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1. Introduction 

Since the discovery of the J/<.f' and 4'' in November 1974 l) we all witnessed 
a dramatic reviva: of the quark model Z). A new quark flavour, c = chan'l 3), 
was added to the hac.ron spectroscopy, interpreting the J/ 'i' and '+' 1 as cc 
bound states. This new system promised to be describable as nonrelativistic 
bound states of c and c: Charmonium 4l. flhile the quark model for old mesons 
suffered from the fact that the quarks move relativistically (mass differences 
of old mesons are of the order of the masses themselves), in charmonium th<e 
relatively heavy ("'- 1.5 GeV) c-quarks should move relatively slov11y, 
p,z ~ (o/c ;z :;:: 0,2 A perturbation expansion in f--2 then convergEs 

rapidly and the well known powerful tools of exploring a nonrelativistic 
bound system could be used. This was the source of real excitement. 

Meanwhile we learned about the existence of a still heavier meson family, 
the r, r 1 andY' 5l, and interpret it as bound states of the b quark and 
5, b being the fifth quark flavour G), much more massive than charm. We 
further hope to discover the sixth quark flavour, t maybe, and its bound 
states ti in the new e+e- machines PETRA and PEP. The larger masses of the 
b and t quark guarantee that their bound systems b5 and ti are nonrelati­
vistic to a much higher degree than cc. In this lecture we will discuss 
the dynamics of a nonrelativistic QQ bound system, Q = c,b,t. As a title 
for this lecture we chose the generic name for a nonrelativistic QQ system, 
QUARKONIUI~. 

On the fiQld theory side, Quantumchromodynamics 7), QCD, turned out to be 
the most promising key to an understanding of quark dynamics. QCD is a 
nonabelian gauge field theory of the interactions of quarks and eight mass­
less vector gauge bosons, the g1uons. The coupling constant ~s , renor­
malized at ~he relevant momentum transfer q2 or the corresponding distance 
R, turns out to be a monotonously falling function of q2 (or rising function 
of R). It tends logarithmically to zero as q 2~ oo orR__., 0, this is 
called asymptotic freedom B). CX5 becomes large for some large R of the 
order of one fm, the typical hadron size. Up to today this regime is subject 
to speculations only, we believe that the rising coupling provides for the 
permanent confinement of quarks. Perturbation theory is useless in this 
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91 10) 
case, but lattice gauge theories • or tl1e string model suggest that 

the interquark force for large separations m~ght be inde11endent of tile 

distance, thus giving rise to a linearly rising static potential between 

qual"ks. M short distances physics is much rr:ore pleasant because ()( 5 bv 

comes srr:all. Then pertut·bation theory is fine and in Born approximation 

the quark interaction is just one gluon exchange. The nonabelian self­

interaction of the colour-charged gluons plays no rBle in lowest order 

graphs, and in this approximation gluons are just analogous to photons. 

The short Jistance behaviour of QCD is thus very similar to QED, the static 

~otential fo1· short distances being of the Coulom:J type. 

l,lhen QCD is in fact the underlying theory for the Quarkonium systems, we 

should be able to probe some QCD features by studying these systems. What 

ca1 we probe? First we should be able to probe the short distance behaviour. 

The one gluor1 exchange at short distances leads to a static potential of 

the form Vr
1
F(R) ; - 1 ';: . The subscript AF denotes the origin of this 

potcnticl "P.symptotic Fr2edom". -4/3 ;s a group factor from SU3 (colour) 

and tx5 is the effective coupling. 0:1e can take th:o points of viev-1 re-

gardi nq cx 5 . Either t<5 is t·ea lly R-dependent 11 ) but independent of 

the quar·k flavour. Or one defines an effective t<.s as a constant, different 

- h ' "'" B) F 1 ' · t t k t' d , . t f t·oreac quan;,Javourmass ·. ors:mo.lclyv:e a'e nesecon po1n o 

viev1. Then the v 5 in a heavy QQ bound state~~~ is related to that of a 
L 

lighter one 1~ 1 by the approximate formula 

(N is the number of ''light'' (=lighter than Q) quarks). The potential 

VAF(R) \'lith cx 5 given by (1.1) should be correct for very short distances. 

It further gives rise to th~ spin-spin and spin-orbit interactions known 

from positronium, because the quark gluon vertex has the same Dirac struc­

ture as the electron photon vertex ( 3'""r-coupling). 

The second feature of QCD we might be able to probe is the large distance 

behaviour, R ~co. The linear potential as suggested by lattice gauge 

theory or string models should dominate for very large distances R: 

( 1.1) 
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Vc (R) = a· R . The subscript C stands fen"' 11 Confine;nent 11
• The: 

slope a should be flavour independent and also somei1ow related to the 
inverse Regge slope of the low mass mesons 12 l. Furthermore this potential 
should be essentially spin indeoendent 9) 

We now have guesses for the static potential at very short distances, 
VAF(R) =- 1 7{ , and very long distances \(R) = aR. We have no guess 
for intermediate distances. The simplest assumption is to v;rite the com-
plete potential as a superposition of these two extremes(E.Eichten et al. ,ref.4): 

(1.2) 

We further assume that all the spin dependence (except the kinematic 
Thomas precession) has its crigin in V~c(R) and can be calculated via the 
Fermi-Breit Hamiltonian 13 l. Although ~~ese Ans~tze have their criticism 
they have worked out to be very useful as a first attempt to the problem. 
The first part of this lecture 1vill try to show how far these Ansatze reach. 
In the second part we will discuss decays of Quarkonium and a third test of 
QCD, namely of gluon helicities and the gluon self coupling. With the ex­
perimentally accessible regime of c.m. energies of 10 GeV or more, the 
gluons which govern annihilations in QCD, might show up as hadron jets 14) 
These jets should carry the directed momentum of the initial gluon. In 
angular distributions of these jets one should then be able to measure gluon 
helicities 14 •15 l. One can further speculate on the existence of glueballs 16 ) 
to be found in Quarkonium decays and on measuring the nonabelian gluon self 
coupling by comparing the angular distribution of a 3 gluon decay versus a 
'f + 2 gl uon decay. The 1 atter two things, hov;ever, go beyond the Bor·n 
approximation. 

2. The Spectrum 

Throughout the discussion we will assume that the Quarkonium (QQ) system is 
essentially nonrelativistic. The perturbative Hamiltonian can then be ob­
tained by solving the Bethe Salpeter equation in nonrelativistic approxima­
tion or by expanding the exact relativistic scattering amplitude (Born 
graph only). One obtains the Schrodinger equation in zeroth order of ~ 2 

and the well known Fermi-Breit Hamiltonian terms up to order ~ 2 
• In 
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Oth orJcr 

+ V(R) + Cons+. 

and all states which only differ in their c;•Ja.rk spin configurations are 

degenerate. 

