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1 Introduction

Recent advances in the study of scattering amplitudes have sparked renewed interest in the

multi-Regge limit of high-energy scattering. Besides its phenomenological significance, it

has long been noted that the perturbative expansion simplifies considerably in this limit:

typically, the perturbative series has to be (and in fact can be!) resummed due to the ap-

pearance of large logarithms, leading to factorized all-order expressions for scattering pro-

cesses. A further enhancement comes about in the case of planar N = 4 super Yang-Mills

theory: here, the multi-Reggeon states that resum all-order gluon exchanges are governed

by the integrable Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1–3] and Bartels-Kwieciǹski-

Prasza lowicz (BKP) [4, 5] Hamiltonians. This first appearance of integrability in the pla-

nar theory was observed long before the extensive discoveries and applications of integrable

structures that took place during the past fifteen years [6]. Since the proposal of the expo-

nentiated Bern-Dixon-Smirnov (BDS) amplitude [7], the systematics of multi-Regge limit

amplitudes in planar N = 4 super Yang-Mills theory have been understood to a remarkable

extent. In fact, after a disagreement at strong coupling had casted doubt on the correctness
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of the BDS amplitude [8], it was the absence of the expected Regge pole and cut terms that

invalidated the proposal at weak coupling [9], and that prompted the correction of the BDS

amplitude by the dual conformally invariant remainder function beyond five points [10, 11].

By now, the remainder function has been constructed to high loop orders by con-

straining the possible function space through physical symmetry and analyticity require-

ments [12, 13]. This bootstrap program relies on various input, ranging from the mathemat-

ical theory of the relevant functions [14, 15] to recursion relations [16] and the expansion

around collinear limits as dictated by integrability [17, 18]. In all cases, knowledge about

the multi-Regge limit has provided important boundary data to the bootstrap enterprise.

Conversely, these recent methods admit to compute the BFKL data, and hence the multi-

Regge-limit remainder function, to unprecedented orders [12, 19–23]. To date, this fruitful

interplay has mostly been restricted to the six-point case. An extension to seven-point

functions has been initiated recently [24]. Going to even higher points will require a better

understanding of the relevant function space. It is conceivable that the Regge limit will

again provide valuable boundary data in this regard.

It has been understood that obtaining the full analytic structure of multi-Regge limit

amplitudes requires to analyze the amplitudes in all possible kinematic regions [25–28]. In

fact, while the integrable structure at strong coupling becomes particularly amenable in

the multi-Regge limit [29], a discrepancy with the expectation from weak coupling has been

observed in one of the kinematic regions at seven points [30]. Recently, a systematic study of

the n-point two-loop remainder function in all kinematic regions at weak coupling has been

put forward [31]. The ability to study any number of points relied on the known two-loop

symbol of the remainder function for all multiplicities [32]. Passing from polylogarithmic

functions to their symbols constitutes a major simplification, both for the analysis of the

relevant expressions and for the systematics of the multi-Regge limit.

The goal of the present work is two-fold: one aim is to understand the results of

the previous study [31] from the perspective of Regge cut contributions. Secondly, we

want to lift the analysis to the three-loop level. To this end, we first isolate the Regge cut

contributions that contribute to a given region, and then expand the relevant contributions

to the three-loop order. Judiciously grouping the resulting terms, we find that the n-point

three-loop remainder function, in the simplest class of kinematic regions, reduces to a linear

combination of five building block functions. At the symbol level, the reduction extends

to all kinematic regions. The symbols of the two building blocks required to reconstruct

the n-point remainder function at leading logarithmic order are extracted from the known

perturbative data. To the extent that it is fixed by the symbol as well as symmetries, the

new seven-point building block is constructed in terms of multiple polylogarithms. The

results of this work are assembled in a computer-readable file attached to this submission

(see supplementary material).

Overview. Section 2 briefly summarizes the systematics of planar scattering amplitudes

in the multi-Regge limit in a self-contained way. Section 3 highlights the simplifications

and restrictions implied by specializing to certain kinematic regions, or by passing from

functions to symbols. In section 4, the two-loop analysis of the multi-Regge limit remainder
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function is revisited from the Regge cut point of view. Section 5 extends the analysis to

three loops, where the remainder function can be decomposed into a few basic building

blocks. The latter are discussed in section 6. We construct a function for the seven-point

building block in section 7, and section 8 presents the conclusion.

Note added. The simultaneous paper [33] has some overlap with the present work.

In particular, there is a connection between the “factorization theorem” of [33] and the

application of the reduction identities (4.6) to the expansion of the n-point cut contribution

carried out in this work.

2 Background

Multi-Regge kinematics. The 2 → (n − 2) multi-Regge limit is the n-particle gen-

eralization of the simple s ≫ t Regge limit for 2 → 2 scattering. To describe a general

amplitude, we will use the (3n− 10) independent Lorentz invariants

tj ≡ q
2
j , qj ≡ p2 + p3 + · · · + pj−1 , j = 4, . . . , n , (2.1)

sj ≡ sj−1,j ≡ (pj−1 + pj)
2 , j = 4, . . . , n , (2.2)

ηj ≡
sjsj+1

(pj−1 + pj + pj+1)
2
, j = 4, . . . , n− 1 . (2.3)

Here, p1, . . . ,pn are the n external momenta. By convention, they are all incoming, but

may have either energy sign. The 2 → (n−2) multi-Regge limit is characterized by a large

separation of rapidities among the produced particles. In terms of the above kinematic

variables, the limit is attained for

|s| ≫ |s4|, . . . , |sn| ≫ t4, . . . , tn , (2.4)

where s = (p1 + p2)
2 is the total energy. See figure 1 for an illustration of the kinematics.

Many quantities in the multi-Regge limit only depend on the kinematics in the transverse

space to the (p1,p2) plane. We hence define

pj = αjp1 + βjp2 + p
⊥
j , p1 · p⊥

j = p2 · p⊥
j = 0 , j = 4, . . . , n− 1 , (2.5)

and similarly for q4, . . . , qn. It is often convenient to switch to complex variables pj , qj
whose real and imaginary parts equal the two components of the transverse momenta p

⊥
j

and q
⊥
j , respectively:

p
⊥
j =

(

ℜ(pj),ℑ(pj)
)

, q
⊥
j =

(

ℜ(qj),ℑ(qj)
)

. (2.6)

Frequently used combinations of the transverse momenta are the complex anharmonic

ratios

wj =
pj−1qj+1

qj−1pj
, j = 5, . . . , n− 1 . (2.7)

Planar N = 4 super Yang-Mills theory enjoys dual conformal invariance. Invariant quan-

tities in this theory can thus only depend on conformally invariant cross ratios

Uij ≡
x2i+1,jx

2
i,j+1

x2ijx
2
i+1,j+1

, 3 ≤ |i− j| ≤ n− 2 (2.8)
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Figure 1. Kinematic variables.

of the dual coordinates

pj ≡ xj − xj−1 , xij = xi − xj . (2.9)

A basis of kinematically independent invariant cross ratios is provided by

uj,1 = Uj−3,j , uj,2 = Uj−2,n , uj,3 = U1,j−1 , j = 5, . . . , n− 1 . (2.10)

In the multi-Regge limit, these cross ratios converge to 1 or 0:

uj,1 → 1 , uj,2 → 0 , uj,3 → 0 . (2.11)

The ratios of subleading terms remain finite, and are related to the anharmonic ratios (2.7)

via
uj,2

1 − uj,1
→ 1

|1 + wj |2
,

uj,3
1 − uj,1

→ |wj |2
|1 + wj |2

. (2.12)

Kinematic regions. In order to understand the full analytic structure of the multi-Regge

limit amplitude, it is important to analyze it in all physical kinematic regions. Our starting

point will be the physical region in which the energies of all particles 3, . . . , n are negative

(which means that those particles are effectively outgoing, instead of incoming). In this

region, all subenergies sj , j = 4, . . . , n, are negative.1 In all other physical regions that

we will consider, some of the particles 4, . . . , n − 1 have positive energies (those particles

become incoming), and hence some of the invariants sj become positive. These other

regions are sometimes called “Mandelstam regions”.2 They can be reached from the all-

outgoing region by analytic continuation of the kinematics. The various regions will be

labeled by the subsets I ⊂ {4, . . . , n − 1} of particles whose energies have been continued

to positive values. Alternatively, we will often label regions by ρ = (ρ4, . . . , ρn−1) ∈ Z
n−4
2 ,

with ρj = ±1 (or just ρj = ±) indicating whether the respective particle has been flipped

(its energy has been continued) (−) or not (+).

Importantly, the various regions become disconnected in the strict multi-Regge limit.

That is to say, in order to continue the kinematics from one region to the other, one has

to complexify the subenergies sk (e.g. by continuing them along big circles).

1The Minkowski metric is assumed to have signature (−+++).
2One could also consider regions in which the energies of particles 3 and/or n are positive, but those re-

gions do not add further analytic structure to the amplitude, and will thus not be considered in the following.
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Multi-Regge limit amplitudes. Scattering in the multi-Regge limit is dominated by

the exchange of “Reggeized gluons” (or “Reggeons”), which are effective particles that re-

sum the contributions of entire classes of gluonic Feynman diagrams of all loop orders. The

simplest example is the four-point amplitude in planar N = 4 super Yang-Mills theory, for

which all perturbative contributions can be resummed and factorized into a single diagram:

AMRL
4 =

12

3 4

= Γ(t)sω(t)Γ(t) . (2.13)

Here, = Γ(t) is the gluon-gluon-Reggeon vertex (see e.g. [9]), and stands for the

exchange of a single Reggeon with propagator sω(t), where ω(t) is the (real-valued) Regge

trajectory. At five points, two different kinematic regions can be considered: the produced

particle 4 can either be flipped (−) or not (+). Strikingly, the factorization property of the

four-point amplitude extends to this case: in both regions, the planar five-point amplitude

again factorizes into a single diagram,

AMRL(±)
5 = ±

12

3 4 5

= Γ(t4) s
ω(t4)
4 Γ45 s

ω(t5)
5 Γ(t5) , (2.14)

where the (complex) gluon production vertex [11]

±
j

= Γj,j+1 = |Γj,j+1|e±iπ ω̂j,j+1 , ω̂j,j+1 = ω̂(tj , tj+1, ηj) , (2.15)

only depends on the kinematic region through the sign of its phase.

A general n-point multi-Regge-limit amplitude in any given kinematic region ρ receives

contributions from Regge pole [34] as well as Mandelstam cut terms [35, 36],

AMRL
n,ρ = ARegge pole

n,ρ + AMandelstam cut
n,ρ . (2.16)

Both the pole terms and the cut terms depend on the kinematic region ρ. The origin of the

Mandelstam cut terms are non-trivial contributions from multi-Reggeon bound state ex-

change in intermediate t-channels. For planar amplitudes of up to five points, such contribu-

tions are suppressed by powers of 1/Nc, and the amplitudes factorize as indicated above. At

six points, the first cut term appears, in the region (−−) where both intermediate momenta

have been flipped [10]. In a generic region ρ, the six-point amplitude therefore reads [11, 27]

AMRL
6,ρ = (pole terms)ρ + cρ6,1,4

12

3 4 5 6

, (2.17)

where the region-dependent coefficient cρ6,1,4 is non-vanishing for ρ = (−−). Here, the

cut diagram stands for all contributions from two-Reggeon bound state exchange in the t5
channel. This picture generalizes to higher multiplicities: the planar n-point multi-Regge
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limit amplitude is a sum of region-dependent Regge pole terms as well as Mandelstam cut

contributions with region-dependent coefficients [9–11, 26–28, 37, 38]:

AMRL
n,ρ =(pole terms)ρ+

∑

j

cρn,1,j

j

12

3 n

+
∑

j

cρn,2,j

j

12

3 n

+...

+
∑

j

dρn,1,j

j

12

3 n

+
∑

j<k

eρn,j,k

j k

12

3 n

+... (2.18)

Here, the symbol stands for the insertion of zero or more complex gluon produc-

tion vertices (2.15). For planar amplitudes, the number of exchanged Reggeons can at

most increase or decrease by one when passing from one t-channel to the next.3 All other

contributions are suppressed by powers of 1/Nc. The pole terms as well as the cut-term

prefactors can in principle be obtained from the general quantum field theory principles of

locality & unitarity. The procedure particularly relies on an expansion of the amplitude

into a sum of terms that each have no overlapping energy discontinuities, following the

Steinmann relations [40]. Determining the cut contributions in this way is a very intricate

and tedious procedure that has to be carried out region by region. This formidable task

has been completed for the seven-point amplitude [28], and a study of the eight-point case

is underway [38], but a generalization to higher multiplicities appears difficult. Below, we

will see that the coefficients cn,b,j are actually fixed by the two-loop analysis [31].

