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O.INTRODUCTION 

During the last ten years, quantum field theory and classical sta­

tistical mechanics have mer~ed into a sinqle subject and the same me­

thods are used in both fields. Accordingly, speaking of nonperturbative 

methods in quantum field theory one usually means methods of classical 

statistical mechanics (other than standard perturbation theory). This 

includes the Honte Carlo method. Since this method is covered by other 

' lectures at the school, I will concentrate ·~n analytical methods, chiefly 

expansion methods. For illustration, applications to some models - ferro­

magnets and pure Yang Mills theory on a lattice - will be discussed. 

Presentation of this material covered the first lectures at the school. 

For further reading I recomm8nd E. Seilers book [1]. The 4-th lecture 

dealt with the effective Z (:.J) theor:· (vortex condensation theory) of 

quark confinement. It is omitted in these notes, see refs. 2a. Tests 

of t:--,is theory by Honte Ca:clo computations were performed by Pietarinen 

and the author [2b] . 

In classical statistical mechanics ~nd Euclidean quantum field 

theory one wants to com9ute partition functions (:.:-ee energies) and 

correlation functions. This involves computation of ·--dimensional in-

tegrals in the •-volume lir::it). E:<pansion methods to achieve that fall 

into two categories 

a) sinple. By a suitable expansion, the Hhole problem is reduced 

to t~e co~putation of finite dimensional integrals. 

b) sophisticated: The integrat~on variables are divided iJ.to groups. 

(Often this step is precedo6 by variable transformations, 

by use of integral representations ~or some of the factors 

and sometimes 

in the inte-

grand, such as a Kramers Wannier d~ality transfornation). Then the 

groups of variables are treated individually (one after the other) by 

suitable expansion methods o~ t~·pc a) (high temperature expansions, low 

te::·.~:;~raturc e:<pansions, :..1o.yer cxpc:.:,·sions, cluster expansions of con­

;;tr-ucti~:c, Eield thcoc\ [3], to nar.1c Cr.0 most important ones). Renorma­

lizatiun J~oup calculations [~J fall into this ca~cgory, they involve 

man·/ idoncicLJ.l steps of type <d. ~-!o,:e qcn~:rally, after some of the 

~Lectures presented at the Artie Summer School, Akaslompolo (Finland) 
August 1982 

- 1 -

integrations are done, the integrand Z still depends on the remaining 

groups of variables. >.n ',e is then called an effective action. The pro­

cedure amounts to corr,pute a sequence of effective actions by suitable 

expansion methods. 

Quite complicated systems have already been analyzed by this method, 

and significant progress is still being made. Here are some examples. 

Glimm, Jaffe and Spencer [s] have developed a method to deal with field 

theories with spontaneously broken discrete symmetry, it uses a combi­

nation of low temperature - and cluster expansions. Brydges and Federbush 

have established Debye screening in very dilute ]-dimensional Coulomb 

gases [6}. FrOhlich and Spencer were able to analyze the Kosterlitz 

Thouless phase of the two-dimensionale plane rotator model (7]. GOpfert 

and the author have proven confinement of static quarks in 3-dimensional 

U ( 1) lattice gauge theory for all values of the coupling constant [8] 

(The res~ts of this work will be described in lecture 3.) Finally, 

Gawedzki and Kupiainen have announced a rigorous renormalization qroup 

treatment of the dipole gas and anharmonic crystal [9] . This was a par­

ticularly difficult problem because it requires an infinite number of 

renornalization group steps to deternine the long distance behavior of 

correlation functions. All of this was achieved by combination of stan­

Card expansion techniques of classical statistical mechanics. 
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The derivation of any expansion for a free energy or correlation 

functions may be divided into two steps: i) transformation of the model 
into a 'polymer system', and ii) application of expansion formulae for 
polymer systems ~OJ. Different expansions (for instance high and low 
temperature expansions) are based on different transformations into 
polymer systems, while the second step ii) is always essentially the 
same. I will illustrate the method first at the example of high tempe­
rature expansions for pure Yang Mills theory on a lattice. In the course 
of this discussion I will also review the proof of confinement of static 
quarks for strong coupling [1 1}. 

1.1. High temperature expansions, 

and reasons to hope that their intrinsic limitations are not more 
stJ:"ingent than those of the Monte Carlo Method if suitable "partially 
St.;.mrned" expansions are used. 

Sites, links,plaquettes, cubes of the lattice will be denoted by 

x, -,:, p, c respectively. In pure Yang Nills theory on a lattice, the 
basic variables U£ are attached to the links Z of the lattice, they are 
unitary matrices in the gauge group . 

Let C be a closed loop which consists of links £ 1 ... £n. Then the 
parallel transporter around Cis defined by UC: U~ ... U£ . In par-

1 n 
ticular, the boundary dp of a plaquette consists of four links £ 1 ... £ 4 
and u : U .... U" 

Op k'~l '·4 k 
Let D be some representation of the gauge group, and xk ~ tr D 

the corresponding character. According to Wilson, static quarks which 
transform according to representation Dk of the gauge group will be 

confined by a linearly rising potential ar if the Wilso.n loop expectation 

value <xk {UC) :- obeys an area law [12], 

<'X,(Ucl>, exp[-oiA] 

where A is the minimal area of a surface whose boundary is C. a is called 

the string tension. 

It will be useful! to consider partition functions Z{X) that are 
associated with subsets X of the lattice A. The action for such a subset 
X in a typical pure lattice gauge theory model is 

Lx (u) • L. .tP(u) 
'P<X 11. 1 I 

Summation extends only over those plaquettcs p in A whose corners are 
all in X. 

/"'" 
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lp (u), rt J,. u.p +Coos!. for the SU{2) Wilson action 11.21 

The partition function Z(X) for an arbitrary sublattice XcA is defined 
by 

Z(X)- [IT dU eLx(U) 
j ~.X £ 

The Wilson loop expectation values on A read in this notation 

<'X, (ucl> - -'- rn dU1 Z(A) J ~<A 
'Xt(uc)eL,.Ju) 

Reformulation as a polymer system. 

One writes 

:Cp(UI _ 1 + P (U) 
e - tp 

considers f as ''small'', and expands in products of f 's p p 

eLx(u) TT [1 +f (u)] • 
p£X "P 

+L: n 
B~X-pE:B 

f ( u) 
p 

11.31 

11.41 

11.51 

11.61 

Summation is over all nonempty sets B of plaquettes p on X; B:_X is a 
somewhat imprecise short hand notation to keep track of this restriction. 
The partition functions become 

Z(X) • 1 + L: 
;a~X 

r n du
1 j ..eE: X 

n f (u) 
-p€X 1> 11 . 7 I 

Next one decomposes B into connected pieces P, they will be called 
polymers. A set B is said to decompose into two disjoint subsets s

1 
and 

s 2 if no plaquette p in B1 shares a link in its boundary with a plaquette 
p' in s 2 . A nonempty set P of plaquettes is called connected, or a polyme~ 
if it is not a Unlon of two nonempty disjoint subsets a

1 
and B2 . Examples 

arc shown in figure 1. 



I will use the symbol E 

for union of disjoint sub­

sets. 
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tfD cfD 
For polymers P one de­

fines "activities" A(P) by -poljmel'" not a pol'jmer' 

Figure 

A(Pl • Jrr du, 1r f (u) 
~€P ,.. f>€-P P 

11.81 

·fP'' is shorthand for ''(is a link in the boundary of a plaquette pin P~ 

If B decompoes into disjoint pieces P1
, then the integral ~n eq. 

