Gaussian measure.

Normal ordering with respect to a Gaussian measure with covariance C
is defined by

eth.rpcﬂ = :eiklfp(x): SOPACC(P')e‘k'(P(X}
L TR dkwto,
C{0}) = propagatcer at distance 0. (2.7
To write an arbitrary function f{o(x)) in normal ordered form, one ex-
pands it in a Fourier series or - integral and uses (2.7}. It follows
that, 1f ¢ is any tempered distributien then
{0y = 1F{e(0): (2.8a)

with

- 19 -

. n _,_’__o.. (};H‘?)z
F(g) = (2rc()Y % [d" fopre O (2.8b)

and F 1s an entire analytic function of E, hence posesses an everywhere
convergent power series (for any finite number n of components of ¢ -
in the n » = limit it need not be so[30) ). Note in ocarticular that also
&-functions can be written in nermal ordered form, and then expanded
in normal ordered products,

Generalization to functions which depend on the field at several
points is ochviocus.

example: ©(x)? = : @(x}? : + nC(D)

2.2 A simple approximation

To carry out the integrations of high frequency components of the
fields, we will use the approximation (for C a propavator which propa-
gates the high frequency components)

Xcﬂxccm T f (o)) jc}xc(w)ﬂrip,(@(xv)= = TUF (o) (2.9)

In this formula, is normal ordering will respect to Gaussian measure

with covariance C; it depends on C because C(0) enters into eg. (2.8b).

Motivation for the approximation

Write the integral as a sum of Feynman vacuum-diagrams by use of
Wicks theorem. Neglect all nontrivial diagrams (with > 1 vertex. Dia-
grams © + @ + @ +.are taken into account by the above normal ordering).

For instance, let n=1. Expand

T (@00) = F (o) + F/({0)p(x)+

The leading term in IT: (e () is Tr¢;(0) Other terms include for
k3

instance something proportional to

Wick
(Pl(x{)"'q’z("z)" = :(Pz(’ﬂ)q’z(xz)" + C(X‘—KZ) =Cp(xf)<p(><l3'-
LT (x-% )

The last term is graphically represented by a graph <« with two

vertices, which we neglect. The first two terms integrate to zero.

2.3 Application

T use this approximation to carry out the integration of the high
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frequency parts of the fieid @{x), viz. &(k) with ‘k| » M. The aim is
to cbtain in this way an effective action with Uv-cutoff M, with M of
the order of the ultimate physical mass, The (approximate) true vacuum
ete. is then obtained by a semiclassical treatment of this effective
action. This reveals then the phase structure of the model.

WB: In very nonlinear theories (with 6-functions etc.), semiclassi-
cal approximations are only trustworthy once the cutoff M has been
brought down to Oi{phys.mass). To obtain a rigorous justification of a
semiclassical approximation when M is low enouch one relies on Glimm-
Jaffe-Spencer expansions (compare introduction) if n = 1,

Let us split the original propagator (B = fo/n)

C=p(eru) L Gy = Sl a(mM-lkl)

Then

Juc @) = dup (43 gy, (XD
{2.10)
P = P+y
¢ has only (propagating) components ¢(k) with 'k, « nM, the other compo-
nents are called x. (Note that duu=g(®) = Dirac measure concentrated at

@ = 0.} We cbtain

Z= fO}uC(@)TIf(w(x)) - gdﬂpu@o)dﬂﬁu(mj£(cp(x)+x(m)
= Sd/xﬂucmd,uﬂucx)Tzr(cpcxwxfm:
where :: is normal ordering of the function Fo(x)) = Flo{x}t + x(=))

with respect to covariance Bu. Using our simple approximation, the above
expression becomes

Y m = Vepp ()
v Sy, ()T FEE) S, () e

with

Vep(#) = - L Ln T (P (x))

The effective actiecn consists of - V .. plus the "kinetic term" from
the Gaussian measure.