In fact, the Mandelstam criterion [36] significantly constrains the set of cut terms

that can contribute to any given kinematic region: it asserts that any cut contribution in

which the multi-Reggeon states span the adjacent t-channels tj , . . . , tk cannot contribute

to regions in which sj−1 > 0 or sk+1 > 0, that is4

cρn,k−j,j = 0 if ρj−1 = ρj or ρk = ρk+1 , (2.19)

and similarly for the further coefficients in (2.18). Here, the subscripts n, b, and j in cρn,b,j la-

bel the total number of particles, the number of t-channels taking part in the multi-Reggeon

state, and the produced gluon that bounds the multi-Reggeon state on the left. For exam-

ple, as indicated above, the six-particle cut term (2.17) is only present in the (−−) region:

c
(++)
6,1,4 = c

(+−)
6,1,4 = c

(−+)
6,1,4 = 0 . (2.20)

BDS and remainder function. The MHV amplitudes of planar N = 4 super Yang-

Mills theory can be decomposed into two factors:

AMHV
n = ABDS

n Rn (2.21)

3The number Mn of admissible diagrams that can contribute to the n-point amplitude, as a sequence in

n, equals the Motzkin sequence, OEIS A001006 [39], with Mn/Mn−1 → 3 for n → ∞.
4The reason is that in such cases, one of the Feynman loop integrals can be closed trivially, since all

singularities lie on the same side of the integration contour [41].
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Here, ABDS
n is the Bern-Dixon-Smirnov amplitude [7], wich equals the tree-level ampli-

tude times the exponentiated one-loop amplitude, and which in fact produces the correct

all-loop four-point and five-point amplitudes. Starting at six points, it however fails to

reproduce the correct Regge pole contributions, and it misses all Regge cut terms (be-

yond one loop) [9–11]. Hence it cannot be the full amplitude, but has to be corrected

by a non-trivial remainder function Rn. Since the BDS amplitude correctly captures all

infrared singularities and dual conformal weights, the remainder function is infrared finite

and dual conformally invariant, and thus can only depend on dual conformally invariant

cross ratios (2.8). By definition, it is only non-trivial starting from six points and two loops.

Passing to the multi-Regge limit, and stripping off the universal absolute value, the

BDS amplitude reduces to a region-dependent phase factor. From the latter, one can

separate off a conformally invariant, infrared finite part exp(iδρn), which again is region-

dependent, and contains the finite part of the one-loop Regge cut terms [11, 27]

ABDS,MRL,ρ
n

Γ(t4) |sω4
4 | |Γ45| |sω5

5 | |Γ56| |sω6
6 | . . . |sωn−1

n−1 | |Γn−1,n| |sωn
n |Γ(tn)

= exp(iφρ
n) exp(iδρn) . (2.22)

The universal denominator is a generalization of the five-point amplitude (2.14), and it

subsumes all dependence on the absolute values of the gluon production vertices Γk,k+1

and Reggeon propagators sωk

k . The region-dependent phase exp(iφρ
n) absorbs the remaining

infrared divergences. The finite, conformally invariant piece exp(iδρn) combines in a non-

trivial way with the remainder function to a region-dependent linear combination of reduced

pole and cut terms [27, 28]:

exp(iδρn)Rρ
n = (reduced pole terms)ρ (2.23)

+
∑

j

cρn,1,j

j

+
∑

j

cρn,2,j

j

+ . . .

+
∑

j

dρn,1,j

j

+
∑

j<k

eρn,j,k

j k

+ . . .

Here, the grayed-out parts of the cut diagrams have been divided out, and the (black) cut

pieces stand for the remainder after the division.

Factorized cut integrals. All reduced cut terms in (2.23) are infrared-finite, confor-

mally invariant functions of the complex anharmonic ratios wk (2.7). Just like the pole

terms of the four-point and five-point amplitudes, they enjoy the virtue of Regge fac-

torization, in the following sense: the multi-Reggeon bound states that propagate in the

intermediate t-channels are governed by the BFKL [1–3] and BKP [4, 5] equations. The

solutions to these equations are most naturally expressed in terms of their SL(2,C) repre-

sentation labels (n, ν). Expressing all quantities in terms of these variables, the cut con-

tribution factorizes into a simple product: reading a cut diagram from left to right, each
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t-channel m-Reggeon state contributes one BFKL (or BKP) Green’s function Gm(nk, νk),

each gluon emission that increments or decrements the number of exchanged reggeons from

m to m±1 contributes an impact factor Φm,m±1(nk−1, νk−1, nk, νk), and each intermediate

gluon k that gets emitted from an m-Reggeon bound state contributes a central emission

block Cm(nk−1, νk−1, nk, νk). Obtaining the full cut contribution requires completing the

state sums in all t-channels by summing and integrating over all nk and νk. The summation

and integration amounts to a Fourier-Mellin transform from the (nk, νk) variables to the

complex anharmonic ratios wk that provide the kinematic dependence.

The subsequent analysis will focus on the cuts of the type shown in the middle line

of (2.23). For those terms, only the simplest impact factors [10]

ΦL,k ≡ Φ0,1(nk, νk) =
1

2

(−1)n

iνk + nk/2

(

qk−1

pk−1

)−iνk−nk/2
(

q̄k−1

p̄k−1

)−iνk+nk/2

+ O(g) ,

ΦR,k ≡ Φ1,0(nk, νk) = −1

2

1

iνk − nk/2

(

qk+1

pk

)iνk+nk/2
(

q̄k+1

p̄k

)iνk−nk/2

+ O(g) (2.24)

and emission blocks [26]

Ck ≡ C1(nk, νk, nk+1, νk+1) = −1

2

(

qk+1

pk

)iνk+nk/2
(

q̄k+1

p̄k

)iνk−nk/2

·

·
(

qk
pk

)−iνk+1−nk+1/2
(

q̄k
p̄k

)−iνk+1+nk+1/2

C̃(nk, νk, nk+1, νk+1) + O(g) (2.25)

are needed. The required Green’s function stems from the BFKL color-octet channel and

takes the form [10]

Gk ≡ G2(nk, νk) = ε
gEnk,νk

k . (2.26)

Here, εk ≡ −√
uk,2uk,3 are combinations of “small” cross ratios (2.10) that approach zero

in the multi-Regge limit, En,ν is the BFKL color-octet eigenvalue, and

g ≡ g2YMNc

8π2
(2.27)

is the planar coupling constant. The general two-Reggeon cut term fk spanning k t-channels

therefore takes the form [26, 30]5

fk(ε5, . . . , εk+4;w5, . . . , wk+4) ≡
4 k+4

= (2.28)

= i g
∑

n5,...,nk+4

∫

dν5 . . . dνk+4 ΦL,5 ε
gEn5,ν5
5 C5 ε

gEn6,ν6
6 C6 . . . Ck+3 ε

gEnk+4,νk+4

k+4 ΦR,k+4 .

One can see that the exponentials of kinematic variables in the impact factors and emission

blocks indeed combine into Fourier-Mellin integral transformation kernels

w
iνk+nk/2
k w̄

iνk−nk/2
k = ρ2iνkk einkϕk for wk = ρke

iϕk . (2.29)

5The cut contribution is normalized such that the cut coefficient c
ρ=(−−)
6,1,4 of the six-point remainder

function becomes unity. This choice differs from the normalization used in [28] by a factor of 2i.
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Perturbative expansion. The expression (2.28) is valid to all orders in the coupling

g, where all coupling dependence is contained in the impact factors ΦL,R, the emission

blocks Ck, and the BFKL eigenvalues Enk,νk . Upon a perturbative expansion, the BFKL

Green’s functions (2.26) expand in powers of g and of log(εk); the latter are the large

logarithms that are characteristic of the multi-Regge limit. Including subleading terms of

the BFKL eigenvalues, impact factors, and emission blocks, the cut contribution (2.28)

at each order gℓ in the coupling constant becomes a polynomial of degree (ℓ − 1) in the

large logarithms log εk. Retaining only the leading terms in large logarithms amounts to

the leading logarithmic approximation (LLA), the first subleading terms constitute the

next-to-leading logarithmic approximation (NLLA), and so on. At order gℓ, there are LLA

terms of order log(εk)ℓ−1 all the way to Nℓ−1LLA terms of order log(εk)0. At a given

loop order, the coefficient of each monomial in log(εk) is a function of the kinematics that

exclusively depends on the complex anharmonic ratios wk (2.7).

3 Symbols and regions

Transcendentality and symbols. Scattering amplitudes in planar N = 4 super Yang-

Mills theory display the property of uniform (or maximal) transcendentality, which means

that every term in the ℓ-loop amplitude has the same transcendentality (or transcendental

weight) 2ℓ. This concept relies on the assumption that the amplitude can be expanded

in products of multiple polylogarithms (iterated integrals over dlog integrands, MPLs for

short) [14], π, and zeta values.6 Every m-fold iterated integral is assigned transcendentality

m. Zeta values can be defined as MPLs evaluated on certain values, and they inherit the

transcendentality of their parent functions. For example, the polylogarithms Lim(x) as

well as the zeta values ζm have transcendentality m, and π has transcendental weight 1.

Under multiplication, transcendentality behaves additively.

Multiple polylogarithms obey many functional identities, which makes them unwieldy,

especially in expressions with many terms. All such functional relations trivialize when

one projects all MPLs to their symbols [45].7 The latter discard all information contained

in the choice of integration base point. In particular, the symbols are agnostic of all

ambiguities lying in the choice of functional branch. Since all branch ambiguities of MPLs

have subleading functional transcendentality (transcendentality of functional origin, as

opposed to numerical transcendentality), one typically discards all terms of subleading

functional transcendentality when mapping an expression to its symbol.

When projecting the amplitude to its symbol, the expression (2.23) simplifies consid-

erably: the reduced pole terms consist of trigonometric functions whose arguments include

factors of π [27, 28], hence their perturbative expansion contains extra powers of π, which

implies that they carry subleading functional transcendental weight; they therefore get

6It is expected that this class of functions is not sufficient to describe all amplitudes to all orders in general

kinematics. For example, elliptic integrals appear in the ten-point N3MHV amplitude [42]. However, based

on the singularity structure of the integrand, it is safe to assume that all MHV amplitudes can be expressed

as rational polynomials of multiple polylogarithms and zeta values [43, 44], and multi-Regge limit MHV

amplitudes inherit this property.
7For reviews, see [46, 47].
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discarded. Cut terms that involve more than two Reggeons stem from double (or higher)

discontinuities, hence they also have subleading transcendentality and get projected out.

Terms with multiple disconnected multi-Reggeon states (such as the last term in (2.23)) are

products of lower-loop cut terms, hence also these have subleading transcendental weight

and get discarded. On the left hand side of the equation, the factor exp(iδρn) can be trun-

cated to 1, since all higher terms again include additional factors of π. In summary, at

the level of the symbol, the remainder function is a linear combination of two-Reggeon cut

terms:

Rρ
n ≃

∑

j

cρn,1,j

j

+
∑

j

cρn,2,j

j

+ . . . (3.1)

Here, “≃” denotes equality at the symbol level.8 Moreover, here and in the following, the

remaining (black) cut pieces are understood to be one-loop subtracted, as the one-loop

part is (by definition) contained in the BDS factor that has been divided out. The dots

stand for further two-Reggeon cut terms that span any number of adjacent emitted gluons.

Symbols and regions. At the symbol level, the discontinuity of an iterated integral

along a closed continuation path only depends on the overall winding numbers of the path

around the singular points of the integrand. From this property alone, it follows [31]

that the symbols S[·] of the multi-Regge-limit remainder function in the various kinematic

regions obey the relations

S[RI
n] =

∑

{k,l}⊂I

S[R{k,l}
n ] . (3.2)

and

S[R{k,l}
n ] = S[R[k,l]

n ] − S[R[k,l−1]
n ] − S[R[k+1,l]

n ] + S[R[k+1,l−1]
n ] . (3.3)

These relations hold independently of the loop order. The first relation states that the

symbol in any region I ⊂ {4, . . . , n − 1} is a sum of symbols in regions {k, l} where only

two momenta pk and pl are flipped. The second relation in turn expresses the symbol

in those two-flip regions as a linear combination of symbols in regions where all flipped

momenta k, . . . , l are adjacent, labeled by [k, l]. It is therefore sufficient to consider the

symbol in those all-adjacent regions.