(1 .7) factorizes. (If I is not in the boundary of any plaguette pEB then 

the integration over Uv is trivial and gives a factor 1 because the Haar 

measure dU is normalized.) Therefore 

z(x) • 1 + Z: 
n~i 

L 
(~ ' ... ,"P,.) 

~ A(>\) .. ' 11. 9) 

.Ll-1'X 

Let us temporarilywriteX 0 forthe setofall plaquettcs on X. Summation 

in eq. (1.9) extends over all partitions of X 0 into disjoint polymers 

and empty plaquettes. The reader is invited to think of a chessboard as 

X
0 

and of an ample supply of P?lymers that are cut out of card board. 

Each polymer can cover a certain number of plaquettes (squares) on the 

chessboard. Any union of squares that can be cut out of card board with­

out falling apart is a polymer. A ce.rtain weight ~ (P) can be given to 

every such polymer by glueing pieces of lead on top of them; polymers 

of the same shape are not distinguished and should have the same weight. 

Now the chessboard can be covered or partly covered by polymers. The 

rule is that no squares may be covered by nore than one polymer, and 

no two polymers may touch along a line. (They are allowed to touch at 

corners.) Every such covering adds a contribution exp(total weight of 

all polymers on the chessboard) to the partition function, The activities 

are A(P) ~ e~(P) in this example. 

An expression of the form (1.9) is called partition function of a 

polymer system. It is sometimes useful to admit activities which are 

not necessarily positive, but it is always required that Z(X) is positive 

for all X. In our applications to lattice gauge theory this requirement 

is fulfilled by definition (1 .3) of Z(X). 

Extension to Wilson loops. 

Suppose the loop C consists of links ~ 1 ... ·m so that UC 

The same steps tilat lead to eq. (1. 7) give 

Ue U 1 ... Uo 
{ 1 ~ 2 '- m 
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Z(ll)<~" (ucl> jndu, 'X (u1 .. u1 lj1+L.: ",t (ul} 
l~<l\ .(. k " m ;B£1\-pt: p ( 1. 1 OJ 

wo want lo exploit the factorization properties of the integral again, 

to do so we introduce a suitable new definition of polymer. Every set B 

of pl3.quettes on /1. specifies a set of n+l ~ 1 polymers. He decompose B 

into connected pieces as before. Polymers P
0 

consists of all (possibly 

none) those connected pieces of B that touch the Wilson loop C along a 

link. An example is shown in figure 2. It is"convenient to consider lhe 

links in the loop Cas part of P
0 

also. (It can happen that P0 consists 

only of C.) 

//'f;/11,;/!//,/?;:/,_ , '1;:.-?;;W~ 
dj;o/_, %0// 1//' /' ,--;:~"/ /.t,;; . ./;/ 
:'if;: ~ . c ~§1 
// %. /~:;:: 

P
0 

: loop C and disp!o.'jed -pla.iuelfes 

A-'P
0 

1 ~ho.ded -plo.4ue-He.s 

1,/W; ;;:; 

~$~)1/////;/)//,///~ 
figure 2 

P 1 , ... , P n are the other connected pieces of B. They do not touch the 

loop C along any link. An activity KC(P
0

) is defined by 

1<c("Po)" \IT du1 y_k(uc)lT t (u) 
tE. '?

0 
-pE. "Po p 

11.11 I 

The activities of the other polymers which do not touch C are defined 

by ec_::. ( 1.8) as before. 

?roceeding as in the derivation of eq. ( 1. 9) one obtains 

z(ill<xk(uc I>- Z: 
n) 0 

" L. Kc ("P
0

) Tl A ("P,) 
("Po,···,"Pn) \"'f 

t 1.12 I 

An e~?ty product, which arises when n ~ 0, is read as 1. Summation is 

over ?artitions of A into disjoint polymers P0
, ... , P

0
. The loop Cis 

consl~ered as part of P
0

, and disjoint means that different polymers may 

not O".'erlap or touch along a link. 

The next step is a partial resummation [11] : One sums over all 

those partitions (P
0

, P 1 , ... , Pn) with a fixed P
0

• They are in one to 

one correspondence with partitions (P
1

, .. . , Pn) of A- ~0 . A- ~0 
consists of all those plaquettes on 1\ which do not touch P

0 
along a link 
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(see figure 2). Naking use of eq. (1.9) the result of this partial re­
summation takes the form 

'-'X, (uc )) 
L Z(A--i>,) 

Z (A) ", 
Kc ("P,) 

11 . 1 3 I 

Summation is over polymers ~0 as described above; they contain the path c. 

Proof of confinement of static quarks (with nontrivial 

transformation 1 a~w::..._~u~n~d~e~r'--~t~h~e'--c~e=n00t2e~r'-o=f_,t~h~e~"q~a2u~a~e"--~a~r.::o~ e_~ 
~or small 13 (strong coupling) [11]. 

To be specific, let us consider a theory with gauge group SU(2) 
and l'lilson action. I choose the additive constant in expression (1.2) 
for ;t, so that 

p 

Xp(u) 

Then 

4 [ 4 u, + 2] ) 0 
f 11 . 1 4 I 

o~fP(U)<><(l 
11. 151 

1 and sufficiently small 13. Since integrations over for a constant . ~ 
U. for t¢X are trivial, expression (1.3) for Z(X) is equivalent to 

z (x) = j rr du, rr [ 1 + J (u l l 
(E. A t pEA 1' 

with tp if p<X 

l f (u l p 0 o~htrwise 

Since f » 0 it follows that 
p 

o < z (x ) ~ z ("-) to• X ~ 1\ 

Consequently, eq. (1.13) tells us that 

I<'Xk(u0 l>l ~ L. I l<c (P, 1\ 
"P, 

11. 16 I 

The crucial question is now: For which P0 is Kc(P0 ) f 0? Here the center 
of the gauge group cor.,es in. 

The center z
2 

of SU(2) consists of the two matrices~ 1, and the 
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character xk of the (2k+l)-dimensional representation of SU(2) obeys 

x,(-uc) 
lk 

- (-<) ~::.(uc) ( 1. 17) 

The static quarks transform nontrivially under the 
group SU(2) if they have fractional colour-isospin 

follows from eq. (1.17) that 

center of the ?au0e 
1 3 

k = 2' 2' . It 

Kc P'o) = 0 11. 181 
unless P

0 
contains all plaquettes in a surface with boundary c. 

Idea of the proof of assertion (1.18) [13]. Suppose P
0 

leaves a hole. 
Then I can find a cocloscd set T of plaquettes which winds around C and 
shares no plaquette with P 

0
. ncoclosed" means that every 3-dimensional 

cube in A has an even number of plaquettes in P
0 

in its boundary. An 
example is shown in fig. 3. 

Because T is coclosed, 

there exists a variable trans-

forrr.ation 

ut _.,. u.e.'"' u.t 'l.1. ) 'II.~- z<. { 1 . 1 9) 

with the property that 

{ 
- u"ilp ·f p < 'I' 

u ~ ( 1. 20} "ilp 
uop o~hentise 

For instance, if 'I is as in 

figure 4' one chooses y 0 -1 

for .:;:s, andy + 1 otherwise. 