Her·e vJe cun stucly the l~cugh structure of the spect:"~F" c_nd try to justify 

the choico (1.2) for the ootent'ta1 V(R. ). in Fig. 2. J. it ·:s de'"onstrated 

I I I rlJ.l---
' 0.5 ~ 
r-cog iPc/Xl 

1 p 

0 

-0.5 R 

1.0 1.5 [fm] 

Fig. 2.1. Four different potentials for charmonium, normalized to the J/'l' 

and '+' 1 
binding energies. The solid horizontal lines indicate the P wave 

of each potential, the experimental c.o.g.(P) is given for comparison. 

(2.1) 
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that the center of gravity of the P Y~aves (which is object of 2.1) can 
be well described if the potential lies between a Coulon1bic and a linear 
potential. Also a logarithmic potential is not bad. This may serve 
to justify the Ansatz (1.2). We note, hoY/ever, that doing this comparison 
we assume that splittings due to spin-spin interactions are either small 
or of the same magnitude in the P a~d S waves. Calculations of the spectrum 
of Eq. (2.1) have to be done numerically because of the complicated nature 
of the potential V(R). There are three parameters, m

0, K: j <X 5 and a. 
The level splitting of the radial excitation and the ground state (4' 1(3.7) 
and J/'+' (3.1) in Charmonium) determines one of the potential parameters, 
say a, if the other, say K , is given. vie then can try to determine K: from 
two independent sources, namely the ratio of the S wave functions at the 
origin 

I \f "'' co l I 2 

jV:l/'1' (o) 12 

2 
(3.7) ·2.2keV 

(3.1/- 4.8keV 

and the 1·el ative placement of the center of gruvity of the P \"laves. Both 
procedures are almost independent of the third parameter, m

0
, and in 

Charmonium they give 

K. = 0.4 0.5 

ct= 1 0.9 GeV/fm 

One remark on Eq. (2.2) is in order. It is derived from the Van Royen­
Weisskopf formula 

r;e (v) = 

This equation is subject to large corrections in the Charmonium system as 
we will discuss later but in ratios of ~e 15 these corrections cancel. 
Therefore (2.2) seems to be quite reliable. 

( 2. 2) 

( 2. 3) 

(2.4) 
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Is the large value of ~ reasonable~ FroT the beginning K is just a 

free parameter. But with 

0.3 ... 0.4. Is this Us 

f( = ''h <:>: 5 vro find CX5 of the magn ·i tude 

related to the strong co:1pling constant in 

annihilation processes? Or is it related to the stron0 coupling constant 

in deep incl~stic lepton scatteri~g? From the decay formulae· as described 

in the second lectu1·e one can d~rive CX: 5 (anni:Jilation at 3 GeV)"' 0.2. 

But this GL 5 refers to annihilation distances 1·1hich are shorter than the 

average intcrquark distances. From deep inelastic lepton scattering we find 

CX.s(3 GeV) ~ c:x: 5 (0.07 fm) :::: 0.4 taking the renormaliz ation point 

A-~ 0.5 GeV, as you have learned in this school 17 l. From Fig. 2.2 we 

V [Ge V] 

VIRl 

OS 

0 

-0.5 

R [fm] 
-l~L-~~~~~~~~--~~--~ 

+- 0.5 1.0 
--AF C ____,... 

Fig. 2.2. The shape of the standard potential, eq. (1.2). 'IAF dominates 

below, Vc above R ~ 0.3 fm. 

that 0.07 fm are just in the middle of the range where the asymptotic 

see 

freedom potential VAF dominates, between 0 and 0.3 fm. The ~s as deter-

mined from the spectrum with the simple Ansatz (1.2) for V(R) ~grees roughly 

with the ~s as measured in scaling violations of deep inelastic lepton 

scattering. This result encourages us to ask the next question: Is the para­

meter ex. in V (R) ~ aR unique for al1 flavours (quark masses) as QCD suggests? 
c 
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The first estimates of the V'"V splittings in QQ systems heavier than 
Charmonium predicted a d'"crease of th1s splitting with m

0 
lS) At 10 GeV 

the mass splitting should be 450 MeV only (compared to 590 MeV in Char-
moni um). As soon as the next Qua rkon i ur" system, Y and r 1 

, was found, 
this prediction was destroyed. The Y 1-Y mass splitting was around 600 fleV 
again as in Charmonium. The potential to desc~ibe this fact is the logat·ith­
mic potential 19 ). Here mass splittings are comi)letely independent of the 
quark mass. But an overall log potential has no justification within QCD. 
For intermediate distances, on the other hand, it is not worse than the 
simple superposition (1.2). An interesting - and phenomenologically succc::;s­
ful P.nsatz was then proposed with the log potential for intermediate 
distances only 20 ). 

\I(R.) = For 

The ambiguities coming in by 6 parameters, K, a, R
1 , R2 , R

0
, b in this 

potential are removed by demanding V(R) to be continuously differentiable 
at R1 and R2 . These are four conditions which remove 4 parameters and for 
comparison one chooses ~ and a to be the only independent potential para­
meters. The Charmonium system has been solved with this potential and one 
finds a very good fit to all available data with 

~ k = D< 5 = 0.31 
4 

a- o. rrs Gev .p.;~ 

Applying the potential (2.5)- with the unique a= 0.775 GeV/fm­
to the "£ system gives the mass difference '!:' - r to 560 t1eV. 

Very recently a precise measurement of the T and T r masses at DORIS gave 
us the experimental value: 560 t1eV 5). This coincidence is of course no 
prove for the correctness of the potential (2.5) but it shows that- with 

( 2. 5) 

(2. 6) 
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a more sophisticated potential - the ~ssumption of a flavour independent 

constant force between quarks at long distances is not in contradiction 

with \'ihat we observe. It is amusing to note that this value of a = 0. 775GeV/fm 

is even in agreement with what one would expect from the old meson spectro­

scopy 12 ) 

We want to add a remark on quark masses. Quark masses only slightly influence 

the t110 inputs we used, the ratio of wave functions at the origin and the P 

wave location. \~hat they mainly influence is the v1ave functions themselves, 

the dipole matrix elements and the velocity of the quarks. But here is some 

amb·iguity. Fitting t.f{o) to the naive V. Royen \~eisskopf formula (2.4) gives 

a rather small value, me "" 1.1 GeV. For the dipole matrix elements on the 

other hand one would like a large quark mass, me"' 2 GeV. In the best known 

studies at Cornell 21 ) the requirement of small quark velocities restricts 

me to be me"" 1. 6 GeV. To fix me or m0 resp. is not as easy as to fix "'-s 

and a 1because the decay formulae (2.4) and the dipole formula are subject 

to large corrections as we will discuss in the second lecture. We will use 

scaling arguments for scale variations of the quark mass. To overcome the 

ambiguities of determining the quark masses we will set quark mass r·atios 

equal trr the corresponding bound state mass ratios. We emphasize that 

smaner quark masses like m = 1.1 GeV do not destroy the nonrelativistic 

approximation. l·/e have calc~lated 52 = (v;--;;)2 and find that r2< 0.3 in .jf'f' 

and 5
2< 0.4 in 4' 'for me= 1.16 GeV and K:< 0.55. fJe feel that this justifies 

to leave the quark masses themselves an open question. 