Note that, since the cut terms can be assumed to be functionally independent, the

relations (3.2), (3.3) among symbols imply identical relations for the cut prefactors cρn,b,j
in the various regions:

cIn,b,j =
∑

{k,l}⊂I

c
{k,l}
n,b,j , c

{k,l}
n,b,j = c

[k,l]
n,b,j − c

[k,l−1]
n,b,j − c

[k+1,l]
n,b,j + c

[k+1,l−1]
n,b,j . (3.4)

It is not difficult to see that these relations are consistent with the Mandelstam crite-

rion (2.19) described above. They completely determine the coefficients of all two-Reggeon

8Strictly speaking, the symbol vanishes, since the right-hand side contains an overall factor of 2πi. What

is meant by “≃” is that the symbols on both sides agree after pulling out the overall 2πi factor.
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cut contributions of the type shown in (3.1) to the n-point remainder function in any kine-

matic region ρ in terms of the coefficients c
[k,l]
n,b,j of these cut terms in the all-adjacent regions

ρ = [k, l].

In fact, the Mandelstam criterion (2.19) implies that there is only a single two-Reggeon

cut contribution to the n-point multi-Regge limit remainder function in any all-adjacent

region [k, l], namely

R
[k,l]
n,cut = c

[k,l]
n,l−k,k

k ℓ

, (3.5)

where the subscript “cut” indicates that the Regge pole terms are not included, and the

dots stand for the omission of (l − k − 2) emission blocks. In other words,

c
[k,l]
n,b,j = 0 unless j = k , and b = l − k . (3.6)

In particular, the cut terms in all such regions equal (up to variable substitution and the

prefactors) the cut terms of the (l − k + 5)-point remainder function in the region where

all intermediate momenta are flipped:

R
[k,l]
n,cut(εk+1, . . . , εl;wk+1, . . . , wl) =

c
[k,l]
n,l−k,k

c
[4,n′−1]
n′,n′−4,4

R
[4,n′−1]
n′,cut (εk+1, . . . , εl;wk+1, . . . , wl) , (3.7)

with n′ = l−k+5. Since the symbol of the remainder funtion is agnostic of the pole terms,

the equations (3.5) and (3.7) hold for the full remainder function at the symbol level.

4 Two-loop expansion

We now want to analyze the two-Reggeon contribution (3.5) for any number of gluons

at the perturbative level. The following deconstruction is not restricted to symbols, but

holds at the level of full functions. By definition, all cut diagrams of the type (3.5) are

understood to be one-loop subtracted. The simplest case involves only two emitted gluons.

Perturbatively expanding the BFKL Green’s function and the impact factors, this simplest

diagram consists of three terms at the two-loop level:

f1(ε5;w5) = = + + + O(g3) . (4.1)

Here, a naked line for the impact factor stands for its leading contribution (2.24), whereas

additional dots denote loop corrections. A vertical line in the t-channel two-Reggeon state

stands for the one-loop (order g1) piece of the BFKL Green’s function (2.26),

G2(nk, νk) = ε
gEnk,νk

k = 1 + g E(0)
nk,νk

log(εk) + O(g2) , (4.2)

where

Enk,νk =
∞
∑

ℓ=0

gℓE(ℓ)
nk,νk

(4.3)
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is the expansion of the BFKL eigenvalue. Due to the factor log(εk) in the one-loop Green’s

function, the first term in (4.1) provides the leading logarithmic approximation (LLA) at

this two-loop order. The subleading NLLA contribution consists of the second and third

diagrams, which have no line insertions, and stem from the trivial piece G2(g = 0) = 1 of

the Green’s function.

Turning to the longer two-Reggeon cut that appears in the (−−−) region of the seven-

point remainder function, the two-loop expansion yields five terms,

f2(ε5, ε6;w5, w6) = = + (4.4)

+ + + + O(g3) .

Here, the emission block makes its first appearance. A plain dotted line stands for the

leading-order emission block (2.25), and additional dots again denote loop corrections.

The LLA piece now consists of two terms, where either of the Green’s functions in the

first or second t-channel have been expanded to one-loop order. Hence the first term is

proportional to log(ε5), while the second term is proportional to log(ε6).
9 The second line

provides the three NLLA terms.

A key fact for the subsequent analysis is the following observation [26]: any number of

adjacent leading-order emission blocks, not separated by BFKL eigenvalue insertions, can

be absorbed in a neighboring leading-order impact factor (again not separated by BFKL

eigenvalue insertions). The result is the original impact factor, whose momentum gets

replaced by the sum of combined momenta. Similarly, any number of adjacent leading-

order emission blocks can be combined into a multi-gluon emission block, whose functional

form is identical to the single-gluon block, but whose outgoing momentum is replaced by

the sum of all combined momenta. Diagrammatically, we will denote these identities as

≡ , and ≡ . (4.5)

Here, the dots stand for the insertion of any number of leading-order emission blocks. The

identity for impact factors (left) was demonstrated in [26], and the identity for emission

blocks (right) follows straightforwardly. For completeness, the identities are derived in ap-

pendix A. Using these identities, one can reduce almost all diagrams in (4.4) to six-point

diagrams. For example,

= , = . (4.6)

Each term in the two-loop expression (4.4) a priori depends on both complex anharmonic

ratios w5 and w6 (2.7). But due to the identity (4.6), it is clear that all dependence of the

9Without loss of generality, it is assumed that the leftmost particle at the beginning of the cut is particle 4.
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first term in (4.4) on w5 and w6 factors into a dependence on the single complex ratio

v5,6;5 ≡
p4q7

q4(p5 + p6)
=

w5
(

1 + 1
w6

) . (4.7)

Similarly, the second term in (4.4) only depends on the single complex ratio

v5,6;6 ≡
(p4 + p5)q7

q4p6
= (1 + w5)w6 . (4.8)

Restricting to the LLA (the first line in (4.4)), and using the identities (4.6), the three-

particle cut therefore reduces to a sum of two copies of the two-particle cut,

fLLA
2,(2)(ε5, ε6;w5, w6) = fLLA

1,(2)(ε5; v5,6;5) + fLLA
1,(2)(ε6; v5,6;6) . (4.9)

Promoting this equation to the full two-loop cut contribution (including the NLLA piece)

requires adding an extra NLLA term to the equation:

f2,(2)(ε5, ε6;w5, w6) = f1,(2)(ε5; v5,6;5) + f1,(2)(ε6; v5,6;6) + g2(v5,6;5, v5,6;6) , (4.10)

where

g2(v5,6;5, v5,6;6) = − − (4.11)

is a finite function of v5,6;5 and v5,6;6 (or of w4 and w5 via the relations (4.7), (4.8)). Here,

the last two terms appear in the two f1,(2) terms but not in f2,(2) and thus need to be

subtracted. They are, by analogy with (4.5), defined by evaluating the one-loop impact

factors on the sums of momenta p4 + p5 and p5 + p6, respectively.

This two-loop analysis straightforwardly generalizes to the cut contribution for any

number of particles. Using the identities (4.5), the LLA part of the general cut at two

loops can be written as

fLLA
k,(2)(ε5, . . . , ε4+k;w5, . . . , w4+k) =

4+k
∑

j=5

4 j 4+k
=

4+k
∑

j=5

fLLA
1,(2)(εj ; v5,4+k;j) .

(4.12)

Here, the variables

vk,l;j ≡
qk−1 − qj

qk−1

ql+1

qj − ql+1
=

(1 + (1 + (. . . (1 + wk)wk+1) . . . )wj−1)wj

1 +
(

1 +
(

. . .
(

1 + 1
wl

)

1
wl−1

)

. . .
)

1
wj+1

(4.13)

for j = k, . . . , l are anharmonic ratios that generalize (4.7), (4.8); they are obtained by

grouping the adjacent momenta pk−1 + · · ·+ pj−1 = qk−1 − qj and pj + · · ·+ pl = qj − ql+1.

The inversion of this formula is

wj =
(vk,l;j−1 − vk,l;j)(1 + vk,l,j+1)

(1 + vk,l;j−1)(vk,l;j − vk,l;j+1)
, (4.14)

assuming the boundary conditions vk,l;k−1 = 0 and vk,l;l+1 = ∞. Including the NLLA

terms of fk,(2) and f1,(2) on both sides of equation (4.12), and again applying the reduction
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identities (4.5), one can see that all subleading terms combine into a sum of seven-point

NLLA pieces g2 (4.11), evaluated with different complex ratios:

fk,(2)(ε5, . . . , ε4+k;w5, . . . , w4+k) =
4+k
∑

j=5

f1,(2)(εj ; vj) +
3+k
∑

j=5

g2(vj , vj+1) , vj ≡ v5,4+k;j .

(4.15)

This concludes the two-loop analysis of the general two-Reggeon cut (3.5). For any number

of emitted particles, the latter can be deconstructed into a sum of two building blocks, one

of them being the simplest two-particle cut f1, the other being the NLLA remainder g2 of

the three-particle cut f2.

Using equation (3.5), the result (4.15) directly implies an analogous relation for the

cut piece of the two-loop remainder function in the region (−− . . .−) where all momenta

have been flipped,

R
MRL,(−−...−)
n,(2),cut (ε5, . . . , εn−1;w5, . . . , wn−1) =

cn
c6

n−1
∑

j=5

R
MRL,(−−)
6,(2),cut (εj ; vj) + cn

n−2
∑

j=5

g2(vj , vj+1) ,

(4.16)

with the abbreviations cn ≡ c
[4,n−1]
n,n−5,4 and vj ≡ v5,n−1;j . With the help of (3.7), very similar

relations hold for the remainder function symbol in any region [k, l] where any number of

adjacent momenta have been flipped.

Relation to previous work. At leading logarithmic order, the relation (4.15) together

with the variable map (4.13) has been obtained before [26]. Here, we have generalized it

to the full two-loop level, including the NLLA terms. In fact, an explicit study [31] of the

known two-loop symbol [32] has lead to the slightly stronger observation

R
MRL,(−−...−)
n,(2),cut (ε5, . . . , εn−1;w5, . . . , wn−1) ≃

n−1
∑

j=5

R
MRL,(−−)
6,(2),cut (εj ; vj) + c7

n−2
∑

j=5

g2(vj , vj+1) .

(4.17)

Also this result had been obtained previously at leading logarithmic order [48]. Com-

paring (4.16) with (4.17), one finds that the coefficients of all simple two-Reggeon cut

contributions must be identical,10

c
[k,l]
n,l−k,k = c

[4,5]
6,1,4 = 1 , n ≥ 7 , 4 ≤ k < l < n . (4.18)

Here, the second equality follows from the deliberate choice of normalization (2.28) for the

cut integral.

10Since [31] analyzed the two-loop symbol for up to ten points, the equality has only been rigorously

established for n ≤ 10.
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5 Three-loop expansion

We are now in a position to extend the previous analysis to the three-loop order. At three

loops, the simplest cut contribution f1 expands to

f1,(3) = + + +

+ + + . (5.1)

Compared to the two-loop case, there are a few new ingredients at three loops: two line

insertions in the two-Reggeon state (as in the first term) stand for terms where the BFKL

Green’s function (2.26) has been expanded to second order in the coupling g, while the

BFKL eigenvalue En,ν has been kept at leading order. A line insertion dressed with a dot

stands for one power of the one-loop correction to the eigenvalue En,ν . Each line (leading

order or loop corrected) comes with one power of the respective large logarithm log(εk).

In other words, expanding

G2(nk, νk) = ε
gEnk,νk

k = (5.2)

= 1 + g E(0)
nk,νk

log(εk) +
1

2
g2
(

E(0)
nk,νk

log(εk)
)2

+ g2E(1)
nk,νk

log(εk) + O(g3) ,

where E
(ℓ)
nk,νk is the ℓ-loop BFKL eigenvalue, the third term in (5.2) produces the first term

in (5.1), whereas the fourth term in (5.2) produces the third term in (5.1). The first term

in (5.1) constitutes the LLA part, the next three terms provide the NLLA contribution,

and the three terms on the second line form the NNLLA piece.