>lore0·/er, since T winds around 

C, t~e transformation takes 

u--u'==-.u c c c 
( 1. 21} 

Finally, because of invariance 

of Haar measure 

dul = du; ( 1. 22} 

Since T does not intersect P
0

, 

c 

"d:IOOOOO(b. 
C7 
C7 
C7 

C7 

L7 

C7 

C7'1" 
L:7 

C7 

"lJOOOOOtF 
figure 3 

~aaaaaib 
L?/////.c? 
.c::T/////£7 
L::7/////L7 
-C7/////L7 
L:::?/////£7 

4JC1 a a a arr 
figure 4 

f lUI 
p 

fp (U I} for pE.P
0

. 

0 -p€T 

/.!e. s 
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On the other hand, because of eq. (1.17), Xk(U'c) =- xk(UC) if 

k ~ ~, ~~ .... Therefore the integrand of expression (1.11) for KC(P
0

) 

changes sign under the above variable transformation·. In conclusion, 

KC(P 0 ) = 0 if P0 leaves a hole, q.e.d. 

If the static quarks carry integral isospin k = 1, 2, then 

assertion (1.17) does not hold. In this case KC(P
0

) f 0 for P
0 

as shown 

in figure Sb. 

c 

~ D c 

a) k-= t b) k = 1 

fig. 5 leading contributions to {1.13) 

Now we return to inequality (1.16). Suppose that C bounds a rectangle 

if size L . T. Then a surface with boundary C contains at last L · T 

plaquettes. Therefore (1.18) implies that 

l<x, Cucl>l ; I. I Kc (P,ll 
">:, 

!P
0 
I} L·T 

if k = ~· ~, .••• I write IP 0 : for the number of plaquettes in P0 . 

Since /dU. = 1 and 0 :;;; fp ~ w. (3, if follows from definition (1.11) 

that 

\Kc(P,ll 
11' I 

• X k (') C"-(' ) ' I 1. 231 

Finally we need a combinatorial estimate. It is a corollary of Eulers 

solution of the KOnigsberg bridge problem [14] and says that the number 

of polymers P with 

'lC.
1 

: C I +n, whe~e C 

a given number n 

is the length of 

i P 
0 

of plaquettes is bounded by 

C (= 2(L+T)) and ~1 is some con-

stant. It follows that 

l<x, (ucl>l; L 
11 ~ LT 

I c I 
~. " C••.fl x,(•l 

\C I L·T -1 

"• C •, "fl l C' - ""• f l x • < n 

I 
ICI -CX 0 LT 

~ COI'IS lot
1 

e I 1. 241 
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if 6 is small, and k = 

the promised area law. 
2

, ~~ ... ,with a
0 

= -9.n.xY-1(! ---0. This is 

If k is integer, the contribution of the polymer 

P
0 

of figure Sb produces a perimeter law. 

~5bius inversion [15] 

So far we have obtained only an upper bound on the Wilson loop 

expectation value. If one wants to actually ~alculate <xk(Uc)> one needs 

Z(X)/Z(A) for subsets XcA since 

< 'X' ( uc) ., = I. 
P, 

Z (A-ii,) 
Z (A) 

Kc (1',) 

by eq. ( 1, 13) . This leads us to ask for expansions for free energies 

-,n Z(X), since 

Z(X)/Z(A) exp [ £n :z (x)- ,e" z c\ ll I 1 • 25 I 

Z(X) has been exhibited as partition function of a polymer system 

ln eq. {1.9), for X.s_A. From now on we will regard X and A as sets of 

plaquettes. \1/e look for a "Lagrangean" L(Y) of our polyme·r system which 

is defined for all subsets YeA and has the property that 

Cn z(x)- I L(Y) 
Y£X 

I 1. 261 

t.(Y) is uniquely determined by this equation, since it can be inductively 

computed from it. The explicit inversion formula is given in eq. (1 .27) 

below. Eq. (1.26) provides an inductive specification of localization of 

::ree energy . -L (Y) is the part of the free energy of a system in Y that is· 

spread out throughout Y, i.e. equal to the free energy in Y minus whatever 

?art of it is already localized in some proper subsets of Y. 

The inversion forcula for L(Y) reads 

L(Y) = L s- J.n z(v:) 
Y"W 

'W£Y 

!J.Y>I. (-<)IYI-11.11 

I 1. 271 
w;ll\ 

y· ~ number of plaquettes in Y. L(Y) has the important property that 

L(Y) : 0 if Y is not polymer-connected. I 1 . 2 8 I 

·r· is "not polymer connected" if it is union of two nonempty subsets Y 
1

, 

'f 
2 

such that there exist:s no polymer which is a subset of Y and intersects 
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both Y1 and Y2 . We say that Y
1

, Y2 are ''polymer disjoint'' in this case. 
The MObius inversion formulae ( 1. 26), ( 1. 27) have been known for 

a long time, but they appear to be not as generally known as they ought 
to be. We pause to give the proof of (1.27) and (1.28). 

The proof of eq. ( 1. 27) proceeds in two steps. First one notes 
that 

L. 
y ,J>YX 

X f Yf X' 

i{ X· X 

0 olhuwlse 11. 29) 

Thenoneuses this to show that expression (1.27) statisfies (1.26). By 
uniqueness of L(Y) it must therefore be true. Inserting (1.27) into 
(1.26) we obtain 

' h.'· of (1 H) L. L. if £, z (w) ~ in z(x) 
y w Y'W 

'W£Y£X 

by eq. (1.29). The proof of eq. (1.29) follows from the binomial theorem. 
Let s = ,X , t X '' ' '' the number of plaquettes in X, X', y, 

respectively. Then aYX 

n=IY'be 
(-1)n-s. Y is fixed by selecting n-s elements 

of X'-X. T~is can be done in (t-s) ways. So n-s 

lb. of (119) L. (- 1 ) 
,., 

" s ~ ., ~ -1:: ,_, 
• (1-1) 

Since X.s_.X', t = s implies X =X'. 0 

( i-' \ 
h- s } 

,_, 
z 
k-o 

;{ ! . ' ! 0 oi:htn-r~·se 

k 
(-' ) (\') 

:::ext, I give the proof of (1.28). Suppose that Y is not polymer 
connected, so that it is union of two pol:·mer disjoint subsets Y

1
, Y

2
. 

Let X be any subset of Y. Then x1 = Y1 n X and x2 = Y2 fi X are also 
polyr:<er disjoint if they are both nonempty. It follows from formula 
(1.9) for the partition function that in this case 

Z (XI ZIX 1 1ZIX 2 1 

If x1 or x2 is empty, the same is also true because Z(¢) = 1. From its 
definition it follows that 3YX also factors: 3YX : 3y X 3y x· Therefore 

1 1 2 2 

t(Y). L 
x1~\ 

z: 
)(2.~ y2. 