3. Spin Interactions 

In the physical charmonium spectrum the Schrodinger states are split up due 

to spin interactions. In this chapter we want to compare the rc'agnitude of 

these splittings with the simplest Ansatz we can imagine, the Fermi Breit 

Hamiltonia~~JThese higher order corrections to (2.1) are relativistic kine­

matic corrections and spin corrections: 

The spin corrections have three contributions. 

( 3. 1) 

/ 
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spin orbit: HLS-

tensor: 

spin-spin: 

-..l. _..::. ~ .-.:.. Here <:J;../2 is the quark spin, S = 1/2(V:, + <S,_) the meson spin, L its 
angular momentum,~ the interquark distance. For the potential V(R) we 
again take the simplest Ansatz (1.2) with only VAF(R) being spin-dependent. 
As mentioned in the introduction lattice gauge theories suggest that the 
confinement part Vc(R) of the potential is spin-independent. Nevertheless 
it contributes to the spin orbit interaction due to the relativistic kine­
matic effect of the Thomas precession 22 l, -1/4V(R) in HLS. In Quarkonia 
the Thomas precession leads to a decrease of the 3P2 -· 3P1 splitting rela-
tive to the 3P1 - 3P

0 
splitting. While in Positronium, where V(R),..,. -1/R~VAF(R) 

M(3p.l.)- M(3p~) 

M (3p~)- rv\ (3Po) 
= 0.8 

the additional Vc(R) in the interquark potential (1.2) leads to a decrease 
of (3.3), which experimentally is found to be 0.5 in Charmonium. 

We are confident that the Fermi Breit Hamiltonian (3.2) is not a too bad 
approximation. As an example let us consider the part of the relativistic 
corrections due to the kinetic energy of tile quarks. This correction is 
< (p 2 )2./'t,..,i > ':::! E'k;., (% p. 2 ) • Up to f1z of 0.4 the 
relativistiT kinetic energy correction is less than 10 %. The ~~one ob­
tains in the Charmonium calculations are 0.2 to 0.3 for J/'1' and 0.27 to 
0.4 for '-Y 1 varying me from 1.6 to 1.16 GeV. 

Let us now compare experiment with the predictions from (3.2). We start 
considering the experimental states as discussed at this school 23 l. The 
three P waves are quite well established, the )C(3.55) as jPC = 2++ state, 
the Pcf'X(3.51) as /C = 1++ state and the ;i(3.41) as /C =a++ state. For 

( 3. 3) 
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the pseudoscalar pal"tners of J/'f and lf 1 the experimental situation is not 

so clear. Candidates for the pseudoscalars are X{2.83), ):"{3.45) and 

~(3.59 or 3.18). 

The P wave splittings can be parametrized as 

A < [. S > 

< HT> B < - T > 
--" ..., ..... ~ _ ... 

where the tensor operator T := 3 o"1 • R cJ-2.· R - <:J:, • ~ • The expectation 
~ ~ _.. 24) 

values of L· S and 1 can be found in textbooks on Quantum mechanics . 

For P waves they are displayed in Table 3.1. A Charmonium analysis v:ith the 

~ --' 
j <L • S > 
2 + 1 

1 - 1 

0 - 2 

Table 3.1 

State 

mass [GeVJ 3.552 

Table 3.2 

<T > 

3.508 

- 2/5 

+ 2 

- 4 

3.415 

experimental masses of Table 3.2 yields for A and B 

A ~ 34 MeV, B "" 10 l~eV 

On the theoretical side we read off (3.2) 

A= ~~ <~drz(~FC~<.l-*\/Ct<l)) 

B= .,,-
4

2. <(d~- ~dR)'It,F(R)) 
-<, mQ 

center of gravity 

3.522 

(3.4) 

(3.5) 

(3.6) 
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including the Thomas precessior•. With our st~ndard potential (1.2) this 
gives 

A= 
(3.7) 

We see that the spin dependence from the one gluon cxLhJnge (VAF) is governed 
by ( R-3)while the Thomas precession is govcmed l;y <R.-1 

). Taking our 
·-1< -3 2 <-1, ~s = 0.4, me R ) ~ 0.07 GeV and R ? ~ 0.4 GcV from iltimcrical fits 

yields the values of P and 8 g·iven in TablE 3.3 for t110 diffe:'ent valu~s 

me GeV [ ] 1.6 I 1 -•. l I 
! 

A [rleVJ 35-12 56-32 

B [t·leVJ 6 9 

Table 3.3: A and B from numerical fits. In row A the second 
numbe!' is the contr-ibution from tile Thomus precessicn. 

of me+). By comparison of Table 3.3 with eq. (3.5) we see that 1ve are in 
the right ball park. We could not have expected a better agreement from our 
crude approximation! 