Thus we cbtain the following Rules for an approximate determination

of Logf?
Suppose the partition functicon to be evaluated is of the form

Z = {duo(e) T (g0

-~ 21 =

Then proceed as follows. Normal order f with respect toc a covariance f3u
that eguals C except for the presence of an infrared cutoff at M, viz.
fix(x)) = Flx(x))

an Uv-cutoff M, set

Drop the dots ::, modify the kinetic term by

Legg(¢)=—f‘fg(cb,u“da)—verg(d:) s Vep ()= - X ST (d00).

(2.11)

Applicaticn te the Z-ferromagnet {example 1, eg. (2.2b)}.

In 3 dimensions this model is the [(Kramers Wannier) dual transform
of the U(1) lattice gauge theory with villain action [22].

In 2 dimensions it is the dual transform of the plane rotator
{(XY-model) with vVillain action.

The partition function is (B = 1/fo, Yoy = {-4)

7 = jo;uﬂ%b(q;) {, T 8 (G (o- trkoo)

We split
Vep = Y+ U

Tnstead of a sharp momentum cutoff one could also use a Pauli Villars-

cutoff. In this case

U= (mA+ME)T] w = (a3 - (~a+m?)T]

F

Alternatively, one may use a lattice cutoff M = L_1. In this case the
propagator u(x,y) is obtained by averaging vcb{x,y} over blocks of side
length L in each argument. We want M of the order of the ultimate phy-
sical mass m. According to our rules, we have to write
the pericdized &-function in normal ordered form. The result is imme-
diate from eq. (2.8b): it is equal to a normal ordered periodized

Gaussian. As a result of the application of our rules,

s (B (%) - 2wk )
= - 2(3\:(0)
g SO}M‘G“(CM e {2.12)
i
For B«(0) large this becomes
= Sd/uﬁu () exp [gé cos ¢ (x) + consi |
with

3= exp [-pvi0)2] (2.13)
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The effective action in the presence of a cutoff M is thus given by
Veff(‘ib) = —5};@5 & (=) ) (2.14)

We now proceed to the further analysis for the 3-dimensional case (Uui1)

lattice gauge theory). ] )
Suppose that B ~ = in units of lattice spacing, and M = A,
m = phys.mass. Fer large f, m will be small and v(0) = UCb(O)‘ Assume
1. Then the field ¢{x)
is constant on blocks of lattice spacing L, and the effective action

for simplicity that we use a lattice cutoff M = L~

becomes

Vg () = ‘Z»Lzbz cos &b (x) (2.15)

lOC[(S

We look at this as an effective potential for a thecory an a block lattice
of lattice spacing L, Because of the large factor'gL’ (5. below},Veff has
minima which are separated by very high maxima. Expanding the cos around
¢ = 0 we obtain the mass m,

: —/3vg, (03/2
m-= 2fie < (2.16)

Therefore 3L3 = J\_3(mﬁ)_1 + = exponentlially as B » ». Here A = (M/m) =0(1).

An approximate expression for the surface tension (see figure‘10) can be

cbtained by a (semi)classical approximation also. The result is
ot =9m/3" . {2.17)

Duality transformaticn shows that the surface tension in the Z -ferro-
magnet equals the string tension in the U (1) lattice gauge theorv.
Let me briefly discuss the 2-dimensional case for contrast. In this

case the factor zL® in eq. (2.15) is replaced by zL!. This makes a pro-
found difference - we are now lacking the one factor L = §(m _1)which
made 3L3 + o oag B » o,

Consider the situaticn with small or zero physical mass 0 £ m <« 1
in units of (lattice spacing)_T The mass m is determined by the curva-

ture of veff at its minima, in the limit of low encugh cutoff.
I3 .
me = lpé wild 3 = exp {—ﬁu(o)/z] {2.18)

§ depends on M, and therefore indirectly on m because M is constraint
to values 3 0(m). For small M

23 -
uio) = "—'-,ano.’ with a' = 0 {lattice spacing) (2.19)
2w ’

Suppose that 8 > ﬂCZVSH. Then 3 is exceedingly small for moderately

small M, and m® = 23z tends to 0 faster than M?*. Therefore m + 0 as T

lower M, maintaining M » G(m). Thus
m=0 {Bv [3>/3c ~ g (2.20)
This is the Kosterlitz-Thouless phase.