:r :r 
Y1 X. Y2 X.< 

[in Z (X,) ~)'n Z (xJ] 
11. 30) 

Y 
1 

and Y 
2 

are nonempty by hypothesis. It follows from eq. ( 1. 29) with 
X= empt~· set that both terms in (1.30) are zero. Thus L(~ =0. 0 
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use as an expansion formula 

I propose to use eq. (1.26) as an expansion formula for the free 

energy 

Jn Z(X) • L L(Y) 
y 

(Y< X) 

11. 26) 

To obtain a useful approximation for the free energy of an arbitrarily 
large system X, one should truncate the sum over Y. For instance, one 
may consider omitting all subsets Y with a diameter bigger than some d. 
To usQ a truncated expansion (1 .26) for computational purposes, one 
has to corr,pute L(Y} for small sets Y from eq. (1.27) combined with eq. 
(1.9) for Z(ltl), see eq. (1.32) below. Both equations involve finite sums. 

Expansion (1 .26) has the essential property that it is a finite 
sum for a finite lattice X. It can therefore be expected to converge fast 
for an infinite system if the polymer system has no long range corre­
lations. This is in sharp contrast with the standard high temperature 
expansions (s. below). They involve infinite sums on finite lattices X 
already, and they may diverge on a finite lattice. Their divergence is 
therefore not in general indicative of any kind of long range corre­
lations in the polymer systems. This is important for instance in the 
SU(2) lattice gauge theory model (1.2). This model is thought (or hoped) 
not to have infinite range correlations for any finite value of the 
coupling parameter B. Nevertheless the standard high tempera-
ture expansions appear to diverge outside the strong coupling regime 
-3" 2.2. It is hoped that use of the expansion (1.26) offers a way to 
overcome this limitation. As we shall see in the next subsection, (1.26) 
may be regarded as a partially summed form of the standard high tempe­
rature expansions. 

In the expansions (1.26) we expect "divergence" (or very slow 
con\'ergence) only if the polyner system has long range correlations, 
for instance 

that is 

Z(A-A-31 
z (I\) 

Z(A-A) 

Z (A) 

'.vhen C.lstance 

Z(A-.E) 

---zc;;l ~ 0 

(A,B) 

.{., Z(A-A-B)Z(A) 

Z (A-AlZ(/\-Bl 
~ - L L (Y) p( y 0 

AuBCY~I\ s 

( 1. 31 a) 

11.31 b) 
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The r.h.s. of eq. (1.31b) involves the sum over (large) polymer-connected 

sets Y that contain both the widely separated subsets A and 8. Ex­

pressions of the form on the r.h.s. of (1.31a) are called reduced corre­

lation functions in the theory of polymer systems [10] 

The relation between convergence and long range correlations in 

expansions (1 .26) for infinite systems deserves further study. 

It is amusing to see how the expansions react when the additive 

constant in the Lagrangean ;t of our lattice gauge theory model is 

changed: /p ' 
:t: p :Cp . . . . 

-tc. If f e -! lS small for some cholce, lt lS 
p p 

not small for another choice. As a result, the convergence of the 

standard high temperature expansions is affected by such a change. Not 

so for the expansions (1 .26), The change I 1 +c chances 
'x P P. . 

Z(X) + Z(X)ec' . As a result L(Y) ~ ~(Y) +c if Y lS a single plaquette, 

while L(Y) for all other sets Y are unchanged. (To see this it suffices 

to note that eq. (1.26) remains valid for any finite X after these sub­

stitutions, if it was valid before.) Therefore, convergence properties 

of (1 .26) are unaffected. 

The standard high temperature expansions 

They can be obtained from eq. ( 1. 26) by further expansion. One 

starts from expansion {1.26) \·Jith eqs. (1.27), (1.9) for I.(Y) inserted, 

viz. 

with 

J'n Z (/\) L L (Y) 
y 

L(Y)"L J.YX£n(1+ L, 1TA("P,l) 
X~Y (?., ... , ,) ~ 

'[~,;.X 

I 1. 26 I 

I 1. 321 

Now one expands L(Y) 
' 

in powers of the activities ,using Q.n ( 1-tx) = x- x2 -t 

and the multinominal theorem. As a result one obtains an expression of 

the form [1 01 

L (Y) L a(o.lA(Gl 
Q 

I 1. 33 I 

Summation is o\·er sets Q of not neceSsarily distinct polymers, polymer 

Pi may occur with multiplicity ni. Every plaquette in Y must be con­

tained in at last one polymer Pi in Q. a(Q} are combinatorial coeffi­

cients independent of the activities, and 

- 1 3 -

A (a) ~ 
n, .,k 

A(li) . A(P,l if Q. ( 
)1. ., k ) 

~ , .. ,"Pk 

The set Y of plaquettes which are contained in at least one polymer in 

Q is called the shadow of Q, 

Inserting (1.33) into (1.26) one obtains the final result 

tn Z ( 1\) L o.(Ol A(Ol 
Q 

I 1. 341 

Summation is over all Q whose shadow is polymer connected and contained 

in A. 

Expansion (1.34) may diverge on a finite lattice. 

Example: A = a single plaquette, a single polymer P = A with activity A. 

fn Z(A)" ~n (I+A) 
"(-<)n+f.., 
'-- -- A 

n 
div<'.Yje.s -fo~" lA l '7 1 

Sufficient conditions for convergence of expansions (1.34) are known. 

(They are derived by use of Kirkwood Salsburg equations, cp ref. 10.) 

Convergence is assured if there exists a number E 

,.!..... r 1 + /:lu.p L. 
~ 1' p 

p•P 

~ 1 " 1 A(1'l] < 

1 such that 

Summation is over all polymers which contain a given plaquette 

the polymers are made of plaguettes). 

The problem of the roughening transition 

I 1. 351 

(in case 

Let us now return to the expansion for Wilson loop expectation 

values, eq. (1.13). In the high temperature regime ([3 small enough) only 

polymers P 0 (with boundary C = 1'/ilson loop) which differ from the minima·l 

surface with boundary C by small deformations need be taken into account. 

An example is given in figure 6. 

One can make use of this to obtain an expansion for ~n<xk(Uc)> 

in the limit of large loops, that is for the string tension a. This is 

done by performing another high temperature expansion in which the de­

formations in P0 
(and the clusters which come from the expansion of 

;_n Z (A-P ) /Z (A} ) are treated as the polymers. Series expansions for the 
0 

string tension a were computed in this way by MUnster [16]. 

This series for the string tension a itself must be expected to 

diverge when f3 > BR , where BR is the roughening transition point [17]. 

A roughening transition is expected to take place on the basis of general 
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arguments [18). It means the following. One may look at fluctuations 
of the surface P

0
, i.e. the average deflection d squared 1 see figure 7. 

It is determined by the relative size of the contribution from surfaces 

P
0 

in expansion (1.13). For (3 < (3R' dis bounded 

~ ~c 
figure 6 fiqure 7 

independent of the side length T of the Wilson loop. In contrast 1 for 
S GR is grows logarithmically with T: do.:; £nT. ( * l This means that 
increasingly larqer deformations in P 

0 
become important for increasing 

T and therefore the series expansion for a, which is an expansion in 
increasing size of the deformation for infinitely large loops C, cannot 
converge for S > GR. In SU {2) lattice qauge theory will Hilson act,ion, 
!3R ~ 2.according to ref. 17. on the other hand, the roughenin~ transi­
tion is a change in asymptotic behavior for large Wilson loop, it is 

not expected to correspond to nonanalytic behavior of <xk(U(C)) 
fixed finite C. 

for 

Conclusion: If one wants to use series expansions beyond S = SR' 
one must be content with expansions for finite Wilson loops, and the 
":?.,.artially summed" high temperature expansions which I have described 
earlier in this lecture should be used. 'fhe larger the loop, the more 
"i.:.erms in the expansion will be needed, 

Let us note that the Nonte carlo Method is also limited to finite 
;; il son loops ( 3 x 3 or so) . 