Let us n01·1 try the spin-spin interaction. According to our philosophy it 
arises from the short range one gluon exchange (VAF) a1one. The relevant 
term in the Fermi-Breit-Hamiltonian (3.2) was 

+)The tensor operator T of eq. (3.4) possesses off diagonal matrix elements, 
too. They lead to an S-0 mixing. Two physical Charmonium states would e.g. 
be Lf-'(3.7-) =I/ ~-E~· _z:?.s, + E. 1 3 .D 1 and ..Y" (3.TI) = 
- c_2 3 5, +-v'~-£1' 13.D 1 with £..= -1-~~:~ <z. 3 s~ IW~I1 3 .D~) 32 l. 
With <Z 3 SAIR.-~I1'!.D,) ~<--f?.p I R-3 i'1 3P) we can evaluate €. '=0.3 
leading to a r;e ( 4--'(s.?:n) of 10% of that of Y-''(3.7). Experimentally 
itisl7%. 
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_. ~ -...) z. 
The ei gerva lues of the opera tor a~· cr 2. = 2, S - 3 are +1 in a spin 

triplet state and -3 in a spin singlet state. Because t.VAF(R) - ~(1 )= 
the integral over the wave functions becomes 

tl'ivial and we have 

king , , . I 2. I 'f(o) from via eq. (2.4) and <x 5 from eq. (2.3) gives 

us for the splittings 

Tt·ying to identify •[c(l1S
0

) =' X(2.83) means 70 MeV= 250 MeV, 

/'1 .1 (2 1s ) = V(3.45) means 35 1·1eV '=' 230 l~eV, or ""Lc1(21S )=. ?((3.59) means 
'~(.... 0 /-- 0 

35 t\eV = 80 HeV. Hany solutions have been proposed to solve this puzzle, 

among these are instanton effects 25 ) and an anomalous colour magnetic 

moment of the c-quark
2

•
6
)The simplest solution might be that the Itt' col! 2. 

in eq. (2.4) and in (3.9) are different objects. The next order correction 

(3.8) 

(3.9) 

(3.10) 

to /4-roJ 12. in (2.4) comes in through a transverse gluon exchange between 

the two quark lines before annihilation . It has a large factor in 

front and the total correction is a factor ( -1 - .1; ~ ) Z7), which in 

no case is small. But before continuing this discussion let us wait for 

estimates of some decay rates involving the pseudoscalars. Then we will 

find that we have much more severe problems which question the identifica­

tions above. 

4. Scaling the Schrodinger Equation 

The radial form of the Schrodinger equation reads 

[- d~ + (4.1) 



For all potentials of the form 

E VUZ) = a. R. 
' 
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€>-:<. 

we can bring it into the dimensionless form 

+ ~£_ t J 
with the substitutions 

3 - £ · (~t>? )(.Zma) 
--2/(2~ t) 

R ') )+ 1/(2+E) q- ·(-c;tv~a. 

{j((C])-0 

One can now immediately r·ead off the scaling laws forE and R: 

£ rv 

(4.5) is also applicable for E = 0, in which case the potential is 
V(R) = C( ~%;We leave the derivation to the reader. 

Let us now consider some aspects of scaling for Quarkonia. We begin with 
the level spacing. In a potential like VAF(R) =- 1 i alone level spacings 
scale like 1::. E "'rx52. 1'11~ , in a linear potential like V (R) = aR -Y c they scale like AE ~ ,.,G. 3 • To estimate the intermediate sealing 
behaviour in the standard potential we try a very crude approximation: 
Let us consider the level spacings given by the linear potential with the 
Coulombic part VAF(R) as a first order perturbation. Then 

( 4. 2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 



and 6[ scales like 

Because of the mass 
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- '/ t '\13 
n~ 0_ 1, v1itil 2 fi>'st or·der correction ~ <x'5 I'!'~ a_ 

ue:cc.t<C:er,ce of V 5 , eq, (L1), this perturbation 

procedure st.urts to br-eak. dov1n not before m
0 

2: 100 GcV. The curve 

is shown in ~ig. 4.1 (dashed line). Asymptotically the states fall into 

6t 

600 

300-

=t-'1 (23S1)-M i13S,) 
[MeV] 

----.... .... 

OJ 

mu [GeV] 

300 
Fig. 4.1. The scaling behaviour of .6E in different potentials. ,, 

- - -- standard potential with Di.s(i'!") vi a eq. ( 1.1) 

standard potential with fixed ()(s 

logarithmic potential 

our guess 

the Coulombic potential VAF and the scaling law becomes [\[; ~ c~./ m<J. 

If Dis; would be a universal constant, this would happen much earlier 

(dotted line in Fig. 4 .1). From the T '- T mass difference we know that 

the simple standard potential is not adopted by nature. Using the '1- 1
- J/<f 

mass difference as input, the standard model prediction for the T 1
- r mass 

difference is much lower than the experimental one (Fig. 4.1). The pre­

diction can be raised to the experimental value by fixing cx 5 to its 

Charmon i um value everyv1here, but this seems not appealing theoretically. 

In Ch. 2 we saw that a reasonable description of the 1C ~~ mass difference 

;;as possible by introducing a logarithmic potential for intermediate distan­

ces. In the log potential LH =constant ( E-= 0), and an intermediate part 
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in the potential woulct tend tJ fill up the va~ley of the c!ac;hed cL,,'"" 
in Fig. 4.1. We show & guess for the result, the solid line in Fig. 4.1. 
This result means, that we expect no dt·amati c change of ll E for the next 
Quarkonium. Only for quark masses well above 100 GeV the states would 
sit deepct· and deeper in the VAF singularity o.nd liE starts to increase. 
Asymptotically the sealing hehaviout· of 6E is rx} m.Q ~ 1'11"-/J?e-t (w~). 

We now turn to level splittings and be~in with the P waves. We have sl1own 
th&t the Fermi-Breit H0miltonian (cq. 3.2) gives a reasonable description. 
From there VIe have 

1 

1vhere H~~ is the spin orbit term \,•ithout the Thomas pn;cession. In contrast 
the Thomas precession term behaves like 

H LS "-' 
c 

The scaling behaviour of R (eq. 4.5) is somev1here between that in a log and 

( 4, 7) 

(4.8) 

in a linear potential, R. ~ n1Q"'Y,_ m.{'Y3 , and we can estimate 
the 3P2 - 3r

0 
splitting of more massive Quarkonium P waves shown in Table 4.1. 

Quarkonium: cc(3.5 GeV) bb(9.8 GeV) 30 GeV 

150 (input) 50-70 20-40 

Table 4.1: P wave splittings in Quarkonia 

', 

·A comparison' of (4.8) with (4. 7) shows one more important fact. The ratio of 
eq. (3.3) which is 0.5 in Charmonium should increase ~lith m

0 and approach 0.8 
asymptotically! 