Passing now to the longer cut f2, one finds the following terms at three loops and

leading logarithmic order:

f2,(3) = + + + O(NLLA)

= + + + O(NLLA) . (5.3)

As shown in the second line, two of the LLA diagrams can again be reduced to six-point

diagrams, using (4.5). But, unlike in the two-loop case, one LLA diagram remains that

cannot be reproduced by six-point data. Removing the six-point pieces by subtracting two

instances of f1,(3) functions (5.1), one finds the remainder (without loss of generality, the

emitted gluons are labeled by {4, 5, 6})

g3(ε5, ε6;w5, w6) ≡ f2,(3)(ε5, ε6;w5, w6) − f1,(3)(ε5; v5,6;5) − f1,(3)(ε6; v5,6;6)

= + + + +
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− − + + +

+ − − − − . (5.4)

Note that all terms involving the next-to-leading-order BFKL eigenvalue are captured by

the short cut terms f1(3). It is now straightforward to see that the general k-point cut

diagram fk,(3), to leading logarithmic order, becomes a sum of six-point functions f1,(3)
and seven-point functions g3:

11

fLLA
k,(3)(ε5, . . . , ε4+k;w5, . . . , w4+k)

=
4+k
∑

j=5

fLLA
1,(3)(εj ; v5,4+k;j) +

3+k
∑

i=5

4+k
∑

j=i+1

gLLA3 (εi, εj ; v5,j−1;i, vi+1,4+k;j) . (5.5)

Including all NLLA and NNLLA diagrams in the functions fk,(3), f1,(3), and g3 on both sides

of the above equation, and judiciously organizing all terms, one finds that the subleading

contributions can be combined into two further NLLA building blocks gL, gR, and one

further NNLLA building block h. The full three-loop cut function fk,(3) can be written as

fk,(3)(ε5,...,εk+4;w5,...,wk+4)=

k+4
∑

j=5

f1,(3)(εj ;v5,4+k;j)+

k+3
∑

i=5

k+4
∑

j=i+1

g3(εi,εj ;v5,j−1;i,vi+1,k+4;j)

+
k+2
∑

i=5

k+3
∑

j=i+1

gL(εi;v5,j−1;i,vi+1,j;j ,vj+1,k+4;j+1)+
k+2
∑

i=5

k+4
∑

j=i+2

gR(εj ;v5,i;i,vi+1,j−1;i+1,vi+2,k+4;j)

+
k+1
∑

i=5

k+3
∑

j=i+2

h(v5,i;i,vi+1,j−1;i+1,vi+2,j;j ,vj+1,k+4;j+1). (5.6)

The NLLA building block gL depends on four intermediate momenta. It takes the form

gL(ε5;w5, w6, w7) = − − + . (5.7)

In the third term of (5.6), this function gets summed over partitions of the sequence of

momenta (p4, . . . , pk+4) into subsequences

(p4, . . . , pi−1) , (pi, . . . , pj−1) , (pj) , and (pj+1, . . . , pk+4) . (5.8)

The building block gR is a mirror of gL:

gR(ε7;w5, w6, w7) = − − + , (5.9)

11Note that, contrary to the two-loop case (4.11), the three-loop building block g3 is defined in terms of

the original cross ratios w5, w6 rather than the combinations v5,6;5, v5,6;6.

– 16 –



J
H
E
P
1
1
(
2
0
1
7
)
0
7
7

and in the fourth term of (5.6), it gets summed over the partitions

(p4, . . . , pi−1) , (pi) , (pi+1, . . . , pj−1) , and (pj , . . . , pk+4) . (5.10)

Finally, the N2LLA building block h reads:

h(w5, w6, w7, w8) = − −

+ + − −

− − − +

+ + + + . (5.11)

The last term in (5.6) sums this function over partitions of the intermediate momenta into

subsequences

(p4, . . . , pi−1) , (pi) , (pi+1, . . . , pj−1) , (pj) , and (pj+1, . . . , pk+4) . (5.12)

For the case k = 3, which is relevant for the eight-point remainder function in the (−−−−)

region, the last sum in (5.6) has to be replaced by the single term h̃(w5, w6, w7), where h̃ is

obtained from h (5.11) by removing the middle particle (and the associated LO emission

block, if applicable).

Using (3.5), the deconstruction (5.6) implies an analogous relation for the three-loop

remainder function in the region ρ = [4, n−1] = (−− . . .−) where all intermediate momenta

have been flipped:

R
(−−...−)
n,(3),cut (ε4,...,εn−2;w4,...,wn−2)=

n−1
∑

j=5

R
(−−)
6,(3),cut(εj ;vj)+

n−1
∑

i,j=5
i<j

g3(εi,εj ;v5,j−1;i,vi+1,n−1;j)

+
n−3
∑

i=5

n−2
∑

j=i+1

gL(εi;v5,j−1;i,vi+1,j;j ,vj+1,n−1;j+1)+
n−3
∑

i=5

n−1
∑

j=i+2

gR(εj ;v5,i;i,vi+1,j−1;i+1,vi+2,n−1;j)

+

n−4
∑

i=5

n−2
∑

j=i+2

h(v5,i;i,vi+1,j−1;i+1,vi+2,j;j ,vj+1,k+4;j+1). (5.13)

Here, the identities (4.18) among the cut coefficients have already been taken into account.

Via (3.7), equivalent relations hold for the remainder function in all regions ρ = [k, l] where

any number of adjacent momenta {k, . . . , l} has been flipped. In more general regions, the

remainder function receives contributions from further cut terms (of the type shown in

the last line of (2.23)). Passing to the remainder function symbol, these further cut terms

drop out (due to their subleading functional transcendentality). Thus, by (3.2), (3.3),

the deconstruction (5.13) implies a decomposition of the remainder function symbol in any

kinematic region in terms of the symbols of the five building blocks f1,(3), g3, gL, gR, and h.
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6 Building blocks

In principle, each term in the perturbative expansion of the Regge cut diagram (3.5) can

be computed from the integral representation (2.28), once the expressions for the BFKL

eigenvalue, impact factor, and central emission block are known to the desired perturbative

order. In the previous sections, we have shown that, by judiciously organizing all terms in

the expansion, the n-point two-loop and three-loop cut contributions can be reconstructed

from a few basic building blocks that are functions of the anharmonic ratios wj . Once these

building block functions are known, the Regge cut contribution to the remainder function

can be computed via the formulas (4.16), (5.13).

Here, we will content ourselves with treating the building block functions at the level

of the symbol. The symbol of the two-loop NLLA building block g2(v1, v2) has been

obtained [31] by taking the multi-Regge limit of the known two-loop remainder function

symbol [32] and using the decomposition (4.17).

At three loops, both the six-point and seven-point remainder function symbols are

known [24, 49]. By its definition, this data is sufficient to extract the symbol of the

building block g3 (5.4), which contains LLA, NLLA, and NNLLA parts. Applying in turn

the first line of the three-loop decomposition (5.13), this admits a reconstruction of the

n-point remainder function symbol at leading logarithmic order.

We compute the multi-Regge limit symbol of the three-loop remainder function in the

same way as for the two-loop symbol. The procedure is detailed in [31], here we only give

a brief summary: starting with the known six-point and seven-point symbols for general

kinematics, we expand all first entries in terms of the cross ratios (2.10) via the symbol rule

(xy) ⊗ (z) = (x) ⊗ (z) + (y) ⊗ (z) . (6.1)

Next, we collect all terms with the same cross ratio Uk,l in the first entry, strip off the first

entry, and multiply by 2πi. The result is the symbol of the discontinuity under continu-

ation along the path Uk,l → e2πiUk,l. In order to obtain the multi-Regge limit symbol of

each discontinuity, we express the kinematic invariants in the symbol entries in terms of

the OPE variables

{Tj , Sj , Fj} = {e−τj , eσj , eiφj} , j = 5, . . . , n− 1 , (6.2)

of [18],12 set Sj = 1/(Tjrj), and take the limit Tj → 0, keeping only the leading term in

each entry. For the six-point case,

r25 = w5w̄5 , F 2
5 = w5/w̄5 , T 2

5 = ε5/r5 , (6.3)

whereas for seven points,

r25 = w6w̄6 , F 2
5 = w6/w̄6 , T 2

5 = ε6/r5 ,

r26 = 1/w5w̄5 , F 2
6 = w̄5/w5 , T 2

6 = ε5/r6 . (6.4)

12Compared to [18], we cyclically shift the momentum twistors, such that Zhere
i = ZBSV

i+1 .
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Finally, again expanding all terms via (6.1), one can extract all large logarithms via the

shuffle relations

log(εj)
(

x⊗ y ⊗ · · · ⊗ z
)

=
(

εj ⊗ x⊗ y ⊗ · · · ⊗ z
)

+
(

x⊗ εj ⊗ y ⊗ · · · ⊗ z
)

+
(

x⊗ y ⊗ εj ⊗ · · · ⊗ z
)

+ · · · +
(

x⊗ y ⊗ · · · ⊗ εj ⊗ z
)

+
(

x⊗ y ⊗ · · · ⊗ z ⊗ εj
)

. (6.5)

At seven points and three loops, the resulting expression for each discontinuity is a degree-

two polynomial in log(ε5) and log(ε6), whose coefficients are symbols with five entries that

exclusively depend on w5, w6, and their complex conjugates. Starting in the kinematic re-

gion (+++) in which no intermediate momentum is flipped, each other kinematic region is

associated with specific winding numbers for all cross ratios Uk,l. Summing the correspond-

ing discontinuities then yields the remainder function symbol in the respective kinematic

region. In particular, the region (−−−) that contains the three-particle cut f2, only the

cross-ratio U2,6 (2.8) winds non-trivially. Applying the change of variables (4.7), (4.8) and

subtracting the respective six-point three-loop symbols (5.4), one finally obtains the symbol

of the building block g3.

The NLLA and NNLLA building blocks (5.7), (5.9), (5.11) first appear in the three-loop

eight-point and nine-point amplitudes, and can thus not (yet) be extracted from available

perturbative data. In principle these functions could be computed term by term from the

integral representation (2.28). While the BFKL eigenvalue and impact factor are known

explicitly to N2LLA and N3LLA [10, 12, 20, 37, 50], and relating the multi-Regge limit to

the Wilson loop OPE [51] led to all-order proposals [52], the missing ingredient is the NLO

and NNLO central emission block (2.25).

In principle, the NLO emission block could be extracted from the building block g2
by subtracting the two reducible terms and inverting the Fourier-Mellin transform. This

however requires knowledge of the full function g2, which at present is only known at

leading transcendental weight [31].

The attached Mathematica file MRL3LLA.m (see supplementary material) contains the

symbols for the building blocks RMRL
6,(3) and g3, as well as a function that reconstructs the

three-loop leading-logarithmic-order remainder function symbol in any kinematic region

from these building blocks.

Note on the alphabet. The three-loop three-particle building block g3(ε5, ε6;w5, w6)

has the same alphabet ℵ (letters appearing in the entries of the symbol) as the two-loop

three-particle building block g2(w5, w6):

ℵw = {w5, 1 + w5, w6, 1 + w6, 1 + w6 + w5w6} ∪ {c.c.} , (6.6)

where “c.c.” stands for the complex conjugate set of letters. Using the expansion (5.13),

and expanding all variables vk,l;j in terms of w5, · · · , wn−1, the alphabet (of the terms in

the first line) becomes big and complicated for larger n. Had one started with the n-

point symbol, it would have been difficult to guess the variable transformation (4.13) that

simplifies the alphabet and symbol terms.

Beyond seven points, the full alphabet of the remainder function remains unknown,

even in the multi-Regge limit. At six and seven points, the alphabet apparently does

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
0
7
7

not change with the loop order, with the full alphabet already visible at two loops. It

appears likely that this pattern breaks at eight points (beyond the leading logarithmic

approximation), since this is the first instance at which the three-loop building blocks

involve more independent legs than the two-loop building blocks. It would be interesting

to work out the consequences of the deconstruction (5.13) on the higher-point alphabets

in more detail.

7 The function g3

Clearly, it is desirable to obtain the building blocks of the multi-Regge limit amplitude at

function level. The function for the three-loop six-point building block f1,(3) has been de-

rived in [49]. Here, we focus on constructing the function for the new three-loop seven-point

building block g3, which, together with f1,(3), determines the three-particle cut f2,(3) (5.6).

While we will not be able to determine the function g3 completely, we can severely con-

strain it using the knowledge of its symbol as well as further constraints from symmetry

and consistency with the collinear limit.

Structure of the function g3. MHV amplitudes in multi-Regge kinematics are rational

polynomials in multiple polylogarithms, π, and (multiple) zeta values, where all occuring

monomials have the same (uniform) transcendental weight [53]. At loop order ℓ, the re-

mainder function has weight 2ℓ. The cut terms that make up the remainder function in

the multi-Regge limit are discontinuities of the full remainder function and thus carry an

overall factor 2πi, which is therefore multiplied by a function of uniform weight (2ℓ − 1).

Collecting large logarithms, the function g3 decomposes as follows:13

g3(ε5, ε6;x, y) = 2πi
1

∑

m,n=0

log(ε5)
i log(ε6)

j
(

gm,n
3 (x, y) + 2πi hm,n

3 (x, y)
)

. (7.1)

At each order in the large logarithms log(εj), we have split the function into real parts

gm,n
3 and imaginary parts hm,n

3 , each of which is a fixed-weight combination of multiple

polylogarithms and zeta values with real coefficients.