1.2 Other expansions 

I will very bi"iefly mention two other expansions. 

1) Low temeprature expansions, e.g. for lattice gauge theories with 
discrete gauge group G 19 

example: G = z 2 1!1_ "'"±"-1 

z = L exp l:. 1c> [ u.,o -d 
u 1' ' 

so that 

{*) The rougheninq transition can also be defined without recourse to 
expansions in termS of the behavior of expcctaion values <1-r UC +. Udp > 
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z 1 + L. e-2(l1EI 

J3 

B is the set of plaquettes 

3-di~ensional cube c in A 

where U 
dp 

contains an 

- 1. 

even 

I 1. 361 

It is coclosed, i.e. every 

number of plaquettes in B 
in its boundary. is\ is the number of plaqucttcs in B. B can be decom­
posed into connected components P. In this way the partition function 
is found to equal the partition function of a polymer system. The po­
lyrr.ers P are connected coclosed sets of plaquettes, An example is shown 
in figure 8. Their activities are 

A(P) 
e -2(3!PI 

( 1. 37) 

2. ::aver expansion for dilute gases [201 

&OcJ~ 
L:7 
C7 

L7 
L:7 

4JOClcP 
figure 8 

example: A gas of particles with ''charges'' qj ~ 1 which interact 
thrc~gh a potential qiqju(x

1
-xj) of finite range. 

The canoncial partition function of N particles is 

ZN - L: 5clx .. olx 
! 9 i l ' " 

exp[-flL: 
(tj ) 

,u(x-,-x-)] 
J J I 1. 381 

Pol~·~ers Pare subsets of theN particles i1 N}, their activities 
;,-..-ill only depend on the number of particles that are selected. Yie may 
label them by 1 

A ("P l ~ 

'.,.;it:-. 

n"' iP. 

r: r dx . olx 5t J I 11 

2: rr 1 
!9; I Ujl<J1 'J 

t,J -1 + exp [-(lq,qj ~cx,-xjl] 

I 1. 391 

11.401 

A ~~aph Son n vertices I 1 ... n} is specified by prescribing the pairs 
(ijJ of vertices which are joined by a line. These pairs are considered 

as ~~e elements {ij)EE of~- summation in (1.39) is over all connected 
~ra:=-:-.s on vertices 11 n I. There exists a useful formula (the "tree 
£:or::-.ula") W'ith which the sum over graphs can be reexpressed, see ref. 21. 

A si!"r'.plification occurs when one considers the grand canoncial 
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partition function with fugacity b esu (u 

z ~ z: L 
r.f! ZN 

It is expressed in terms of the activities by 

~n Z L J IPI A (1') 
1' 

provided the sum is absolutely convergent. 

chem. potential} 
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2. THE NOTION OF AN EFFECTIVE ACTION 

SII-\PLE APPROXIMATION) 

(1>-'ITH ILLUSTRATION USING A 

I will consider lattice models (ferromagnets) with n-component 

spin variables w(x) = (~ 1 (x), ... ~n(x)), and with partition function 

of the form 

z [ n Lo(ep) _ 
J JJd ep(x) e 1,1 "i?(<i>(xl) ( 2. 1 a) 

with fl~(x)) ~ 0 and 

Lo (ep) 
n j. cp'(xl}<f'(x) 12.1 b) + C.OYIS~. z: 

2 fo X 

Exar..ple 1. 0 (n) -symmetric Heisenberg ferromagnet: 

f(ep(xl) ~ 8 ( lep(xll~- 1) ( 2. 2a) 

Example 2. Discrete Gaussian Model Z-ferromaqnet: n 1, and 

f(ep(xl)-Z: S(ep(x)-hk) 
k=0,±1,±2, ... 

12. 2b) 

r.et us write ~(k) for the Fourier transform of ~(x). Instead over ~(x) 

we nay integrate $(k). Suppose that the integrations over (?(k) with 

k M have been done. Let oto(x) be the sum of the Fourier components 

~(k)eikx with !ki < M, i.e. equal to ~(x) minus its high frequency com­

ponents. Then the result of the integrations will be of the form 

z I fl4> e 
L,ff(<Pl 

12. 3) 

This defines the effective action Leff" It is convenient to take out a 

kinetic term from Lcff(¢) and to write 

Z - J c/;"c (4>) e -V•fl (4>) 12. 4) 

due is a free field measure with UV-cutoff M. (This means that it con­

tains 6-functions which constrain the Fourier components 0lk) with 

k N to zero.) 

It is of importance to study the localization properties of Leff" 

(Because of the integrations that have been performed, Leff will include 

nonlocal terms.) [41.By using the techni.quc of HObius inversion of 
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section 1 one can exhibit Leff as a sum of terms which are localized 
in regions Y of space (Euclidean spacetime if we consider QFT) • As an 
example, the complete effective action for the Z-ferromaqnet with 
UV-cutoff M is exhibited in eq. {3.2). {For technical reasons, a Pauli 
Villars UV-cutoff is used there instead of a sharp momentum cutoff 

' ,k < M, and ¢ is rescaled by a factor S1 .) 

In this section I will.use a simple approximation to ill~strate how 
(approximate) computations of effective actions can be used to determine 
the phase structure of a model. 

2.1 Normal ordering . 

A free field theory is uniquely determined by its propaqator 

(, (l (-LHrn'f' without UV-cutoff or on a lattice (2. Sal 

or 

C·;?>[C-Ll+m'r'- (-Ll+M'r'J 
with a Pauli-Villars cutoff M (2. 5b) 

etc .. -11 should be read as k 2 (continuum) or -21::fcos k a-1] (lattice) 
"[ " to obtain the propagator in momentum space. The factor S could be ab-

sorbed by rescaling the field. 

The corresponding Euclidean free field measure is 

ci;'cC'Pl ~ ;: d"ep(x) exp [--)- (<e,C-'<i>l] 
0 ' 12.6 I 

Cis also called the covariance of this Gaussian measure. 

Normal ordering with respect to a Gaussian measure with covariance C 
is defined by 

\.k· (fl (><) 
e 

.tk. <'p (><) 
e 

- k'C(o)/l 
e 

C(O) = propagator at distance 0 . 

S 'J<c (q,') e ik <p'(x) 

:e-ik-(p(x>. 

12. 7 I 

To write an arbitrary function f{w(x)) in normal ordered form, one ex­
pands it in a Fourier series or- integral and uses (2.7). It follows 
that, if f is any tempered distribution then 

-{(ep(xl) : F(<p(x)): 
(2.8al 

V<ith 
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F (~ ) 
" ' ( ' (2-<cC(o)f 2 Jd"? fC?) e -2c(o, ~-~ 1 

(2.8b) 

and F is an entire analytic func_tion of E, hence posesses an everywhere 
convergent power series (for any finite number n of components of w -
in the n -> :o limit it need not be so (JO] ) . Note in oarticular that also 
a-functions can be written in normal ordered form, and then expanded 
in normal ordered products. 