The spin spin splittings go essentially as IY5 ·r;;'e , which can be seen by 
combining eq. (3.9) with eq. (2.4). Experimentally ~e , normalized to the 
quark charge, is remarkably constant, Fig. 4.2. In the frame of nonre·lativistic 
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0 5 5 
Fig. 4.2. Scaling behaviour of ~e /('~ 

Experimental evide~ce belO\'i m
0 

= 5 

in a pure Coulomb pctential 

--- in V AF with ex 5(r~t 2 ) vi a eq. ( l. 1) 

mo. [ 5eV] 

50 

GeV 

potential models there is no v1ay to explain tl1is for '5Jw 1 yf . From J/<f' 

to '[' , hov1ever, we can use the scaling arguments. Table 4.2 shows the 

Scaling in v (R) N _<X£ 
AF R 

V(R)~logR Vc(R)"-' R 

of 

I z. R -:s <>(3 3 3;2. 
l\'(oJ I "" .5 VVIG. I'VI& ~G. 

r;'e R-3 -.z. 
"" Wla_ ex s3 Wla_ -I£ - 1 

Wo., """-

Table 4.2: Scaling behaviour of I 4-Col 1
2 and r'ee in different 

potentials. 

scaling behaviour of (4-iol 1.~- and lee via eq. (2.4). l'l'co>lz.and 

therefore ree should feel more of the short distance potential than 

e.g. the level splittings. Numerical calculations indeed show almost 

m
0

-independence of 1-;,e: in the range from Charmonium to L 28 ). In the 

asymptotic limit mQ ----?oO, ree ~ c:Xs
1 

VII\ G. ~ 1'\A~ 0"'t (w.Q2.) ' 

which also gives no net mQ dependence from Charmonium to ~ . We are there­

fore led to plot this asymptotic m
0 

dependence for ~;; starting with J/~ 



lU -

This is done in Fig. 0.2 also. 

The constancy of l~e-/e~ below J/ '["(Fig. 4.2), hovtever, cannot be under­
stood with our metl1ods ~11d we want to point out that it is a challenge to 
explain this fact tog0.tlier' ~;ith the sef;l::inuly constancy of level spacings 
bel Oi·/ 3 Ge\', e.g. ' ''(1 \ ~,,,.._\ ,...._, 

'·'' '· 1-- .. , ', . ' '2 I ' 'I,} ) -

The last: as1)ect of scaling ~e discuss concerns tl12 number of narro\~ 00 
states bc:l::;, .. , the Ou Qri ti r:?shold. The cond·i-~ion for a QQ state to lie . ' 
belmv the thrcshol d for st\'";Jng decnys ~ can be \·lri tten as 

E -· < QQ 

states de~ends an the 

+ 

m·- , The binding energy of QQ q 
·- 0 ~ mass cf Q~ and th2l"cfcre on the mass of the 

heavy quark Q. The states fail dee;Je: in the potential 1·:cll with increasing 
mn. ThE· 
" pr:ndG:-.t 

binding energy of 

n·: riL because the 
l! 

Q~, howevr;~, is i11 the first approxiination inde­
S,Y'Stc~,~ ·is de~crr:ir.t;d by thf~ n1-3-ss of the light 

quark q. This is of course an ideal·ization} to be more sophisticated o::e 
would have to treat tt)e rc~ativistic bir1ding problem uf Q~, or at least 
take into account the s:ight chnnges ')f + 1-~e rD--1 '~ced mass u = mo·mq , - ... , '--'""''"'- " - r- 1'\.;a. + »~q 

with m
0 

and effects of the spin-spin interaction which depend stronger on 
m0 (but are small). Taking EQ~ to be constant fixes the threshold for the 
binding energy EQQ' The question one mcy pose then is: How many QQ S wave 
states have a binding energy EQQ bela\'/ this threshold? This question can 

( 4. 9) 

be answered by semiclassical methods independent of the particular potential. 
The number n of bound S states below a given energy (r.h.s. of eq. (4.9) in 
this case) is given by the Bohr-Sommerfeld condition 

Ro, J c{ R -Y m C\ ( £1-l,r, V ( R)) ' 
0 

where Ra is the classical turning point, VU<o) = E1h 
29 ) For low 

numbers n (4.10) is only approximately valid (but maybe not worse than our 
other approximations) and we find 

(4.10) 

(4.11) 
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Quigg and Rosner fixed the constant of (4.11) in the Ci1urmoniur:1 systl'ln 

(m
0 

= me) and their result is displayed in Fig. 4.3. W2 can read off 

Fig. 4.3 that in the Y system 3 S waves ~1ill be uelo~1 the threshold 

)/ (jJ 
1 2 

I 
I 
I 
I 
ly 

5 
moJmc 

L. s 
3 s 

2S 

1 s 
10 20 

Fig. 4.3. Number of bound states below the strong decay threshold 

(Ref. 29 ). The Y'"will be above the thresold. 

11/" /1{ 
of strong decays, the fourth, L , may be - - "" even below Qq(Qq) threshold. 

rv-111 - - lf In any case L will decay into 88 or 88~ Bi.i :t, 8 = Qq. The quGsti on for 

the actual threshold energy is not jet answered, to do that we would need 

calculations of the 8 masses, e.g. in a potential model. Unfortunately B 

potential model for the 8 mesons suffers from the relativistic motion of 

the light quark q inside the B. However, applying our knowledge about the 

number of bound 'f S waves, it is sufficient for us to know the masses of 

"[" and T'1 , since we already know the threshold relative to these. The 

latter masses are calculable much more reliably. In Table 4.3 the results 

of two orthogonal approaches are shown. 
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-+- ·y "Y"' Y" yftf 
.L 

a) 
r~ass [Gev] 9.46 (input) 10.09 10.45 10.72 

Mass b) [cev] 9 .l~6 (input) 10.02 10.34 10.60 
,.-, b) [kev] 1.1 0.5 0.35 0.3 
I 

'eC 

' ,......./ . Table 4.3: Masses ana e~ of T radial excitations in the two 
orthogonal models of a) Ref. 30) and b) Ref. 20). 

The model of Ref. 30) directly integrates the Bethe Salpeter equation 
fa;~ a QQ system with a distant-de~endent ~5(R). The second model, Ref. 20), 
is the phenornenological·iy succe~sfu.l rnodificr:tion of the sto_ndard model as 
discussed inCh. 2. A looc. ,,t iig. and Ta.ble 4.3, and sl-ightly rescaling 
the fit'st model, convinces us thut the BB threshold will be around 10.4 
to 10.5 GeV. 

I11depen~ent1y of the exact location of the threshol-d anci the exact validity 
of Fig. 4.3 VIe expect that the; first radial Y excitation above the BB 
threshold is a "8-factory". (l<e think that this will be Y'", of course). 
The reason is simply that in the decay of r"1 to BB or BB ~the large 
number of radial nodes in the T'(/ wave function will suppress its decay 
width into two slO\vly moving ground state S waves like 8 or s*. Tile width 
of T"' may therefore be well below the resonance machine width in e+e­
production but, on the other hand, the branching fraction into BB (or ss*) 
should be substantial. 