Application to the nonlinear o-model (Helisenberg ferromagnet]

This is example 1, eq. {(2.2a}. According to our result, wemust £ind
the normal ordered form (with respect to covarianceﬁv) of the &-function
that is concentrated on the unit sphere St

According to eq., (2.8b)

S(pt)'-1) = + Flo:
with (8 = £/n, £ = (E', ..., €")
.n et (£ )t
(5 = [2npu(e)] * gd"'? S(yt-a)e Pt (571 12.21)

We split the propagator as before
¢ = /3(v+u)

Application of our rules gives

Ve (#) = T g (d(x2)

{2.22)

A

19:# (:) - e"l T({; ]

To find the behavior Veff at £ = 0 {maximum or minimum), one computes
v " from egs. (2.21), {(2.22}. Qualitatively, Vare looks as follows

eff
as a function of |E|

T Yett - T Yepp

——> kx| —> 5]

@) nAv(o) >+ ficure 9 b n/ﬁv(o)< 1
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We are interested in the behavior when the cutoff M is small compared
to the (lattice spac]’.ﬂg)_1 M-+ 0 gives v(0) - (—A]_1(D).

In 2 dimensions; v(0) - = as (—A+m2)_1(0) + « when m » 0 in 2 dimen-
sions. As a result, Uéff alway looks as in figure g9a) for sufficiently
low cutoff M. Therefore there will be a finite mass and no spdntaneous

symmetry-breakdown,

in more than 2 dimensions, there will be spontaneocus symmetry-
-1 -1 .

(-4} {0} . The potential Uéff
looks like figure 9b) for this range of fO and low cutoff M.

breaking 1if nBu(gO)< 1, i.e. if fo

These results agree with the results of the 1/n expansion.
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3. RIGOROUS RESULTS FOR THE 3-DIMENSIONAL U(1} LATTICE GAUGE THEORY

In this lecture I will report results of a study by M. Gipfert
and myself [8]. It dealt with lattice gauge thecry in 3 space time
dimensions without matter fields and with gauge group U(1). It is known
from the work of A. Guth {23], that such a model shows a deconfining
phase transition in 4 dimensions, so that its weak coupling continuum
limit will not show cenfinement [(if it exists at all),. In contrast, in
3 dimensions, the work of Polyakcv [241, sanks,Myerson and Kogut [22],
brell et al. [25)] and DeGrand and Toussaint [26] lead to the belief that
confinement will be true for all wvalues of the coupling constant. We
proved that this is indeed the case, for the model with Villain action,
It turned out, however, that the ratic a/mé of the string tension to
asvmptotic physical mass sguared becomes infinite in the weak coupling
limit {(continuum limit).

The model lives on a 3-dimensional cubic lattice of lattice spacing
a. It is a classical statistical mechanical system whose random vari-

ables are attached to the links b = (x,y) of the lattice

{19, (<) — -
Uz = & ( .For f= (X,X+C)_k) ) -u SQ/A{ a (3.1a}
{eu - lattice vector in u direction). The action is of the form
L{u) = ﬂI(U?P)

3 (3.1b)
with Uap U21 qu if p is the plaguette whose boundary consists of
links i] . 24, ang

£(e'®) = &n 3. expl- -, (@-2mm)" ]
n P Py fp-2w (3.17¢}
m=0tt xe, . 9

g* is the unrenormalized electric charge squared. It has dimension of
a mass in 3 dimensions. The Boltzmann factor is exp L(U}.

since the gauge group U{1) of this model is abelian, the model can
be subject to a Kramers-Wannier duality transformation. As a result one
obtains a ferromagnet with a global symmetry group Z . Its random vari-
ables n(x) are attached to the sites of a 3-dimensional cubic lattice A
{the dual of the origianl one) and assume values which are integer mul-

tiples of 2n. The new action is
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i(n): -Eiﬁsx [Y/?uh(x)]z \Ji”r|/3=-[+1vz/32