Generalization to functions which depend on the field at several 
points is obvious. 

example: <.O(X) • {j)(X) 2 + nC ( 0) 

2.2 A simple approximation 

To carry out the integrations of high frequency components of the 
fields, we will use the approximation (for C a propaqator which propa­
gates the high frequency components) 

sdf'c(<p) 'J'(Cep(xl)" S?c('Pl\f:''J'P(xl)' ~ 'J''~",(o) (2. 9 I 

In this formula, :: is normal ordering will respect to Gaussian measure 
with covariance C; it depends on C because C(O) enters into eq. (2.8bl. 

Motivation for the approximation 

Hrite the integral as a sum of Fcynman vacuum-diagrams by use of 
Wicks theorem. Neglect all nontrivial diagrams (with > 1 vertex. Dia­
grams 0 + 0 + @ + ... are taken into account by the above normal ordering). 
For instance, let n=l. Expand 

+,.(<p(x))"" Fx(o)+ 'l=';(o)Cp(x)+-

The leading term in 

instance something 

lJ' f"x(<p(xl)' 

prO!JOrtional to 

is lr+ (o) . Other terms include for 
X X 

~ z W'ick z 1 ( ( : ep (x
1
)::ep (x,): ::= :cp (x

1 )Cp (x~): + C X
1
-X'2.) :cp x1 )Cp(x

1
): 

+ 4 C (x1 -xl.{ 
The last term is graphically represented by a qraph <> with two 
vertices, which we neglect. The first two terms integrate to zero. 

2.3 Application 

I use this approximation to carry out the integration of the high 
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frequency parts of the field ~(x), viz. mtk) with :kl > M. The aim is 

to obtain in this way an effective action with UV-cutoff H, with M of 

the order of the ultimate physical mass. The (approximate) true vacuum 

etc. is then obtained by a semiclassical treatment of this effective 

action. This reveals then the phase structure of the model. 

NB: In very nonlinear theories (with 6-functions etc.), Semiclassi­

cal approximations are only trustworthy once the cutoff M has been 

brought down to O(phys.mass). ro obtain a rigorous justification of a 

semiclassical approximation when M is low enouqh one relies on Glimm­

Jaffe-Spencer expansions (compare introduction) if n = 1. 

Then 

Let us split the original propa9ator (S = f
0

/n) 

C=(H"+u) (3~<kJ- c(kJ e(~M-Ikr) 

d!'c(cf)- o/'(lJtl cJ;'~u(xl 

cp~<P+x 
(2. 1 0) 

¢has on-ly (propagating) components ~(k) with ~k. " nM, the other compo­

nents are called x. (Note that d~u=O(~) = Dirac measure concentrated at 

~ = 0.) We obtain 

z S')ucC'f) ',;f('f(xl) = \')"f'u(<j>)clf'flJxllJf(qo(xl+X(xl) 

= 5d>< (4>)d,u (x)lTo>((f(xl+X(xl)' 
I f'u 1 (lu x 

where :: is normal ordering of the function ~ .. (x(x)) = P(~(x) + x(x)) 

with respect to covariance Sv. Using our simple approximation, the above 

expression becomes 

ScJ;'fl"<<tllJ""C'*'<xl) a Sc~t/luc<~>)e-v,,,<<~>l 

with 

V,nC<tl =- J,;. -fn >(<f>(xl) 

The effective action consists of - Veff plus the "kinetic term" from 

the Gaussian measure. 

Thus we obtain the following Rules for an approximate determination 

of Leff: 
Suppose the partition function to be evaluated is of the form 

Z ~ S')"cC'I') T[f (qo(xl) 
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Then proceed as follows. Normal order f with respect to a covariance~u 

that equals C except for the presence of an infrared cutoff at M , viz. 

f(x(x)) F(x(x)) Drop the dots ::, modify the kinetic term by 

an UV-cutoff M, set 

L,lf(G>l= -dfl(-t,u·'-t)-v,rrC<Pl v,rrC<tl= -I. Rn+(<t(xl). 
X . ( 2. 11) 

Application to the z ferromagnet (example 1, eq. (2.2b)). 

In 3 dimensions this model is the (Kramers Wannier) dual transform 

of the U(1) lattice gauge theory with Villain action [221. 

In 2 dimensions it is the dual transform of the plane rotator 

(XY-modell with Villain action. 

The partition function is (S = 1/f
0

, 'V( b " (-6) -1) 

z J 'Y'(lu ((p) I. 
Cb k 

1T S(qo(x)-2rrle(xl) 
X 

We split 

~Cb = V+U 

Instead of a sharp momentum cutoff one could also use a Pauli Villars­

cutoff. In this case 

~ (-/::..+1'-12.)-~ u (-A)-1- (-A+M~)-1 

Alternatively, one may use a lattice cutoff M = L- 1 . In this case the 

propagator u ( x, y) is obtained by averaging ~) -:'b ( x, y) over blocks of side 

length L in each ar9ument. t;·:e want H of the order of the ultimate phy-

sical mass m. According to our rules, we have to write 

the periodized 6-function in normal ordered form. The result is imme­

diate from eq. (2.8b): it is equal to a normal ordered periodized 

Gaussian. As a result of the application of our rules, 

z 5ctr-(3u(¢) L 
k 

' TIe- 2(3u(o)(cP(x)-2:1'rk(xl)2.. 

X ( 2. 12) 

For 6<J(O) large this becomes 

\dff'u (4>) exp [ J f co' <f>(x) • ""'' J 

with 

, J • exp [-('v (ol/2] I 2. 131 
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The effective action in the presence of a cutoff M is thus given by 

- J L Cos </> (x) 
X 

V,ff(<P) 12. 14 I 

We now proceed to the further analysis for the 3-dimensional case (U(1) 
lattice gauge theory) . 

Suppose that B + oo in units of lattice spacing, and M ~ Am, 
m = phys.mass. For large B, m will be small and 
for simplicity that we use a lattice cutoff M = 

'V(O) 
-1 

L , 

t: uCb(O). Assume 

Then the field ~(x) 
is constant on blocks of lattice spacing L, and the effective action 
becomes 

v,fl ( <P l • -a L, L. Co< 4> (x) 
blocks 

12. 1 5 I 

Ne look at this as an effective potential for a theory an a block lattice 
of lattice spacing L. Because of the large factor ;L) (s. below), Veff has 
mini~a which are separated by very high maxima. Expanding the cos around 
~ = 0 we obtain the mass m, 

2 ,,-, -(lu,,(ol/> 
m "" ,_.e (2.16) -3 -1 Therefore ~1 3 ~ A (m{3l + "" exponentially as B -~ ''". Here A = (M/m) = 0 ( 1) 

An approximate expression for the surface tension (see figure 10) can be 
obtdined by a (semi)classical approximation also. The result is 

r::l. = 2Ynf- 1 
(2.17) 

Duality transformation shows that the surface tension in the Z -ferro­
magnet equals the string tension in the U(l) lattice gau?e theory. 

Let me briefly discuss the 2-dimensional case for contrast. In this 
case the factor zL 3 in eq. (2.15) is replaced 
found difference - we are now lacking the one 
made JL 3 -~ -'" as B 

by zL'. This makes a pro­
-1 factor L = O(m ) which 

Consider the situation with small or zero physical mass 0 f m « 1 
in units of {lattice spacing)- 1 . The mass m is determined by the curva-
ture of Veff at its minima, in the limit of low enough cutoff. 

m' ~ 2(l~ ,.,/1. J exp [-flu (o)/2 ] 12. 18 I 

7 depends on M, and therefore indirectly on m because M is constraint 
to values ~ O(m). For small M 

- 23 
tJ(o) = -..!...En Mo.' 