Ordinary multiple polylogarithms. In order to construct the function g3 by matching

a general ansatz to its symbol, we first need an irreducible basis of multiple polylogarithms

of the right class. Multiple polylogarithms, also called Goncharov polylogarithms [14], can

be defined recursively as iterated integrals

G(a1, . . . , an; z) ≡















1

n!
logn z if a1 = . . . = an = 0 ,

∫ z

0

dt

t− a1
G(a2, . . . , an; t) otherwise,

(7.2)

with G(; z) = 1. The sequence of parameters (a1, . . . , an) is called the weight vector, and

the length of the weight vector equals the transcendental weight (or transcendentality)

13We call the function g3(ε5, ε6;x, y) ≡ g3(ε5, ε6;w5(x, y), w6(x, y)) by the same name as g3(ε5, ε6;w5, w6).
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of the function G(a1, . . . , an; z). Multiple zeta values are defined in terms of multiple

polylogarithms evaluated at unity, and inherit their transcendental weight: ζk has weight

k, ζj,k has weight j + k, and so forth. π has weight 1.

As noted in [31], using the variables

x = −v6 = −(1 + w5)w6 , y = −1/v5 = −1 + w6

w5w6
, (7.3)

the alphabet (6.6) of the symbol of g3 becomes

ℵxy = {x, x− 1, y, y − 1, xy − 1} ∪ {c.c.} . (7.4)

Multiple polylogarithms whose symbols draw their entries from this alphabet belong to

the class of two-dimensional harmonic polylogarithms (2dHPLs) [54]. A generating set for

these is given by14

{

G(~a, x) | ai ∈ {0, 1}
}

∪
{

G(~a, 1/y) | ai ∈ {0, 1, x}
}

∪ {c.c.} , (7.5)

where {c.c.} stands for the complex conjugates of the previous sets. Multiple polyloga-

rithms satisfy shuffle and stuffle algebra relations, hence the above generating set is over-

complete. An irreducible basis of generators is provided by the subset whose weight vectors

form Lyndon words in the ordered sets of letters {0, 1} and {0, 1, x}, respectively [55]. In-

cluding the complex conjugate generators, the resulting irreducible set consists of 10, 8,

20, 42, and 108 basis functions at weights 1, 2, 3, 4, and 5. Including all possible products

of lower-weight functions yields 10, 63, 320, 1433, and 5190 linearly independent terms at

weights 1, 2, 3, 4, and 5.

Single-valuedness. Besides the consistency with its known symbol, the function g3 has

to satisfy various constraints. One of them is single-valuedness: due to unitarity, a physical

amplitude can only have branch points where one of the cross ratios vanishes (or becomes

infinite). Since the cross ratios are expressed in terms of absolute squares of the complex

variables w5 and w6 (2.12), a rotation (w5 − z, w̄5 − z̄) → (e+2πi(w5 − z), e−2πi(w̄5 − z̄))

around any point z in the complex plane can never let a cross ratio wind around zero (or

infinity). The same is true for rotations of w6, and therefore also for rotations of x and y.

The conclusion is that the coefficient functions (7.1) of g3 must be single-valued functions

of the complex variables x and y. This property has been essential for the determination

of the six-point multi-Regge limit to high loop orders [12, 19, 56, 57].

One could in principle implement the single-valuedness constraint by first constructing

a function using the basis (7.5) and then requiring all monodromies to vanish. However, it

turns out that the single-valuedness constraint can be satisfied directly at the level of the

basis: a suitable basis of single-valued multiple polylogarithms was recently constructed for

any number of points [33].15 We can therefore satisfy the single-valuedness constraint by

14The choice of generating set is not unique. We used a different basis in [31], but found the choice (7.5)

more suitable for the present analysis.
15See also [23].
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employing the single-valued basis, without losing generality.16 The single-valued basis can

be constructed purely algebraically from the basis of ordinary multiple polylogarithms (7.5)

using the Hopf algebra structure that underlies the multiple polylogarithm algebra [14]:

each holomorphic element G of the ordinary basis (7.5) gets promoted to a single-valued

function Gs by the single-valued map

s : G(~a, z) 7→ Gs(~a, z) ≡ (−1)|~a|µ(S̄ ⊗ id)∆G(~a, z) , (7.6)

where ∆ is the coproduct, id is the identity, S̄ is the complex conjugate of the antipode

map of the Hopf algebra, and µ denotes the multiplication operator µ(a ⊗ b) = a · b.
The details are spelled out in section 3.4.3 of [33], and we will not reproduce them here.

The antiholomorphic elements of (7.5) can equally be promoted to single-valued functions,

which however are not independent from the single-valued functions generated from the

holomorphic elements. A full basis of single-valued 2dHPLs is therefore provided by the

single-valued completions of the holomorphic elements of the ordinary basis (7.5). Since

this halves the size of the algebra basis, it significantly reduces the number of linearly

independent elements in a general ansatz at any fixed weight. For example, while a general

(real) weight-five ansatz constructed from the ordinary basis (7.5) as well as zeta values has

6305 terms (and therefore as many undetermined coefficients), the corresponding ansatz

constructed from the single-valued basis has only 756 terms.

To summarize, the single-valued algebra basis that we will employ is

{

Gs(~a, x)|~a ∈ Lyn{0, 1}
}

∪
{

Gs(~a, 1/y)|~a ∈ Lyn{0, 1, x}
}

, (7.7)

where Lyn{0, 1} and Lyn{0, 1, x} denote the sets of Lyndon words formed from the ordered

sets of letters {0, 1} and {0, 1, x}, respectively. Every single-valued function Gs(~a, z) is

constructed from the ordinary multiple polylog G(~a, z) according to the algebraic prescrip-

tion (7.6). In addition, we assume that {ζ2, ζ3, ζ2,3, ζ5} form the algebraically independent

set of (multiple) zeta values up to weight five.

The ansatz and symbol constraints. We start with a general polynomial in single-

valued basis functions (7.7) and zeta values, such that all monomials have identical total

weight. Given that the three-loop amplitude in general kinematics has weight six, and

taking into account the overall factor of 2πi as well as the large logarithms log(ε5), log(ε6),

one finds that the LLA real part g1,13 has to have weight three, the NLLA real parts g1,03 and

g0,13 have weight four, and the NNLLA real part g0,03 has weight five. The corresponding

imaginary parts have weight one less than the real parts, due to the extra factor 2πi.

The sizes of the general ansätze for all component functions are displayed in table 1. The

symbol of the function g3 uniquely fixes all terms in the real parts gm,n
3 with the highest

functional weight, that is all terms that are free of zeta values. We can perform the match

16In the first revision of this paper, I had constructed the function g3 using the basis (7.5), which was the

state of the art at the time the preprint of this paper appeared on the arXiv. I thank the JHEP referee for

requesting a construction based on the single-valued basis that was published at around the same time [33],

and which significantly reduces the number of free parameters that remain after applying all constraints.
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Function g1,13 h1,13 g1,03 h1,03 g0,13 h0,13 g0,03 h0,03 total

General ansatz 71 20 236 71 236 71 756 236 1697

Match to symbol 6 20 25 71 25 71 91 236 545

Parity invariance 6 16 21 51 21 51 67 151 384

Target-projectile symmetry 4 10 21 51 0 0 ? 83 236

Vanishing collinear limit I 2 7 15 44 0 0 55 76 199

Consistency with the WLOPE I 1 5 11 37 0 0 49 71 174

Vanishing collinear limit II 1 5 11 37 0 0 45 65 164

Consistency with the WLOPE II 1 5 11 37 0 0 42 59 155

Table 1. Numbers of free parameters in the components of the function g3 before imposing con-

straints, after matching to the known symbols, and after imposing various constraints. The first

two components constitute the LLA part, the next four functions represent the NLLA part, and

the last two functions form the NNLLA part of the function g3.

by expanding the single-valued functions Gs(~a, z) into combinations of ordinary multiple

polylogarithms G(·, ·), and by applying the symbol map

S[G(a1, . . . , an; z)] =
n
∑

i=1

(

S[G(a1, . . . , âi, . . . , an; z)] ⊗ (ai − ai−1)

− S[G(a1, . . . , âi, . . . , an; z)] ⊗ (ai − ai+1)
)

, (7.8)

where a0 = z, an+1 = 0, and hatted indices are omitted. The match to the symbol fixes

the majority of terms in the real parts gm,n
3 (see table 1), but the symbol is insensitive to

all terms of subleading functional weight, including all terms in the imaginary parts hm,n
3 .

Parity invariance and target-projectile symmetry. While the terms with sublead-

ing functional weight are not seen by the symbol, they can be constrained by symmetry re-

quirements. Firstly, MHV amplitudes are invariant under parity (spatial reflection), which

is realized by wi ↔ w̄i in the multi-Regge limit [48], that is x ↔ x̄ and y ↔ ȳ. Secondly,

the multi-Regge limit amplitude should be invariant under target-projectile symmetry (ex-

change of the two ingoing momenta), which amounts to symmetry under w5 ↔ 1/w6 [58],

that is x ↔ y and x̄ ↔ ȳ. The sum of six-point terms that is subtracted in the defini-

tion (5.4) of the function g3 is separately invariant under these transformations, and hence

we can require parity as well as target-projectile symmetry for the function g3 by itself.

These symmetries significantly reduce the number of free parameters in the components of

g3, as summarized in table 1. In particular, target-projectile symmetry also swaps ε5 and

ε6, such that it fixes g0,13 and h0,13 uniquely in terms of g1,03 and h1,03 .

Both parity and target projectile symmetry are not trivially implemented: the parity

map replaces all holomorphic weight vectors and arguments of our single-valued basis func-

tions Gs with their complex conjugates. Again using the antipode, these conjugate single-

valued functions can be re-expressed in terms of single-valued functions with holomorphic
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arguments [33], but those will not necessarily be elements of the basis (7.7). Similarly,

the target-projectile inversion map x ↔ y produces non-basis functions. In order to de-

rive constraints for our ansatz coefficients, all non-basis functions need to be re-expressed

in terms of basis functions, which is possible due to the many relations among multiple

polylogarithms, such as shuffle and stuffle algebra relations. The single-valued map [33] is

an algebra homomorphism, hence every identity among ordinary multiple polylogarithms

lifts to a corresponding identity among single-valued multiple polylogarithms. In this way,

single-valued multiple polylogarithms inherit the shuffle and stuffle algebra relations from

their ordinary counterparts, as well as the simpler rescaling property

Gs(a1, . . . , an; z) = Gs(ca1, . . . , can; cz) for an 6= 0 and c 6= 0 . (7.9)

While one can relate non-basis functions back to basis functions by suitably combining the

right shuffle and stuffle identities, it is often more direct to just match a non-basis function

to a combination of basis functions using numerics, at least up to the relatively low weight

that we consider here. For example, all multiple polylogarithms up to weight four can

be expressed in terms of classical polylogarithms Lim(z) as well as Li2,2(z) using e.g. the

Mathematica package provided by [59]. Since classical polylogarithms can be readily

evalueated numerically, it is straightforward to match all non-basis functions up to weight

four against combinations of basis functions and zeta values. However, numerics beyond

weight four are not readily available, and thus implementing target-projectile symmetry

for g0,03,R would require to compile all function identities at weight five by algebraic means.

We have not attempted to do so, as it is rather laborious, and looking at table 1, target-

projectile symmetry for g0,03,R would yield around ∼ 15 more constraints, which would not

get us significantly closer to determining the function g3 completely. Parity invariance is

less demanding in that regard, as the only functions that cannot be related back to basis

functions by simple shuffle algebra relations are harmonic polylogarithms of weight four or

less. In appendix C, we list some of the relations among single-valued polylogarithms that

are needed to evaluate parity and target-projectile symmetry, and we provide all further

relations in the supplementary material.

