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The relaxion mechanism



The relaxion mechanism

Graham, Kaplan, Rajendran 1504.07551
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This construction has its own issues:

. Kaplan+ 1511.01827
Generate a large hierarchy of scales (F > f)  coot 151100132

Size of the barriers ~ (h)":

e n =1 (QCD-axion): excluded by dgcp < 1
e n = 2: requires new fermions at the EW scale not related to the

nggs (or more refined construction, Espinosa+ 1506.09217)

Inflation: large number of efolds (10'%Y), small H; (Aqcp)

Super-Planckian field excursions

C.C. problem: does it get worse?
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Relaxation after inflation



Relaxation with particle production

e We don't want to rely on inflation: no Hubble friction
e EW symmetry initially broken
e Barriers with constant amplitude
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Avoid slow-roll

Slow roll: ¢ generates a second period of inflation.

o If N > 60, this would wash out inflationary perturbations

e Impose € 2 1:



Issue with reheating

Suppose SM s reheated to Try > A

e At T' = A the potential is generated and relaxation starts.
e Higgs mass —A? + gAg + gewT? < 0

e At the end of relaxation

T
KzeifHdt%].—HAt*

To have T' < vgw one needs
A

mp|
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Issue with reheating

Solutions:

e Small window at g ~ A/mp,

e Reheating into a dark sector with Ty < vew
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Particle production



Particle production: scalars
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L= B POt + 58;0(3“)( - §(¢ — 6)*X°
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Violate the adiabatic condition:

w/w? 21 = (x?) grows exponentially

¢+ 3Ho+ (6 — ¢u)(x?) =0

¢ is “trapped” at the critical point ¢,.



Particle production: scalars

Moduli trapping at enhanced symmetry points (Kofman+ hep-th/0403001)




Stopping the relaxion with the Higgs

Decompose the Higgs as h = hg + x

Equation of motion:

iy, + (18 + gAp — A? +3Ah§> up =0
N’

2
H

m
Particle production

o w/w?>1for (k? + gAg — A2 +3X\h3) =0
e We want hg = 0 when my = 0: hg must track the minimum
of the potential
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Stopping the relaxion with the Higgs

V(h)
The Higgs vev tracks the minimum as /
far as h
A2 = ghp _ 1 :
W= 5020 2 S (gngye :

Particle production is efficient for
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Stopping the relaxion with the Higgs

The Higgs vev tracks the minimum as /
far as

h
ny= =20 2 S (9n9) :

Particle production is efficient for

A2 . gA(Jﬁ)?’/Q

No efficient particle production is possible

11



Particle production: vectors

(B VPV (6, )= 2 Fy P4 0 A, A2

—

The field A, experiences a tachyonic instability:
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Hook & Marques-Tavares, JHEP 1612 (2016) 101 (1607.01786)
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Prediction for the weak scale

The electroweak scale is derived:

e Tachyonic growth should start only when A ~ vgy:

d) ~ Vew f,
e Field velocity: ¢ ~ A2
We expect
A2
Vew ™~ 7
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Two key points (but not enough time):

e F'F should not contain Fyﬁ’y

e Thermal effects modify the dispersion relation of the gauge
bosons, reducing the efficiency of the mechanism
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A closer look
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Constraints: ¢’ vs. A
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Constraints: [’ vs. A,
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Phenomenology (in progress)




Relaxion mass

2
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Relaxion

1015

tA=10% ¢ =3x 107", f~10°

1015

A=10" ¢ =3x107% f~10°

e
1012
10°

102

1015

3

m
1076 < 159 < 104
~ GeV ™

A=7Tx10° ¢ =2x 107, f~5x 10"

10 / 10" /
100 / 102 / 107
10° 10° 10°
1 1
10° 10° 10°
ng/ . Jy/ ; r / ‘
107 10° 3 10 10* 10° 10° 107

19



Relaxion - Higgs mixing

1 A 1
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Relaxion

- Higgs mixing
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Lifetime
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Lifetime

10 E

E A\
103‘)§\<
E |
Relaxion decays: wof P ] .
E |
e my < my: Higgs mixing o 1 |
o E I E|
) 10“; : T = lppN E
E | El
xf: ---- 10710 | ‘
E I
; |
. [ :
L] m(b > mZ: through ¢FF ]073”; L :‘ L ‘WII,f,‘?rllZ o
10 107 1¢® 100 | 10° 10°
- mg(GeV !
stability «— ol }
< 10—(3-6) !
b — Zv,Z2Z,WW me 510 Cey |
|
BBN «—

me < 10°7% GeV

22



Indirect detection

¢ — vy can give ID signals

¢->yy
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Indirect detection
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Bounds from BBN

e For my < 1GeV the relaxion decays after BBN.

e Light elements’ abundance:

E < O(MeV) (energy injected per baryon)
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Bounds from BBN
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Work in progress

e Cosmology

e Relic abundance
e BBN, DM, ...

e Particle physics

e Mass larger than in original model
e Coupling to Z (not like the usual axion a~yy)

e Correct treatment of the thermal effects
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Conclusions

e Relaxion: a novel alternative way to save Naturalness

e This talk:

e Relaxion decoupled from inflation
e Barriers independent of the Higgs vev
e Automatic avoidance of super-Planckian field excursions

e Cosmology further constraints the model

e A new territory to explore!
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BACKUP



Number of efolds

Slow roll: velocity controlled by Hr

e After N efolds

oo~ Y e
e Vacuum energy larger than V,
AQ
Hy > —
mp

The number of efolds is large:

2
N > Ai ~ 10ma"Y
g2mp

Moreover, H; < Aqcp for the barriers to form.



Vector field

It is crucial that the relaxion does not couple to the photon FWFVW.

1 1 1
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(Can be made consistent in a L-R symmetric model with a PQ
symmetry)



Thermal effects on vector bosons

Gauge bosons thermalize after being produced
.
w? = l{:2—|—m?4:|:;b + It w, K]
where, in a hard thermal loop (i.e. high temperature) limit,

ow fw 1 w? w+k
Ht[w,k} ka(k+2<1_k;2>Ing—k; .

Debye mass: m?, = g2,1°/6




Thermal effects on vector bosons

For w < k Q)
T
I[Q, k] = §?m%

Q) = iw maximized for k = 2¢/3f:

8 ¢ _ 16 ¢
27T f3m2,  9mgd, T2 f3

Qmax ~

Timescale for the growth of A,:

b 97rggvv T f3 - ﬁmfl
PP 16 ¢3 m2Z Z

whereas at zero temperature Aty ~ m}l.



Simplifying assumptions

LD ghp— %(AQ — g'Ap)h? — A2 (h)™ cos (;ﬁ) + j}Ff

Six free parameters: g,q’, A, A, f, f'. We assume



Conditions to make it work i

Conditions for particle production

1. Avoid slow roll

J> A

mp|

2. Higgs tracks the minimum of the potential

3
I < (UEW\/X>
TE\TE

3. Relaxion rolls over the barriers

RS A2



Conditions to make it work ii

4. Barriers larger than the slope
4 3
Az 2 g A

5. Higgs mass scanning Am}% <2,

S i
~ dmf'A

6. Efficient slow-down

A8 > gﬂﬂggw g/AH
¢~ 1ogat2 md
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Conditions to make it work iii

7. Particle production faster than ri;, /m?

9\[7ngw

AZCL 2 1/2
2569, / mhm%

g/A9
8. Condensation

AcS S
9. Combinations of the above
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Numerics 2
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