2rr 
with a' = 0 {lattice spacing) 12. 1 9 I 

Suppose that 8 > Bc=- 8rr. Then 7 is exceedingly small for moderately 
small M, and m2 = 28j tends to 0 faster than M~. Therefore m + 0 as I 
lower M, maintaining M # O(m). Thus 

m 0 -fo' (l > (lc • 8rr (2 .201 

This is the Kosterlitz-Thouless phase. 

Application to the nonlinear a-model (Heisenberg ferromagnet) 

This is example_ 1, eq. (2.2a). According to our result, we must find 
the normal ordered form (with respect to covariance~v) of the 6-function 
that is concentrated on the unit sphere Sn_ 1 • 

According to eq. (2.8b) 

S ( rp (< 1'- 1 ) ~ ' I= ( (p (x)) ' 

with (8 f
0
/n, E = {;, 1

, .•• , ~ 0 )) 

+en [ >rr(lu(o)f't J d"7 2; C7'-1) e- >{;u(oJ (~- ~ l
2 

12.21 I 

~'Ve split the propagator as before 

C•(l(-u+u) 

Application of our rules gives 

v,n (<P l f ";r( (<P(xl) 

v,ff c~ l • - e" +(o 
To find the behav-ior Veff at [; = 0 (maximum or 
Veffll from eqs. (2.21) I {2.22). QUalitatively, 

as a function of iEI 

i "JJ,, \ 
-----c> ±1~1 

(2. 221 

minimum) , one computes 

Vef£ looks as follows 

r "ii,pf 

__________,. ± ' l; ' 
o) n(lu(o) > fioure 9 b) nfv(o)<1 
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We arc interested in the behavior when the cutoff t-1 is small compared 

to the (lattice spacing)- 1 • r.1 -• 0 gives u(O)--.- (-6)- 1 (0). 

In 2 dimensions; u( 0) -+ ''' as (-ll+m•) - 1 (0) L when m + 0 in 2 dimen-

sions. As a result, Veff alway looks as in figure 9a) for sufficiently 

low cutoff H. Therefore there will be a finlte mass and no spontaneous 

symmetry-breakdown. 

In more than 2 dimensions, there will be spontaneous symmetry-

breaking if n[3v<.b(O),- 1, i.e. if f
0

-
1 

(-L)-
1

(0). The potential L)eff 

looks like figure 9b) for this range of f 0 and low cutoff M. 

These results agree with the results of the 1/n expansion. 
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3. RIGOROUS RESULTS FOR TilE ]-DIMENSIONAL U(l) LATTICE GAUGE THEORY 

In this lecture I Will report results of a study by M. Gdpfert 

and myself [81. It dealt with lattice gauge theory in 3 space time 

dimensions without matter fields and wilh gauge qroup U ( 1). It is known 

from the work of A. Guth [23], that such a model shows a deco1_1fining 

phase transition in 4 dimensions, so that its weak coupling continuum 

limit will not show confinement (if it exists at all). In contrast, in 

3 dimensions, the work of Polyakov [241, Banks,Myerson and Kogut [22), 

Drell et al. [25] and DeGrand and Toussaint [26] lead to the belief that 

confinement will be true for all values of the coupling constant. We 

proved that this ls indeed the case, for the model with Villain action. 

It turned out, however, that the ratio o./mb of the string tension to 

as:,•mptotic physical mass squared becomes infinite in the weak coupling 

limit (continuum limit). 

The model lives on a ]-dimensional cubic lattice of lattice spacing 

a. It is a classical statistical mechanical system whose random vari­

ables are attached to the links b = (x,y) of the lattice 

i191' ()() 
U 1. = e to' f= ()(,)(+?) - T -u.:!'}{<i 

{el! lattice vector in ~ direction). The action is of the form 

L ( U) L :t(u,) 
1' p 

(3. 1 a) 

(3. 1 b) 

with u0 P 

links x.
1 

= u n ••• ul if p is the plaquette whose boundary consists of 
"'1 -4 

• • • 2 
4

, and 

:f(e'~) exp [- t ( , J 
tn=0,i:{,±2.,-· 2a.~z. 0-2rr-m) 

= .fn L (3. lc) 

g' is the unrenormalized electric charge squared. It has dimension of 

a mass in 3 dimensions. The Boltzmann factor is exp L(U). 

Since the gauge group U(l) of this model is abelian, the model can 

be subject to a Kramers-Wannier duality transformation. As a result one 

obtains a ferromagnet with a global symmetry group Z . Its random vari­

ables n(x) are attached to the sites of a ]-dimensional cubic lattice n 

(t~e dual of the origianl one) and assume values which are integer mul­

tiples of' 2n. The new action is 
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z 

[}n (xl] 

We use the standard notations 

~-.~itt, f = lf."Jrt/~ 2 

a' r: 
X 

~fCxJ ~ "'_, [:fCx.7J-f(xl] I, 

a is the lattice spacing, I prefer not to set a~ 1 in this section. 
Expectation values are computed with the help of the Boltzmanl'). factor 
exp i.(n). This model is known as the "discrete Gaussian model", for 
obvious reasons. We call it the "Z-ferroma.gnet" in order to emphasize 
its symmetry properties. I have already considered this model as an ex­
ample in section 2. 

The global Z-symmetry of this model is always spontaneously broken 
(if <n(xl > exists at all) since the equation 

< n ( x) > 0" < Y1 ( ><) :> + 2nT r.z 
has no solution if I I 0. The surface tension a of the model is defined 
as the cost of free energy per unit area of a domain-wall which separates 
two domains whose spontaneous ma~netization :n(x) differs by 2rr, see 
figure 10. The duality transformation sho\v·s that o. equals the string 
tension of the U(1) gauge model. 

11(x) .. 0 at" 2.Tr 

i 
L, ---'----· 

l n (x) "" 0 

<-- L, ~ 

/ 
/ 

/ 

,/ 

/' 
L, 

figure 10: Definition of the surface tension o.. One considers the free 
energy of a box for the two choices of boundary conditions i) n(x) = 0 
everywhere and ii) n{x) = 2n above the dashed line and n{x) = 0 below. 
o. equals the difference of the free energy for the t.wo boundary condi­
tions, divided by L

1
L

2 , in the limit Li -+ , (i = 1 ,2), followed by LJ _,. 

It is convenient to introduce the following quantity with the dimension 
of a mass squared 

m; , ( 2(3/a') exp[-puCb(o)/2] 

where vcb is the laltice Coulomb potential. As was shown by Banks et al., 
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the model can also be transformed into a {special) Coulomb system. 
is the prediction of a Debye Hlickel approximation for the sceening 
of that system, for large 8/a. 

Our main results are as follows. 

Theorem 1 There is a dimensionless constant C 0 such that 

()( '3' C. rnn[3-1 for sufficiently large 8/a. 