Collinear limit. Another set of constraints comes from the expansion around the

collinear limit. Since the BDS amplitude correctly captures the leading behavior in the

collinear limit in the Mandelstam regions that we consider, the remainder function has to

vanish in this limit. In order to take the collinear limit, we map our variables (x, x̄) and

(y, ȳ) back to F5,6 and r5,6 via (7.3) and (6.4), which gives

x = −F5r5(1 + F6r6)

F6r6
, x̄ = −r5(F6 + r6)F5r6 , (7.10)

y = −F6(1 + F5r5)r6
F5r5

, ȳ = −(F5 + r5)r6
F6r5

. (7.11)

While the Regge limit sits at Tj → 0, Sj → ∞ with rj = 1/(SjTj) fixed, the collinear limit

is defined by Tj → 0 with Sj finite. From the Regge limit, the combined Regge-collinear

limit is therefore attained by letting rj → ∞, that is

x ≈ −F5r5 → −∞ , y ≈ −F6r6 → −∞ . (7.12)
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In this limit, the harmonic polylogarithm part

{

G(~a, x) | ai ∈ {0, 1}
}

∪ {c.c.} , (7.13)

of the basis (7.5) expands into logarithms and inverse powers of x (and x̄). For the other

part of the basis:
{

G(~a, 1/y) | ai ∈ {0, 1, x}
}

∪ {c.c.} , (7.14)

the expansion is even simpler, since the argument 1/y tends to zero, while the weights x

tend to infinity. The basis functions expand to

G(0, 1/y) = log(1/y) , (7.15)

G(0, . . . , 0, 1, 1/y) = −1/y + O(1/y2) , (7.16)

G(0, . . . , 0, x, 1/y) = −1/xy + O(1/y2) , (7.17)

and all functions G(. . . , 1/y) with more than two non-zero weights are of order O(1/y2). Af-

ter writing all single-valued functions Gs in terms of ordinary multiple polylogarithms and

applying the above, we obtain the expansions of the ansätze near the collinear limit (7.12).

In doing so, one has to be careful in picking consistent branches for all occurring logarithms.

Every single-valued multiple polylogarithm expands to a power series in log(ri) and 1/ri,

where the series coefficients are rational functions of F5 and F6 as well as zeta values.

The first constraint comes from the fact that the remainder function should vanish

in the collinear limit, that is there should be no terms that are free of 1/ri factors. This

already implies 37 further constraints on the ansatz, as can be seen in the fifth line in

table 1. Moreover, we can require consistency with the general form of the Wilson loop

OPE that governs the remainder function in the collinear limit [17, 18]. The general

systematics of the Wilson loop OPE predicts that the remainder function in the combined

Regge-collinear limit (at three loops and in any kinematic region) takes the form

RMRL−coll
7 =

cos(φ5)

r5
f5
(

log(ε6),log(r5)
)

+
cos(φ6)

r6
f6
(

log(ε5),log(r6)
)

+
cos(φ5+φ6)

r5r6
h
(

log(ε5),log(ε6),log(r5),log(r6)
)

+
cos(φ5−φ6)

r5r6
h̄
(

log(ε5),log(ε6),log(r5),log(r6)
)

+O(r−2
5 )+O(r−2

6 ), (7.18)

where Fi = eiφi , and f5, f6, h, and h̄ are polynomials in the respective logarithms. In

particular, the dependence on φ5 and φ6 is very restricted.17 A general combination of

multiple polylogarithms would also produce sine functions of φ5, φ6, and φ5 ± φ6. It turns

out that our parity and target-projectile symmetric ansatz is already free of such sine

terms, which is an important cross-check of our result. Moreover, terms where cos(φ5)

17The form (7.18) is valid in the Euclidean region as well as the (+++) region. During the analytic

continuation into the (−−−) region, all cross ratios Uij follow closed loops with identical start and end

points. Moreover, in the Basso-Sever-Vieira expressions for the cross ratios in general kinematics [60], φ5

and φ6 only appear in the combinations cos(φ5), cos(φ6), and cos(φ5+φ6). The cosine is an entire function,

and hence the general form (7.18) is preserved under the analytic continuation into the (−−−) region.

– 25 –



J
H
E
P
1
1
(
2
0
1
7
)
0
7
7

multiplies log(ε5) or log(r6) should be absent, and the same is true for products of cos(φ6)

with log(ε6) or with log(r5).
18 The absence of such terms provides yet more constraints on

the coefficients in our ansatz for g3, as can be seen in the sixth line in table 1.

When considering the above constraints, one has to keep in mind that the remainder

function in the (−−−) region consists of the function g3 as well as two copies of the six-point

(−−) region remainder function (5.13). The six-point three-loop remainder function in

multi-Regge kinematics has been determined in [20, 49]. In principle, there could be cross-

terms between the six-point functions and the function g3, such that only their sum vanishes

and satisfies (7.18) in the collinear limit. However, we have checked that all coefficients

(LLA, NLLA, and NNLLA, real and imaginary parts) of the six-point function separately

vanish and satisfy (7.18) in the seven-point Regge-collinear limit, for both arguments v5 =

−x and v6 = −y. Hence also g3 has to satisfy these constraints by itself.

In fact, the Regge-collinear limit is not unique: by cyclically rotating the tessellation of

the heptagon that defines the OPE variables (6.2) and taking appropriate limits in the

variables Si, we can probe different limits in the space of multi-Regge kinematics. Not all

collinear limits have an overlap with the multi-Regge limit: the requirement is that the

vanishing of “small” cross ratios uj,2, uj,3 is compatible with the collinear limit T5, T6 → 0.

One further case where this is satisfied is the cyclic rotation of the Basso-Sever-Vieira

variables by 4 sites, that is we use the momentum twistors Zhere
i = ZBSV

i+4 , where ZBSV
i

are defined in appendix A of [18].19 In this case, the collinear-Regge limit is attained by

setting S5 = r5T5, S6 = 1/(r6T6), and letting T5, T6 → 0. The multi-Regge parameters w5,

w6 are then related to the OPE variables by

r25 =
1

w5w̄5
, r26 =

1

w6w̄6
, F 2

5 =
w5

w̄5
, F 2

6 =
w6

w̄6
, (7.19)

which implies

x = −F6(F5 + r5)

r5r6
, y = −r5(F6 + r6)

F5F6
. (7.20)

Conversely, the combined collinear-Regge limit is attained from the multi-Regge limit by

inverting (7.19) for w5, w6, and letting r5, r6 → ∞, which implies

x ≈ −F6

r6
→ 0 , y ≈ − r5r6

F5F6
→ −∞ . (7.21)

In this case, the expansion of the basis functions (7.5) is even simpler, since all arguments

x, x̄, 1/y, and 1/ȳ tend to zero. Expanding the ansätze for our component functions, we

can again require (i) vanishing of all components in the collinear limit, and (ii) agreement

with the general form (7.18) of the Wilson loop OPE. These constraints further reduce the

ansätze by a few parameters, as shown in the last two lines of table 1. It turns out that

this second collinear limit does not yield new further constraints at LLA and NLLA. The

NNLLA functions on the other hand do get constrained further.

18Note the flipping of the indices 5 and 6 in (6.4).
19In the case considered above, we used Zi = ZBSV

i+1 .
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The final answer. Putting all pieces together, one arrives at the most general combi-

nation of multiple polylogarithms that is parity symmetric, target-projectile symmetric,

agrees with the symbol of g3, vanishes in the collinear limit, and matches the general

form of the Wilson loop OPE in the collinear limit. The resulting function is too bulky

for display here, but is attached in the Mathematica file g3fctn.m (see supplementary

material). It still contains 155 undetermined coefficients, as summarized in table 1. The

space of parameters could perhaps be further reduced by matching subleading terms in

the expansion in 1/ri around the collinear limit to the predictions from the Wilson loop

OPE [18], or by inspecting the double discontinuity of the symbol. We defer a more

detailed analysis of these further constraints to future work.

The functions g1,13 and h1,13 constitute the LLA part of the function g3, they solely stem

from the first diagram in (5.4), and are not affected by the subtraction of the six-point

functions f1,(3). We display the full LLA part of g3 in appendix D. The NLLA parts g1,03 and

h1,03 comprise the diagrams 2, 4, and 7 in (5.4), and the functions g0,13 , and h0,13 consist of

the diagrams 3, 5, and 6. Finally, g0,03 and h0,03 constitute the NNLLA part of the function

g3, and are composed of the last eight diagrams in (5.4). Notably, the NLLA parts g1,03 and

h1,03 of transcendental weight four are expressed solely in terms of products of lower-weight

functions Gs. That is, they are free of weight-four functions Gs that cannot be expressed

in terms of lower-weight functions. This is a general feature of single-valued multiple

polylogarithms: every real even-weight single-valued multiple polylogarithm is expressible

in terms of (products of) lower-weight functions. This property follows from the defining

map (7.6) together with the fact that complex conjugation acts on single-valued functions

through the antipode map.20

8 Conclusion

Summary. Exponentiation and factorization are core features of the Regge limit. In the

expansion around large logarithms, they admit a reconstruction of perturbative amplitudes

to any multiplicity, once the BFKL building blocks (eigenvalues, impact factors, emission

blocks) are known. In this work, we have made this reconstruction explicit, up to the

three-loop order.

A central result is the relation (5.13), which expresses the simplest cut contribution

to the n-point remainder function at three loops in terms of a few basic building blocks.

It should be emphasized that the identity has a two-fold meaning: on the one hand, it

holds at the level of the complete remainder function’s symbol. On the other hand, it

holds at the level of full functions once one restricts the remainder function to its simplest

cut contribution as in (3.5), neglecting the Regge pole terms as well as higher Regge cut

contributions such as the ones in the last line of (2.23). The decomposition of the two-

Reggeon cut contribution into building blocks is closely tied to the map (4.13) between

conventional multi-Regge limit variables wi and “building-block variables” vi.

The second main result is the determination of the three-loop building block g3 at the

level of the symbol from the known seven-point three-loop symbol for general kinematics.

20I thank the JHEP referee for pointing out this fact.
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Together with the symbol of the known six-point building block [49], this permits the

reconstruction of the three-loop remainder function symbol at leading logarithmic order,

as implemented in the attached Mathematica file (see supplementary material).

Finally, we have constructed a function representative for the building block g3, based

on the knowledge of its symbol as well as the relevant function space, and by imposing

further constraints such as parity invariance, target-projectile symmetry, and consistency

with the Wilson loop OPE.

Outlook. It would be interesting to better understand the general relation between the

BFKL building blocks — impact factors, eigenvalues, and emission blocks — and the

perturbative building blocks that we found for the full cut contributions. Of course, this

relation is in principle provided by the Fourier-Mellin transform. However, the action of

the inverse Fourier-Mellin transform on general expressions of multiple polylogs is (to the

author’s knowledge) not understood systematically. Especially, it would be interesting

to understand how much can be learnt about the BFKL building blocks when the cut

contributions are only known at the symbol level. A better understanding of this point

would admit to extract the NLO emission block from two-loop data, from which the three-

loop NLO building blocks gL and gR could then be constructed.

We have only fully determined the three-loop seven-point building block g3 at lead-

ing functional transcendental weight. The parts with lower functional weight (which are

multiplied by π and zeta values) have been constrained by symmetry requirements, but

still contain considerable uncertainty in the form of unfixed rational coefficients. It would

be desirable to further constrain the space of parameters, for example by a more detailed

comparison to the Wilson loop OPE [18]. This would require to explicitly compute the

functions f5, f6, h, and h̄ by taking the relevant discontinuity of the three-loop OPE an-

swer. In fact, Basso, Caron-Huot and Sever could extract the two-particle cut fk,(1) to all

loop orders from the six-point Wilson loop OPE by an ingenuous analytic continuation in

the spectral parameter plane [52]. Of course, reconstructing the full three-loop cut contri-

bution fk,(3) for any number of points also requires knowledge of the higher building blocks

gL, gR (at NLLA), and h (at NNLLA). Beyond that, constructing the full multi-Regge limit

remainder function at subleading functional transcendentality in all kinematic regions also

requires to take more general multi-Reggeon cut terms into account, such as the ones shown

in the last line of (2.23). While it is possible to project out these more general cut terms

by restricting to kinematic regions where only adjacent momenta have been flipped, these

higher cut terms form an interesting subject on their own, and it would be very interesting

to understand them systematically.
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A Reduction identities

Here, we want to derive the reduction identities (4.5). The absorption of adjacent emission

blocks into impact factors was demonstrated in [26], and the analysis directly implies the

reduction identity for emission blocks alone. We reproduce it here for completeness.

The identities are most easily understood in momentum space. At leading order, the

central emission block simply consists of a single effective Reggeon-Reggeon-gluon vertex

attached to the upper Reggeon line in the two-Reggeon state, see figure 2. For a produced

gluon with definite helicity, this effective vertex equals [61]

p2

k2 k3
= −

√
2
k2k̄3
p̄2

. (A.1)

Compared to the full amplitude, the remainder function has the tree amplitude divided

out. We are computing cut contributions to the remainder function, hence we need to

divide by the tree-level expression for gluon emission

−
√

2
q2q̄3
p̄2

. (A.2)

At leading order, the central emission block in momentum space therefore equals

C2 ≡ C(q2, k2, p2) =
k2k̄3
q2q̄3

=
k̄2(k2 + p2)

q̄2(q2 + p2)
. (A.3)

Combining two leading-order emission blocks requires to include the intermediate trans-

verse propagator 1/|k3|2, again divided by the corresponding tree-level expression 1/|q3|2:

C2 ·
|q3|2
|k3|2

· C3 =
k2k̄3
q1q̄3

· |q3|
2

|k3|2
· k3k̄4
q3q̄4

=
k2k̄4
q2q̄4

=
k̄2(k2 + p2 + p3)

q̄2(q2 + p2 + p3)
. (A.4)

This clearly equals the single emission block (A.3) with the emitted momentum p2 replaced

by the sum of momenta p2 + p3. Iterating the procedure straightforwardly yields the

reduction identity for emission blocks, on the right in (4.5).