One comment on our saying "BB orB§*" is in order: Either the 8-B* splitting 
is as large (or larger) as the oo* splitting, then B* could decay in 'iTJ3. 
But in this case 'f' 111 would lie below the Bii *threshold, as can be seen from 
Fig. 4.3. Or the B-B *splitting is less than the 0-0* splitting (in non­
relativistic potential models this splitting goes like 1/mQ -but neither 
the D nor the B are nonrelativistic), then s* decays to 'J"B, which experi­
mentally is almost as clean as a pure B§ decay. 
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2nd LECTURE 

The second lecture covers Quarkoni um decays. We wi 11 first discuss the 

radiative photon tn.ns i ti ons in El and tn approx·i mati on and gl uon tran­

sitions. These decays have in common that they depend on the medium and 

long distance behaviour of the wave function. We then (Ch. 6) turn to 

annihilations which are govErned by the short distance behav1our of the 

wave functions. The annihilation can take place into photons and/or gluons. 

The gluor.s may form hadron jets. This is dealt with in Ch. 7. 

5. Radiation 

a) Electric Dipole Radiation 

For photon or gluon wave lengths long against the bound state dimensions 

of Quarkonium one can try a multipole expansion. The widths of different 

multipole orders are typically 31 ) 

(
3 R 2 

) 2{n-1) 
~ ( k R 

k3 -2. f . ~ ) 
\ /?1 a. 

up to numeri ca 1 factors. k is the photon ( gl uon) Iva ve number, R the bound 

state radius in the reduced system (R/2 is the true bound state radius). We 

see that the expansion parameter in (5.1) is (k · R/2) 2 which is roughly 

( 5.1) 

1/4 ... 3/100 in Charmonium and smaller in heavier Quarkonia. This justifies 

a multipole expansion and we will therefore confine ourselves to the lowest 

order transitions, E1 and M1. 

In hydrogen the formula for an electric dipole transition (El) is 31 ) 

... 
where Xf.;. is the matrix element of the dipole operator. In Quarkonia we 

now have three modifications to the case of eq. (5.2). First, both quarks 

can radiate, not only just one like the electron in hydrogen. Second, the 

(5.2) 
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relevant mass is the red~JccC rr!'SS 0f the o,u;::,rk, m,_/2, not just the 
~ 

rartic1e mass like mP 1n dcusen. T'r,ni, the clnrse of the '1Uark is 
only e

0 • e. The first i.;io "'odificu; ic":; cancc·l each other, so that we 
are left vlitn 

E1 - - lf r (QQ __ .rrQQ)=---; .' 0 . [> z 
' ' ..J 

in Quarkonium. 

Of course, there are corrections to this na~ve fcrmula. The first one are 
higher mu!tipo.les. In 4-' 1

decays they amount to at most 5 ;; if present 
(cornpzn·~:: cq. (5.1)). The second one is an intcl~fet~E(Ice o·:: u-·,e finite l·:ove 
1 t , + h I f. 1 d +i k. R . I h ' • f . J eng 11 o, t e p1otcn 1e e · I'.Jltl t, e uounc! state VJG.VG unct1on. n 
atomic and nuclear transitions this interference is negligible, k·R «1 

> e<'k·R ::;-1 . .,..,~ . But in Quan;onium ttansitions higher 
< v..·I?./Z . . . terms of the e>;pansion of e vllll pal'tly contnbut0 to d1pole trun-

(5.3) 

32) sitions and ter,d to reduce the transition rate. H01·1ever, Okcn and Volos!1in 
have sho;·m that this interference cotTcction amounts to at most 5 56 in 
Charmoni_u\1. The thir·d but most i,mportar!t correct·ions are of relativistic 
nature. Tiley consist of a) recoil corrections, b) relJtivistic corrections 
to the wave functions and c) the interaction of the quark magnetic moments 
with the electric vector of the photon field. The corrections of type c) 
have been studied by Okun and Voloshin 32 ). They find correction factors 
between essentially 1.0 and 0.6. 

The radiative widths of the standard model without corrections of the last 
type are given in Fig. 5.1 and Table 5.2. An ex<~mpie for the corrections 
of this type is shown in Table 5.1. The remaining discrepancy between theory 

without corr. [keY] 

with corr. type c) 

36 

36 

50 

40 

58 

41 

Table 5.1. Example for the magnitude of relativistic corrections to the 
naive dipole widths. 32 ) 
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MeV 4J I (3.7) 
500 

model { 35 KeV-
I : 50 KeY 

58 KeV 
xi3.5Sl lexp= (17: B)KeV 
X(3.51) 

X(Hll 
300 

200 
model ( 460 KeV-r : 350 KeV 

100 170 KeV 

0 

Fig. 5.1: El transitions in Charmonium. 1·1odel 1;idths are calculated 

via eqs. (5.8) and (5.9) and do not include corrections. 

(Table 5.1) and experiment (Fig. 5.1) might be due to relativistic correc­

tions of type a) and b). The recoil corrections have been found to be 

~ + 20 % in a relativistic model 33 ). In any case this indicates that 

also the model numbers for r1 (7; /){.---? '( J/4') are only good within 

a factor 2. 

b) E1 Sum Rules. 

A very powerful tool for the discussion of electric dipole transitions 

has been rediscovered for Charmonium, namely the dipole sum rules 34 l. 

We know tv10 kinds of dipole sum rules, the so called Thomas-Reiche-Kuhn 

(TRK) sum rule and the Wigner (vi) sum rule. Both apply to the dipole 

matrix element (eq. (5.3)) and any corrections like those discussed have 

to be done afterwards. The starting point for the dipole sum rules is 

Heisenberg's uncertainty relation 
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->1 PJ - ( 5. 4 ) 

(we set J.). In a ~ , • · • l r r.:; · f · · · 1 1 S-s<.H.!C: r:·JtCii"ClCJ.. 1Ut \..,'~ \'/ltYJUt VCioc.:ty r...~ept::l~UC:t':t 

te:ms. c.<;. no spin-orbit int0r2ction, \Je can replace~ via the equatior1 
of mot·! un 

where !i 0 is the H.~.n>i!ton ope(atot~ of the static potential, eq. (2.1). P.ftelA 

taking -;:he expr~ctz.~ti0r, va.-lur: in a state )-i) and inserting a corn~lete set 

i-.~ !2 __ 
r x,.1 -

:H 

.8 
H . 

leac!s to 

3 

The nuriibEr of fin2l states If> 

cf fi~Dl states is fu,~ther restricteJ by tile oscillato1~ selectiotl rule: 

( 5. 5) 

("-C) 