-1 
mD 
length 

Since o.a• is a monotone decreasing function of 8/a by Guth's inequality 
[23], it follows that o. ' 0 for all values of the coupling constant 
g' 0. \~'c believe that the r.h.s. of the inequality of theorem 1 re-
presents t~e true asymptotic behavior of o.. Il is amusin0 to compare 
with the leading term of the hiqh temperature expansion, which is valid 
~1en B/a lS small. It reads o. = 2rr 2 a- 1s-l + ••• 

The r:-eaning of m0 as an asymptotic mass is clarified by the second 
result. Ttc effective action Leff mentioned below depends on a real 
field 1' (x). It is obtained by integrating out the hiqh frequency com­
ponents o~ 6-tn(x). Symbolically we may write 

cp(x')., (3-'/z n(x) with Pauli-Villars cutoff M. 
Theorem 2 Consider the correlation functions '--<l>(x

1
) ••• <l>(xn)> for 

fixed distances ~0 :x 1 -x~ in units of m0 . They tend to the correlation 
functions of a massive free f~eld theory v-•ith mass m0 as 8/a -~ oo and 

. 1 1 1 2 . M/m0 + ~ (proportlonal (6/a) , for lnstance). 
These results were obtained by a rigorous block spin calculation, 

and are therefore perfectly consistent with the general renormalization 
group theory [41. However, they contradict what would be obtained by 
making sir.ple but popular approximations. 

Suppose that one could set up a renormalization group procedure 
(block spin calculation) for the U(1) gauge theory (3.1) in such a way 
that the e~fective action at each step of this interative procedure is 
still {aprroximately) of the same form {3.1), except for the replace­
ment of g' by a running coupling constant g~ff(a') and a new value a' >a 
of the lattice spacing. Suppose moreover that a'g~ff(a') reaches values 
in the do:-:-,ain of validity of high temperature expansions after suffi­
ciently ma:-1y iteration sleps (depending on ag'), no matter how small 
the bare coupling constant g"a is. Then it would follow immediately 
that the string tension o. should be proportional to the physical mass 
(= mass gap) squared. 

In contrast, theore:n 1 tells us thal 
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2. -1 3 l -'/l. 
c<jmD > C Cfm0 l • C (2jl fa) e>p *f"Cb(o) ~ w 

as 6/a = 4n".'gJa ~ ~ (The numerical values of vCb(O) is found in the 
-1 

literature to be 0.2527 a ) . 

I will now briefly describe the main steps of the analysis. The 

first step is to integrate out the high frequency components of the 

' field ~(x) = G-ln(x). This produces an effective action Leff(~) for a 

real field O(x) (on the original lattice) with Paull-Villars cutoff M. 

Leff(0) is obtained in the form of an infinite series of the following 

form, with real coefficients p
5

( ••• ). 

Leff(<i>)" --l: l, <J>(x) j-LI(f-~,)}<J>(x) + (3.2) 

. '''..k( . 'h 
~ j_ L I X ) [ <m, r ... x,) l [ ,m,A q,(x,) 1 

+ L-- s! P.s(Jtt,,X,, ... ,"'s. $ e -J .. e r _1 

s~: tn,-··""J X1···Xs 

m-surun.ations are over mj = 2" 1, ~ 2, . , .. The first term is the usual 

kinetic ter~ for a real field with a Paull-Villars cutoff M [27]. 

The main problem was to establish convergence of the expansion, for 

M Am0 (A i:1dependent of f3) and large S/a, and bounds on the individual 

terms. In particular, it was shown that the coefficients ps for s > 2 

decay expo~entially with distances 

gibly small ~or distances lxi-xj I 

of range mGch larger than the cutoff 

xi-xj so that they become negli­

N-1. This means that no interactions 
-1 

length M have been generated in 

the process of integrating out the high frequency components of the 

field ~(x). This is a basic requirement in a block spin calculation. 

:'>J.oreo\'er, the bounds show also that the dominant terms are the 

terms with s = 1 and m
1 

= .:!: 1, for large S/a, and that p
1 

(m,x) ~ }S- 1m
0

. 

Thus 

L,ff(4>) ... k.t'ne!-.'c +erm- m~f3- 1 S [1- co.s/3'Aq,(xl] +··· 
I x I { 3 • 3) 

This reproC>~ces the result (2.13), (2.14) of the simple approximation 

that I used in section 2. The rigorous treatment of the model justifies 

this approxi:r,ation, for large S/a, by producing bounds on the correction 

terms ... i:: the effective action, If the resulting theory with effective 

action (3.3J(without the correction terms ... )is treated by a classical 

approximati0n, one obtains the result 

-' eX "'" 8mtJ(3 

It is possible that this is exact for [3/a ~ ·a, but our bounds are not 

sharp enouc;;.., to prove it. There is, however, an upper bound on a due 
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to Ito w!".:.ch cor:tplements the lower bound of theorem 1 and is very close 

toitL2~1 

The second step is the analysis o£ a theory with action (3.2). such 

an analysL; was already performed by Brydges and Federbush [ 6] and we 

could use ~!1eir resull.The Glimm-Jaffe-Spencer expansion of constructive 

field thec~·y l5] (see introduction) in the basis tool in this step. 

Finally I would like to explain briefly how the effective action 

(3.2) is obtained. It is known from the work_ of Banks, Hyerson and Kogut 

[ 221 that :.·ne model can be transformed into a Coulomb system with parti­

tion funct1on 

z I: 
e -(!> (m,Vcb m)/2 

rn(OZ/1. 

Here we set the latt1ce spacing equal to one, m(x) = 0, ~ 1, ! 2, ... 

is the charge at site x of h, vcb = (-8) is the lattice Coulomb poten­

tial, and 

(rn,v~"'m = r r 111(x)'l.lcb(x-':J\m(~) 

" y 

A self-interaction term x ~ y is included, Following FrOhlich [291 one 

splits the Coulomb potential into a Paull-Villars cutoff Coulomb poten­

tial u = (-~)- 1 - (-8+~~~- 1 , and a Yukawa potential v = (-8+M~)- 1 of 

-) 
ranqe M . 

vcb = v ' u 

One insert~ this and uses the formula for the characteristic function 

of a Gauss~an measure with covariance u, 

S ~u" ( 4>) e ' if, <P l e--I<f,uf) 

to re~rite the partition function as 

Z = S<tu (</>1 Z (<j>) 

with .(J'•c ~ 'l-(4>) • L e 1r m,'+') e -(J(m,-ui"YY)/2 

lnEZA 

Z'(<ll) lS t:-.c partition function of a Yukawa gas with complex space de­

pendent f~~acity 7 = exp if3~m(x)0(x). Its logarithm is the desired 

effectin.' 3:ction 

Leff(¢) kinetic term + :n~(0) 
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It is natural to try to use a :-!ayer expansion to compute £nZ' (compare 

section 1). The leading term in such a Mayer expansion comes from clusters 

with only one particle and gives {3.3). Unfortunately, known methods to 

prove convergence of-such a Mayer expansion were not nearly good enough 

to cover the values of parameters (fugacity ;z, inverse temperaturej3) 

of interest here. He have therefore developed a refined versiOn of such 

Mayer expansions. It is based on splitting the Yukawa potential v into 

a sum of interactions of decreasing strength and increasing range, and 

then treating one after the other of these by 1'-l.ayer expansions as 

usual. Recursive bounds are established, and these combine to prove 

con\·ergence of the complete expansion and produce bounds on the indivi­

dual terms. 
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