The leading-order impact factor consists of a single gluon emission from the bottom

Reggeon line, as in figure 2. It thus reads [10]

−
√

2
q1(q̄2 − k̄2)

k̄′
= −

√
2
q1q̄2
p̄1

−
√

2
|q1|2k̄2
k̄′p̄1

. (A.5)

On the right, the emission factor has been split into a “local” piece (first term) and a “non-

local” part (second term). The local piece plays a role for the one-loop amplitude, but does

not affect the remainder function [10, 26]. It therefore can be dropped for the purpose of

computing discontinuities of the remainder function. Thus only the second term remains for

the leading-order impact factor. Dividing by the tree expression −
√

2 q1q̄2/p̄1, it becomes

ΦL,1 ≡ ΦL(q1, k
′, p1) =

q̄1k̄2
k̄′q̄2

=
q̄1(k̄

′ + p̄1)

k̄′(q̄1 + p̄1)
. (A.6)
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p1 p2 p3

k′
q1

k2 k3 k4

q1 + k′

Figure 2. Leading-order impact factor and emission vertices. The total t-channel momenta are

denoted qi (see figure 1), hence the momentum on the lower Reggeon line equals q1 +k′ = q2−k2 =

q3 − k3 = q4 − k4.

Combining this impact factor with an adjacent emission block, one again needs to include

the intermediate propagator factor, which yields

ΦL,1 ·
|q2|2
|k2|2

· C2 =
q̄1k̄2
k̄′q̄2

· |q2|
2

|k2|2
· k2k̄3
q2q̄3

=
q̄1k̄3
k̄′q̄3

=
q̄1(k̄

′ + p̄1 + p̄2)

k̄′(q̄1 + p̄1 + p̄2)
. (A.7)

This equals the original impact factor (A.6) with the emitted momentum p1 replaced by

the sum of momenta p1 + p2. Again, iterating the procedure yields the reduction identity

for impact factors, on the left in (4.5).

B Four-loop expansion

At four loops, the two-Reggeon cut at LLA evidently expands to a sum of six-point, seven-

point, and eight-point functions:

fk,(4) =
k+4
∑

j=5

f1,(4)(εj ; v5,k+4;j) +
k+3
∑

i=5

k+4
∑

j=i+1

g2,(4)(εi, εj ; v5,j−1;i, vi+1,k+4;j) (B.1)

+
k+2
∑

i=5

k+3
∑

j=i+1

k+4
∑

m=j+1

g3,(4)(εi, εj , εm; v5,j−1;i, vi+1,m−1;j , vj+1,k+4;m) + O(NLLA) ,

where

g2,(4)(ε5, ε6;w5, w6) ≡ f2,(4)(ε5, ε6;w5, w6) − f1,(4)(ε5; v5,6;5) − f1,(4)(ε6; v5,6;6) , (B.2)

and

g3,(4)(ε5, ε6, ε7;w5, w6, w7) ≡ (B.3)

≡ f3,(4)(ε5, ε6, ε7;w5, w6, w7) − f1,(4)(ε5; v5,7;5) − f1,(4)(ε6; v5,7;6) − f1,(4)(ε7; v5,7;7)

− g2,(4)(ε5, ε6;w5, v6,7;6) − g2,(4)(ε5, ε7; v5,6;5, v6,7;7) − g2,(4)(ε6, ε7; v5,6;6, w7) .

At NLLA, there are three more building blocks that all stem from nine-point data:

g4,(4),1(ε5,ε6,ε7,ε8;w5,w6,w7,w8)=

[

1 1 1 1 1

010100100

]

−
[

1 1 1 2

0101001

]

−
[

1 1 2 1

0200100

]

(B.4)

−
[

1 1 2 1

0101100

]

−
[

1 1 2 1

0100110

]

+

[

1 1 3

02001

]

+

[

1 3 1

02100

]

+

[

1 1 3

01011

]

−
[

1 4

021

]

+O(NNLLA),
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g4,(4),2(ε5,ε6,ε7,ε8;w5,w6,w7,w8)=

[

1 1 1 1 1

010010010

]

+

[

1 3 1

01110

]

+O(NNLLA), (B.5)

g4,(4),3(ε5,ε6,ε7,ε8;w5,w6,w7,w8)=

[

1 1 1 1 1

001001010

]

−
[

2 1 1 1

1001010

]

−
[

1 2 1 1

0010020

]

(B.6)

−
[

1 2 1 1

0011010

]

−
[

1 2 1 1

0110010

]

+

[

3 1 1

10020

]

+

[

1 3 1

00120

]

+

[

3 1 1

11010

]

−
[

4 1

120

]

+O(NNLLA).

Here, each bracket stands for a BFKL diagram, with the following notation: in the bottom

sequence, the numbers alternatingly stand for impact factors / emission blocks and BFKL

Green’s functions. For the impact factors and emission blocks, the number specifies the

loop order. For the Green’s functions, it specifies the number of (leading order) BFKL

eigenvalues, accompanied by the respective large logarithm log(εj); i.e. the numbers 1, 2,

and 3 stand for the first, second, and third terms in (5.2). The numbers in the top row

specify how many momenta are attached to the respective impact factor or emission block.

The expansion (B.1) of the two-Reggeon cut extends to

fk,(4) = f
{i1,i2}
1,(4) + g

{i1,i2,i3}
2,(4) + g

{i1,i2,i3,i4}
3,(4)

+ g
{i1,i2,i3,1,i4}
4,(4),1 + g

{i1,i2,1,i3,i4}
4,(4),2 + g

{i1,1,i2,i3,i4}
4,(4),3 + O(NNLLA) . (B.7)

Here, each term stands for a sum over partitions {i1, i2, . . . },
∑

j ij = k+ 1, of the external

momenta p4, . . . , pk+4 into subsequences (p4, . . . , p3+i1), (p4+i1 , . . . , p3+i1+i2), . . . , whose

sums get attached to the momentum slots of the respective building block. For example,

g
{i1,i2,i3,1,i4}
4,(4),1 ≡ (B.8)

≡
k+1
∑

i=5

k+2
∑

j=i+1

k+4
∑

m=j+2

g4,(4),1(εi, εj , εm−1, εm; v5,j−1;i, vi+1,m−2;j , vj+1,m−1;m−1, vm,k+4;m) .

At NNLLA and NNNLLA, there are many more terms and building blocks. The complete

expansion of the two-Reggeon cut reads

fk,(4)=f
{i1,i2}
1,(4) +g

{i1,i2,i3}
2,(4) +g

{i1,i2,i3,i4}
3,(4) +g

{i1,i2,i3,1,i4}
4,(4),1 +g

{i1,i2,1,i3,i4}
4,(4),2 +g

{i1,1,i2,i3,i4}
4,(4),3 (B.9)

+g
{1,i1,1,i2,i3}
4,(4),4 +g

{1,i1,i2,1,i3}
4,(4),5 +g

{i1,1,1,i2,i3}
4,(4),6 +g

{i1,1,i2,1,i3}
4,(4),7 +g

{i1,1,i2,i3,1}
4,(4),8

+g
{i1,i2,1,1,i3}
4,(4),9 +g

{i1,i2,1,i3,1}
4,(4),10 +g

{i1,1,i2,1,i3,i4}
5,(4),1 +g

{i1,1,i2,i3,1,i4}
5,(4),2 +g

{i1,i2,1,i3,1,i4}
5,(4),3

+g
{i1,1,i2,1,1}
4,(4),11 +g

{i1,1,1,i2,1}
4,(4),12 +g

{i1,1,1,1,i2}
4,(4),13 +g

{1,i1,1,i2,1}
4,(4),14 +g

{1,i1,1,1,i2}
4,(4),15 +g

{1,1,i1,1,i2}
4,(4),16

+g
{i1,1,i2,1,i3,1}
5,(4),4 +g

{i1,1,i2,1,1,i3}
5,(4),5 +g

{i1,1,1,i2,1,i3}
5,(4),6 +g

{1,i1,1,i2,1,i3}
5,(4),7 +g

{i1,1,i2,1,i3,1,i4}
6,(4) .

Terms in the second and third lines start at O(NNLLA), terms in the last two lines are

of order O(NNNLLA). The individual terms are listed explicitly in the following. The

completion of the NLLA terms (B.4)–(B.6) is given by

g4,(4),1=
[

1 1 1 1 1

010100100

]

−
[

1 1 1 2

0101001

]

−
[

1 1 2 1

0200100

]

−
[

1 1 2 1

0101100

]

−
[

1 1 2 1

0100110

]

+
[

1 1 3

02001

]

+
[

1 3 1

02100

]

+
[

1 1 3

01011

]

−
[

1 4

021

]

−
[

2 1 1 1

1000110

]

−
[

2 1 1 1

1001100

]

−
[

1 1 1 2

0010011

]

−
[

1 1 1 2

0100101

]

−
[

1 1 1 2

1001001

]

−
[

1 1 2 1

0010110

]
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−
[

1 1 2 1

0011100

]

−
[

1 1 2 1

0100101

]

−
[

1 1 2 1

0100200

]

−
[

1 1 2 1

0110100

]

−
[

1 1 2 1

1000110

]

−
[

1 1 2 1

1001100

]

−
[

1 1 2 1

1100100

]

−
[

1 1 2 1

0(1)00100

]

+
[

1 1 3

10011

]

+
[

1 1 3

11001

]

+
[

1 1 3

00111

]

+
[

1 1 3

01101

]

+
[

1 1 3

01002

]

+
[

1 1 3

0(1)001

]

−
[

2 3

111

]

−
[

1 1 1 2

0010002

]

−
[

1 1 2 1

1000200

]

−
[

1 1 2 1

1000101

]

+
[

1 1 3

00102

]

+
[

1 1 3

00201

]

+
[

1 1 3

10002

]

+
[

1 1 3

20001

]

+
[

1 1 3

10101

]

−
[

2 3

102

]

(B.10)

g4,(4),2=
[

1 1 1 1 1

010010010

]

+
[

1 3 1

01110

]

+
[

1 3 1

10110

]

+
[

1 3 1

11100

]

+
[

1 3 1

00111

]

+
[

1 3 1

01101

]

+
[

1 3 1

00210

]

+
[

1 3 1

01200

]

+
[

1 3 1

001(1)0

]

+
[

1 3 1

0(1)100

]

+
[

1 4

012

]

+
[

1 4

0(1)1

]

+
[

1 4

111

]

+
[

4 1

111

]

+
[

4 1

1(1)0

]

+
[

4 1

210

]

+
[

1 3 1

00102

]

+
[

1 3 1

20100

]

+
[

1 3 1

00201

]

+
[

1 3 1

10200

]

+
[

1 3 1

00300

]

+
[

1 3 1

10101

]

−
[

1 4

003

]

−
[

1 4

102

]

−
[

1 4

201

]

−
[

4 1

102

]

−
[

4 1

201

]

−
[

4 1

300

]

(B.11)

g4,(4),3=
[

1 1 1 1 1

001001010

]

−
[

2 1 1 1

1001010

]

−
[

1 2 1 1

0010020

]

−
[

1 2 1 1

0011010

]

−
[

1 2 1 1

0110010

]

+
[

3 1 1

10020

]

+
[

1 3 1

00120

]

+
[

3 1 1

11010

]

−
[

4 1

120

]

−
[

1 1 1 2

0110001

]

−
[

1 1 1 2

0011001

]

−
[

2 1 1 1

1100100

]

−
[

2 1 1 1

1010010

]

−
[

2 1 1 1

1001001

]

−
[

1 2 1 1

0110100

]

−
[

1 2 1 1

0011100

]

−
[

1 2 1 1

1010010

]

−
[

1 2 1 1

0020010

]

−
[

1 2 1 1

0010110

]

−
[

1 2 1 1

0110001

]

−
[

1 2 1 1

0011001

]

−
[

1 2 1 1

0010011

]

−
[

1 2 1 1

00100(1)0

]

+
[

3 1 1

11001

]

+
[

3 1 1

10011

]

+
[

3 1 1

11100

]

+
[

3 1 1

10110

]

+
[

3 1 1

20010

]

+
[

3 1 1

100(1)0

]

−
[

3 2

111

]

−
[

2 1 1 1

2000100

]