We use the standard hotations

{ = a®L ,
X

x

v o= ot [ oogn-fo0]

a is the lattice spacing, I prefer not to set a = 1 in this section.
Expectation values are computed with the help of the Beltezmann factor
exp L(n). This model is known as the "discrete Gaussian medel”, faor
obvicus reasons. We call it the " Z-ferrcmagnet" in order to emphasize
its symmetry properties. I have already considered this model as an ex-
ample in section 2,

The global Z-symmetry of this model is alwavs spontaneously broken

{(if <n{x)> exists at all) since the equation

{nf=xy> = <n{x)> + 2nT T € Z

has no solutien if T # 0. The surface tension o of the model is defined
as the cost of free energy per unit area of a domain-wall which separates
two dormains whose spontanecus macnetization <ni(x). differs by 2n, see
figure 10. The duality transformation shows that o equals the string
tension of the U(1) gauge model.

n{x}= ¢ or 2x

figure 10: Definition ¢f the surface tension a. One considers the free
energy of a box for the two choices of boundary conditions i) nix) = ¢
everywhere and ii) n{x} = 2n above the dashed line angd ni{x) = 0 below,.
o equals the difference of the free energy for the two boundary condi-

tions, divided by L Ly, in the limit L, » = (i=1,2), followed by Ly » =

It is convenient to introduce the following quantitv with the dimension

cf a mass sqguared

mE = (33/a%) exp[- o, (032 ]

where Vo is the lattice Coulomb potential. As was shown by Banks et al.,
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the model can also be transformed into a {special} Coulomb system, m51
is the prediction of a Debye Hilckel approximation for the sceening lenath
of that system, for large BR/a.
Our main results are as follows.
Theorem 1 There is a dimensionless constant ¢ » 0 such that

o’y C mnﬁ" for sufficiently large B/a.
Since aa’ is a monotone decreasing function of f/a by Guth's inequality
[23], it follows that @ >~ 0 for all values of the coupling constant
g* * 0. We believe that the r.h.s. of the inequality of theorem 1 re-
presents the true asymptotic behavior of a. It is amusinc to compare
with the leading term of the high temperature expansion, which is valid
when RB/a is small. It reads a = 2nfa 8" +

The meaning of mn as an asymptotic mass is clarified by the second
result. The effective action Leff mentioned below depends on a real
field @(x}). It is obtained by integrating ocut the hich frequency com-

ponents of Bﬁ%n(x). Symbolically we may write

P (x) = /3"!z n (%) with Pauli-villars cutoff M.
Theorem 2 Consider the correlation functions \¢(x1l @(xn)> for

fixed distances mexi—x. in units of Rp. They tend to the correlation

functions of a massive free field theory with mass m

. 17 .
Mme + = (proportional (f/a} ITZ, for instance).

5y as B/a -+ = and

These results were cbtained by a rigorous block spin calculation,
and are therefore perfectly consistent with the general renormalization
group theory [4]. However, thev contradict what would be obtained by
making sirmple but popular approximations.

Suppose that one could set up a rencrmalization greoup procedure
(block spin calculation) for the U(1) gauge theory (3.1) in such a wav
that the effective acticn at each step of this interative procedure is
still lapproximately) of the same form (3.1}, except for the replace-
ment of g’ by a running coupling constant g;ff(a') and a new value a' »a
of the lattice spacing. Suppose morecver that a‘g;ff(a') reaches values
in the domain of validity of high temperature expansions after suffi-
ciently many iteration steps (depending on ag?), no matter how small
the bare coupling constant g’a is. Then it would follow immediately
that the string tension a should be proportional to the physical mass
(= mass gap) squared.

In contrast, thecrem 1 tells us that
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- -,
(X/m; 2 C (FH’HD.) '-¢ (2/&3/013) “exp L PV (o) e

as B/a = 4n° ‘g*a - ». (The numerical values of va(O) is found in the
literature to be 0.2527 a_1}.

[ will now briefly describe the main steps of the analysis. The
first step is to integrate out the high frequency components of the
field @(x) = B_%n(x). This produces an effective action Leff(¢} for a
real field ©(x) {on the original lattice) with Pauli-villars cutoff M.
Leff(o} is obtained in the form of an infinite series of the following

form, with real coefficients DS(...).