The c\i?,n~J2 of the numb(:!~ o-F raC·ial ;-y;odes !:::,_?- is eitl:cr 0 or- t:::..e . It 
fellows that from the S wave ground state one can only reach the P wave 
ground state, from this 1 P wave one can reach the radially excited S wave, 
2 S, the ground state, 1 S, and the D VJave 1 D. These are all possible final 
states. \'e call this fact the saturation of the sum ru·le by the harmonic 
oscillator. To write down 

the dipole operator x1< 
the first sum rules it is convenie~t to express 

35. 
through the radial operator Rf~ J 

\"'I I _.. >12. SR+11 ~ m I < r ' e :!: 1 ' Vlt
1 I X I ,..., c' nt = 1 £ r 1<..,.;€~11 R /1", .e > 12 

:a +-1 

where m is the magnetic quantum number. We can now write some rates (5.3) 

as 

; -'e~ k3 \l>r.·l2. r ( 1 p -~ r "' s) = .J LX "' T\ ,._ 

(5.7) 

( 5. 8) 
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and 

The TRK sum rule (5.6) gives us a bound 

which implies an upper bound on 1P -415 

We can obtain more bounds with the help of the Wigner sum rule. Recall 

eq. (5.4). As an expectation value in state !i> it can be written as 

The angular selection rule now enables us to project out the final states 

with /J. ~ = + 1 and those with£::,. e = - 1. We thus arrive at two sum rules 

after some elaborate algebra 35 ) 

(5.9a) 

(5.9b) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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which of course add up to (S.C). \•!e hcve gaineri two tl,ings: first, the 
numb~r of final states en the l.h.s. of (5.13) and (5.:4) is smaller 
than in the TRK sum rule, and second, (5.131 is negdtive, which is very 
helpful. For ,C = 1 in the initial state the first t\10 terms of (5.13) 
give (using (5.7)) 

An upper bound for the second term on the l.h.s. is known from (5.10). This 
leaves us w'ith 

and we can deduce an upper bound on transitin~ (5.9): 

(5.15) 

( 5. 16) 

(5.17) 

Next we v1ill make use of the ncyative sign in eq. (5.13) with ,£ = 1, the 
initial state being the 1 'P wave. The only contribution to (5.13) or (5.15) 
which is indeed negative is the transition to the 1S ground state. Its mag­
nitude must be larger than the sum of all others! Therefore the knowled3e 
of one of the other tr·ansitions, e.g. 2.5 --) r 1 p , gives us a lowet' 
limit on 1 'P~ r 1 s ~Je write (5.15) as 

(5.18) 

and obtain by "inverting" (G. 17) 

(5.19) 
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The u s L'rn ruk CJ3'.'C: ':c 
""~ 

(.•.l"i u;;~''-~~-- !J Cli!; i r~ r- q 5 ~- -· ,,- ir' D 
• I I' ..-'--,J ) d I and a 

lcMcr bvund on -1 p -~) ?" .1 c' 
·~·-

• Ti-iC.' TRK ::: .. :17: rul1. ga-ve 

up~er 1 i p, it en the l6tter tran:,·i t·i on. 

Table 5.2. Combining the bound<; of Table 5.2 and ti:Q e;,p2rim~,:tal1y 

transit; on Tr;i( SR \\ 5R model I 
·---... -~----· 

··-:~ 235 --> 'Q l 3P 
1 2 

< AQ 

2351 ~tl3Pl < 56 
I 

2 35 ----7 '[1 3r 
1 0 

< 64 58 

----
l3Pz ---'7'fl3\ /.. 490 > 160 + 140 1!60 

3 3 
1 P1 ~ t1 51 < 3}0 '> 125 + 75 350 

13P -~y13 s 
0 1 

< ltlO > 60 + 30 170 

Table 5.2: Upper and lower limits on E1 tralsitions from the Thomas­

Reiche-Kuhn (TRK) and Wi9ncr (\i) sum rules (SR). All vtidths 

·in keV. The second numbers in thQ l O\'!e:· half of the vi SR 

column arise from the second term r.h.s. of (5.19). The 

quark mass is taken to be me ~ 1.6 GeV. 

measured BRs fo1· 'B./):.-> '0 Jjti-· one can deduce bounds for the 

total widths of the P states in Charmonium. This is shown in Table 5.3. 

P states 
++ ++ J 

p /X:(3.5l) =_1 __ x-:_:_(3_::.s_)_~--2-

BR( 'tJ/ll:), exp. [ %] 

f~ot (P JY.l, bounds ~·,ev] 

3 .': 3 

3 ... 6 

14~6 1 

0. 57 .. . 1. 05 2.15 ... 3.5 I 

Table 5.3: Bounds on r;:ot(P/Xl derived from the ::um rules, Ti!ble 5.2, 

and the experimental BRs of 'If IX-~ r -:Jjcp. The sum rules 

correspond to an uncorrected El transition, thls gives an addi­

tional theoretical uncertainty of a factor 2. 
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T1·1e tvU1l v .. ·idtils of the P~/::G st-.c:'tl?S shot;ld be calculable as the sum of 
'-

the radiative Vlidths plus the glt1on c;.n·,~~ihi.latior. widths. A comparison of 
these total widths with the bot•nds of TRble 5.3 will be a comparison of 
theory with "exper·iment". l~e 1vill do that in a forthcoming chapter. 

c) Magnetic Dipole Transitions. 

Ml decays arise from an interaction of the magnetic photon field vector 

m = k " "€_ and the quark magnetic moment f- G.. = e ·e"- /:z m Q • The 
matrix e·iement thcorefo1·e reads 

and acts on the spin part of the states li) and If> only. Again we have 
two graphs for tile emission of a photon and therefore 4 times the rate ;;,s 
in atomic M1 transitions 31 ) 

An M1 transition requires £:if. = 0 and the spatial overlap between the 
two states li > and If> with number of radial nodes rand r' is either 

(G.2D) 

(5.2i.) 

1(r = r') or O(r I r', forbidden 1~1) ir: this approximation. Relativistic 
corrections of course modify the rate (5.21) and lead to small transitions 
also bet1veen orthogor,a1 (r 1- r') states. In allowed IH transitions (l' = r') 
the spatial overlap of 1 cannct be d~unged much by relativistic correct·ions. 

d) Scaling of E1 and M1. 

Before we now discuss the IU transitions in charmonium, let us lock at the 
scaling behaviour of both kinds of dipole transitions. For E1 transitions 
the scaling behaviour is most easily obtained from the sum rules. 