−
[

1 2 1 1

0020001

]

−
[

1 2 1 1

1010001

]

+
[

3 1 1

20100

]

+
[

3 1 1

10200

]

+
[

3 1 1

20001

]

+
[

3 1 1

10002

]

+
[

3 1 1

10101

]

−
[

3 2

201

]

(B.12)

Here, a (1) in the place of a Green’s function stands for the one-loop correction to the BFKL

eigenvalue, i.e. for the fourth term in (5.2). The following terms start at O(NNLLA):

g4,(4),4=
[

1 1 1 1 1

100010010

]

(B.13)

g4,(4),5=
[

1 1 1 1 1

100100100

]

−
[

1 1 2 1

2000100

]

−
[

1 1 2 1

1010100

]

−
[

1 1 2 1

0020100

]

−
[

2 1 1 1

1000200

]

−
[

3 2

102

]

(B.14)

g4,(4),6=
[

1 1 1 1 1

001010010

]

−
[

1 1 2 1

0010101

]

−
[

1 1 2 1

0010200

]

−
[

2 1 1 1

1010100

]

−
[

2 1 1 1

1010001

]

(B.15)

g4,(4),7=
[

1 1 1 1 1

001000110

]

+
[

1 1 1 1 1

001001100

]

+
[

1 1 1 1 1

001100100

]

+
[

1 1 1 1 1

011000100

]

+
[

2 2 1

10110

]

+
[

2 2 1

11100

]

+
[

2 1 2

10011

]

+
[

2 1 2

11001

]

+
[

1 2 2

00111

]

+
[

1 2 2

01101

]

+
[

1 1 1 1 1

001000200

]

+
[

1 1 1 1 1

002000100

]

+
[

2 2 1

20100

]

+
[

2 2 1

10200

]

+
[

2 2 1

10101

]

+
[

2 1 2

10002

]

+
[

2 1 2

20001

]

+
[

1 2 2

00102

]

+
[

1 2 2

00201

]

+
[

1 2 2

10101

]

(B.16)

g4,(4),8=
[

1 1 1 1 1

001001001

]

−
[

1 2 1 1

0010002

]

−
[

1 2 1 1

0010101

]

−
[

1 2 1 1

0010200

]

−
[

1 1 1 2

0020001

]

−
[

2 3

201

]

(B.17)

g4,(4),9=
[

1 1 1 1 1

010010100

]

−
[

1 2 1 1

1010100

]

−
[

1 2 1 1

0020100

]

−
[

1 1 1 2

0010101

]

−
[

1 1 1 2

1000101

]

(B.18)

g4,(4),10=
[

1 1 1 1 1

010010001

]

(B.19)

g5,(4),1=
[

1 1 1 1 1 1

00100010010

]

+
[

2 2 1 1

1010010

]

(B.20)

g5,(4),2=
[

1 1 1 1 1 1

00100100100

]

+
[

2 1 1 2

1001001

]

+
[

1 2 1 2

0010011

]

+
[

3 1 1 1

1000110

]

+
[

3 1 1 1

1001100

]

+
[

1 1 1 3

0011001

]
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+
[

1 1 1 3

0110001

]

+
[

2 1 2 1

1100100

]

+
[

1 2 2 1

0010110

]

+
[

1 2 2 1

0011100

]

+
[

1 2 2 1

0110100

]

+
[

3 3

111

]

−
[

1 2 1 2

0010200

]

−
[

2 1 2 1

0020100

]

(B.21)

g5,(4),3=
[

1 1 1 1 1 1

01001000100

]

+
[

1 1 2 2

0100101

]

(B.22)

Finally, the following terms only contribute at NNNLLA:

g4,(4),11=
[

1 1 1 1 1

001000101

]

−
[

2 1 1 1

1000101

]

g4,(4),12=
[

1 1 1 1 1

001010001

]

(B.23)

g4,(4),13=
[

1 1 1 1 1

001010100

]

+
[

2 1 2

10101

]

g4,(4),14=
[

1 1 1 1 1

100010001

]

(B.24)

g4,(4),15=
[

1 1 1 1 1

100010100

]

g4,(4),16=
[

1 1 1 1 1

101000100

]

−
[

1 1 1 2

1010001

]

(B.25)

g5,(4),4=
[

1 1 1 1 1 1

00100010001

]

g5,(4),5=
[

1 1 1 1 1 1

00100010100

]

(B.26)

g5,(4),6=
[

1 1 1 1 1 1

00101000100

]

g5,(4),7=
[

1 1 1 1 1 1

10001000100

]

(B.27)

g6,(4)=
[

1 1 1 1 1 1 1

0010001000100

]

−
[

1 2 2 2

0010101

]

−
[

2 2 2 1

1010100

]

(B.28)

The large number of terms at NNLLA and NNNLLA shows that the decomposition into

building blocks is less effective than at two and three loops. The reason is that the reduction

identities (4.5) are only established for the leading order emission block. It would be

interesting to see whether the (thus far unknown) NLO emission block satisfies similar

reduction identities, in which case many of the above terms could be reduced and absorbed

into a smaller number of building blocks, reducing the complexity of the decomposition.

C Polylogarithm identities

When applying the target-projectile transformation x ↔ y or the parity map x → x̄,

y → ȳ to the ansatz functions for the components of g3, some single-valued basis functions

are mapped to non-basis single-valued multiple polylogarithms. In order to impose the

required symmetries on the ansätze, these non-basis functions need to be re-expressed in

terms of basis functions. This can always be achieved with the help of shuffle and stuffle

relations, as well as the rescaling property (7.9). Shuffle relations take the form

G(~a; z)G(~b; z) =
∑

~c∈~a ~b

G(~c; z) , (C.1)

where the sum runs over all shuffles ~a ~b of the weight vectors ~a and ~b, that is over all per-

mutations of their components that preserve the ordering of elements within both ~a and ~b.

The shuffle relation follows directly from the iterated integral definition of multiple polylog-

arithms (7.2), and they hold for ordinary as well as single-valued multiple polylogarithms.

Stuffle relations on the other hand are less transparent in the integral representation; they

follow directly from the series representation of G(~a; z) around z = 0, see for example [47].
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At weights one and two, the following identities are needed to evaluate the parity and

target-projectile invariance conditions:

Gs,y
0 = −Gs,y̌

0 , Gs,x̌
0 = −Gs,x

0 , Gs,1
x = −Gs,x

0 + Gs,x
1 , (C.2)

Gs,x
xy̌ = −Gs,y̌

0 + Gs,y̌
1 , Gs,y̌

xy̌ = −Gs,x
0 + Gs,x

1 , Gs,1
0,x =

1

2
(Gs,x

0 )2 −Gs,x
0,1 , (C.3)

Gs,x
0,xy̌ =

1

2
(Gs,y̌

0 )2 −Gs,y̌
0,1 , Gs,y̌

0,xy̌ =
1

2
(Gs,x

0 )2 −Gs,x
0,1 , (C.4)

Gs,y̌
xy̌,x = −Gs,x

0 Gs,y̌
1 + Gs,x

1 Gs,y̌
1 + Gs,y̌

0,x −Gs,y̌
1,x , (C.5)

Here and in the following, we use the condensed notation Gs,z
a1,...,an ≡ Gs(a1, . . . , an; z), and

y̌ ≡ 1/y. At weight three, we have for example the following identities:

Gs,x
0,0,xy̌ = −1

6
(Gs,y̌

0 )3 + Gs,y̌
0,0,1 , (C.6)

Gs,x
0,xy̌,xy̌ = −1

6
(Gs,y̌

0 )3 + Gs,y̌
0 Gs,y̌

0,1 −Gs,y̌
0,0,1 −Gs,y̌

0,1,1 + 2ζ3 , (C.7)

Gs,y̌
0,0,xy̌ = −1

6
(Gs,x

0 )3 + Gs,x
0,0,1 , (C.8)

Gs,y̌
0,x,xy̌ = −1

2
(Gs,x

0 )2Gs,y̌
1 + Gs,y̌

1 Gs,x
0,1 + Gs,x

0 Gs,y̌
0,1 −Gs,x

1 Gs,y̌
0,1 −Gs,x

0 Gs,y̌
0,x + Gs,x

1 Gs,y̌
0,x

+ Gs,y̌
1 Gs,y̌

0,x − 2Gs,y̌
0,0,x −Gs,y̌

0,x,1 , (C.9)

Gs,y̌
0,xy̌,x =

1

2
(Gs,x

0 )2Gs,y̌
1 −Gs,y̌

1 Gs,x
0,1 −Gs,y̌

1 Gs,y̌
0,x + Gs,y̌

0,0,x + Gs,y̌
0,1,x + Gs,y̌

0,x,1 , (C.10)

Gs,y̌
0,xy̌,xy̌ = −1

6
(Gs,x

0 )3 + Gs,x
0 Gs,x

0,1 −Gs,x
0,0,1 −Gs,x

0,1,1 + 2ζ3 , (C.11)

Gs,y̌
xy̌,x,x = −1

2
Gs,x

0 (Gs,y̌
1 )2 +

1

2
Gs,x

1 (Gs,y̌
1 )2 + Gs,y̌

1 Gs,y̌
0,x −Gs,y̌

0,1,x −Gs,y̌
0,x,1

+ Gs,y̌
0,x,x −Gs,y̌

1,1,x −Gs,y̌
1,x,x , (C.12)

Gs,y̌
xy̌,xy̌,x =

1

2
(Gs,x

0 )2Gs,y̌
1 −Gs,x

0 Gs,x
1 Gs,y̌

1 +
1

2
(Gs,x

1 )2Gs,y̌
1 +

1

2
Gs,x

0 (Gs,y̌
1 )2 − 1

2
Gs,x

1 (Gs,y̌
1 )2

−Gs,x
0 Gs,y̌

0,1 + Gs,x
1 Gs,y̌

0,1 −Gs,y̌
1 Gs,y̌

0,x + Gs,y̌
0,0,x + Gs,y̌

0,x,1 + Gs,y̌
1,1,x . (C.13)

All of the above equations rely on multiple shuffle and stuffle relations. These are all rela-

tions involving both letters x and y that one needs for parity and target-projectile symme-

try up to weight four. These as well as all further required relations among single-valued

harmonic polylogarithms only involving x can be found in the supplementary material

GGtobasis.m.

D The function g3 at LLA

For reference, we display the LLA part of the function g3, up to a few undetermined

coefficients that are not constrained by the symmetries that we considered:21

g1,13 + 2πi h1,13 =
1

16

(

(Gs,x
0 )2Gs,y̌

1 − 2Gs,x
0 Gs,y̌

0 Gs,y̌
1 + 2Gs,y̌

0 Gs,x
1 Gs,y̌

1 − (Gs,x
1 )2Gs,y̌

1

+ Gs,x
0 (Gs,y̌

1 )2 −Gs,x
1 (Gs,y̌

1 )2 + 2Gs,y̌
0 Gs,x

1 Gs,y̌
x + (Gs,x

1 )2Gs,y̌
x − 2Gs,y̌

0 Gs,y̌
1 Gs,y̌

x

21This result agrees with [33] (equation (D.8) there) once we set all parameters ci/r.. to zero.
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− 2Gs,x
1 Gs,y̌

1 Gs,y̌
x + (Gs,y̌

1 )2Gs,y̌
x − 2Gs,y̌

x Gs,x
0,1 + 2Gs,y̌

x Gs,1,y̌
0 + 2Gs,y̌

1 Gs,y̌
0,x + 2Gs,x

0 Gs,x,y̌
1

− 2Gs,x
1 Gs,y̌

1,x + 2Gs,y̌
1 Gs,x,y̌

1 − 4Gs,y̌
0,1,x − 4Gs,y̌

0,x,1 − 4Gs,y̌
1,1,x

)

+ cr2,1G
s,y̌
x ζ2

+ 2πi
(

ci2,1
(

(Gs,x
0 )2 − 2Gs,x

0 Gs,x
1 + (Gs,x

1 )2 + (Gs,y̌
1 )2

)

+ ci2,2
(

Gs,x
0 −Gs,x

1

)

Gs,y̌
1

+ ci2,3
(

Gs,x
0 −Gs,x

1 −Gs,y̌
1

)

Gs,y̌
x + ci2,4

(

Gs,y̌
0 −Gs,x

1 −Gs,y̌
1

)

Gs,y̌
x + ci2,5(G

s,y̌
x )2

)

. (D.1)

Here, we again used the shorthand notation Gs,z
a1,...,an ≡ Gs(a1, . . . , an; z). The NLLA and

NNLLA functions are too lengthy for display, they are attached in the supplementary

material g3fcn.m.

Open Access. This article is distributed under the terms of the Creative Commons
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