Le#(¢)“‘% & ¢(*){-A(T—%1)}¢(ﬂ + (1.2}

s L Z im0 1 (PR ]

1 S (m, . x ,_.,m,,x_,')[e
s3c TomeoMy TR P L0

m-sunmations are over m, = ¥ 1, r o2, The first term is the usual
kinetic term for a real field with a Pauli-villars cutoff M [27].

The main problem was to establish convergence of the expansion, for
| SO KmD
terms. In particular, it was shown that the coefficients Py for 5 » 2

(A independent of B) and large R/a, and bounds on the individual

decay exponentially with distances xi—xj

gibly small for distances [x,-x.| TR

so that they become negli-
This means that no interactions
of range much larger than the cutoff length M_1 have been generated in

the process of integrating out the high frequency components of the

field w{x). This is a basic reguirement in a block spin calculation.

Moreover, the bounds show alsc that the dominant terms are the
terms with s = 1 and my = * 1, for large B/a, and that p1{m,x) %%B_1mD.
Thus

Lef.}f () = Lkinebic term - m;/_)f’. L [1- casﬁhd?(x)] + (3.3
This reproduces the result (2.13}), (2.14) of the simple approximation
that I used in section 2. The rigorous treatment of the model justifies
this approximation, for large B/a, by producing bounds on the correction
terms ... in the effective action. If the resulting theory with effective
action (3.3)(without the correction terms ...)is treated by a classical

approximatisn, one obtains the result

-1
ol = gmnﬂ
It is possible that this is exact for p/a - =, but our bounds are not

sharp enough to prove it. There is, however, an upper bound on a due

- 29 —

tc 1Ito which complements the lowcr bound of theorem 1 and is very close
to itl2?]

The second step is the analysis of a theorvy with action (3.2}. Such
an analysis was already performed by Brydges and Federbush [ 6] and we
could use ctheir result.The Glimm-Jaffe-Spencer expansicn of constructive
field thesrv (5] (see introduction] inthe basis tool in this step.

Finally 1 would like to explain briefly how the effective action
(3.2) is cbtained. It is known from the work of Banks, Myerson and Kogut
[22] that zhe model can be transformed into a Coulomb system with parti-

tion function

e =3 (0, m)/2

Z = X

mezZ™
Here we set the lattice spacing equal to one, m{x} = 0, 1, b2, L.,
is thne charge at site x of A, Voy T {-p)Y is the lattice Coulomb poten-

rial, and

(mwvh

m) = L L m(x)vcb(x-j\m(j)
x
A self-interaction term x = y is included. Following Frdhlich [29] one
splits the Coulomb potential into a pauli-villars cutoff Coulcomb poten-
1 1 -1
of

tial u = (-a)" ' - {-a+M*) ', and a Yukawa potential v = (~A+M%)

rance M_1.

Vep =V * U
One inserctz this and uses the formula for the characteristic function

of a Caussian measure with covariance u,

fou (ye F® oot hud

to rewrite the partition function as

Z = fau, (@) 2 ()

with ,
2wy . L e plmem

me Z*

Z(®) is tne partition function of a Yukawa gas with complex space de-
pendent fuzacity 7z = exp iB*m(x)@(x). Its logarithm is the desired

effective action

&) = kinetic term + ‘n¥(0)
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It is natural to try to use a Mayver expansicn to compute In¥ (compare
section 1). The leading term in such a Mayer expansion cowmes from clusters
with only one particle and gives {3.3). Unfortunately, known methods to
prove convergence of.such a Mayer expansion were not nearly good enocugh
to cover the values of parameters {fugacity 2z, inverse temperature/3) .
of interest here. We have therefore developed a refined versidn of such
Mayer expansions. It is based on splitting the Yukawa potential v into
a sum of interactions of decreasing strength and increasing range, and
then treating one after the other of these by Maver expansions as
usual. Recursive bounds are established, and these combine to prove
convergence of the complete expansicn and produce bounds on the indivi-

dual terms.
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