(5.22) 
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Ml transitions, on the other h~nd, scale like 

(5.23) 

i.e. rU-11) ~ r(E1)·f</Wic'<-·s;nce in the next heavy Quarkonia k does not 

inc•·ectss Vlith m
0 

the relative magnitude of IH compared to El goes down at 

least like l/m0. A comparison of related radiative transitions in different 

Quarkonia can thus help to distinguish El from Ml transitions! 

e) Problems vtith Hl in Charmonium. 

ln Fig, S.2 possible candidates for the pseudoscalcr·;and the co;Tesponding 

lltl tr-~nsitions are shcMn. If the second% is not at 3. 59 GeV but at 

3.18 GcV (seLond experimental solution) it can hardly be explai:1ed as a 

pseudosc~.1ar. In Fig. 5.2 the calculated I',H 1·-:idths GTC shovm. They have 

8, . 82 
(0.3!0l)'lo 

(08:04)% 

ljl'(3.7l 

1keV~B ,.,o, /.;--=- 1<L/o 

20keV I r; <5 keV 

XIHSlh~ / 
I 

~I 
/ "'0keV 

2QOkeV ~8\ 
.2<l3J.BL.L_ 2, 

--- Jf¢1311 -- ~....,;..;-.., __ 
. ·-

8,<1.7% 
rj'< 1 keV 

Fig. 5.2: Ml transitions in Charmonium. Theoretical widths, eq. (5.21) 

are indicated at the transition lines. B1( ~)and B1·B2 are 

from experiment, Ref. 1)+ 36). 
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at first to be contrasted with the experimental bound on these tr~nsitions 
as indicated. Together with the experimental product of branching ratios 
these bounds allow to derive lower limits on the decay branching fractions 
of these states. This is shown in Table 5.4. There is no way of assigning 

State 

81 (Exp.) [%) 
81 (Theory) [%] 

82 (Exp.) [r.] 
82 (Theory) [%] 

';\((3.59) 

+ 0.3- 0.1 

<::2 

~a. 5 

>10 

< 1 

;t'(3.45) 

+ 0.8 - 0.4 

..::: 2 

~9 

> 20 

< 1 

Xr2.s31 ----i 
0.014 ; 0.004 I 
< 1.7 

~45 

> 0. 7 

:::0.1 

Table 5.4: Experimental upper bounds on 81 and lower bounds on 82 via 
81 · B2 ,and comparison with theory. The kind of transition 
for 8

1, 82 is indicated in Fig. 5.2. The theoretical numbers 
arise from allowed and ''forbidden'' Ml transitions and the 
ratio of 2'f versus 2 gluon annihilation. For the latter see 
Chapter 6. The forbidden rn transition should lead to a B2. 
not bigger than a feYI 10 keV/a few r-1eV ::e 10-2 . 

one of the experimental states to a pseudoscalar state without coming 
in trouble with a) absolute Ml widths, b) branching fractions for the 
decay of this state. Considering "/c and 'Y(_/ in context leads to even 
larger discrepancies, e.g. take )1'(3.59) as 1(_, 1 and X(2.83) as "(_c . 
Then the Ml transition J/c{ -~ '("/.cis down by a factor of 30 compared to 
the naive theory. The same factor must work in 4- 1 -l> o t c 1 leading to 
r 1 = 1/30 keV and consequently to 82 > 30! For ~11 widths only one un­

pleasant way out seems possible: to give the quarks a vanishing magnetic 
moment f'a. in this limit of a static interaction 37 ) 

A much more pleasant way out would be finding the true pseudoscalars much 
nearer to J/<.f' and L\' 1 respectively. Experimentally this is in no way ruled 
out. Then the )( and ){ states are either not real or at least no simple 
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Q~ states 38 l. Remember that QCD is consistent with a possible existerre 
- ·:;rq \ 

of mul tiquark or mul tiqu~rk.--gl'JOn .sti:tes differc11t from QQ ·--'--). Hov/evc: 

the-ir pt·operties are not accessible in our simple. Quarkonium model. 

f) Gluon Radiation 

Radiative gluoP transitions can be su~:,jcct to a sinrl1cr ii 1 Ult·);~:ole exp0r;:_;ion 

do not expect tu ' ' ., 
D::::: Z1DiC 

gluon radiation. Gut we mijht be able ~~; es~imJt0 1.J~e scaling bel··aviOLl~· of 

suc;i rud·i a ti on. 

are i:Y:J·ically 

!'"'~.- SJ~ 

I r 
4.-...--~~~--) c: 

g i LKJr: 

"'!. 

The esitted states must be Isosinglets, because g!Ll!Jrs ca 

For tl~,-. rudi atl on of an 

If this scaling law is already valid in 

lf-- 1 -? lf'iT Jj'{- ~ 100 keV implies 

1 

the Cha rmon i um system, 
10 keV. In 

(j~·'"'l .. .,.._,~ 

a 30 GeV QQ system this width would be no more than 1 keV. Transitions via 

gluon radiation wi 11 be important for a search for QQ states which are not 

accessib1e directly or via photon transitions, like the 11P1 state. In the 

(5.25) 

- 3 /1 'f or higher QQ systems the 3 s1 state ( T e.g.) will be narrow and under-

go such a transition to the I1P1 state. 

The finding of a I1P1 state via (5.26) would be very interesting because 

the knowledge of the 11P1 mass allows to determine, whether there are 1ong 

(5.26) 
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range spin spin correlations o;· not. In our Ansatz for the Hamiltonian 
and potentia 1 we only h~d short range spin spin forces. They do net 
act on P waves ond therefore the I1P1 state is degenerate with the c.o.g. 
of the 13P states. A long range spin spin force, however, would act on the 
P waves and would 1 i ft this degeneracy. 

6. Annihilation 

Quarkonium states may annihilate into photons and/or gl uons. Si nee anni hi­
lation is a pointl ike process (the quarks must come together) not only the 
annihilation into photons is governed by a small coupling 0<= 1/137, but 
hopefully also that into gluons by IX'5 (small R) . vie can apply the 
'minimal gluon scheme', i.e. approximate the decay by the lowest order 
(Born-) graph 41 l. This will be justified by finding that indeed the 
ocs(annihilation) is small, even in Charmonium it is much smaller than the 
effective ex s for the bound state description (see Chapter 2). L'e proceed 
in the following way. First we collect well known formulae for annihilations 
in Born approximation. In this approximation there is no gluon selfinter­
action yet, so that the conversion from photon annihilations to gluon anni­
hilations is just done by redefining the charge. vie will then discuss ratios 
of these widths as an application in Quarkonia. Our results will also be 
fundamental for the next chapter on jets. 

a) Annihilation Formulae. 

The vector 3s1 ground state 
can decay via one photon 

into lepton or quark pairs 

(hadrons). The corresponding 

graph is difplayed in Fig. 
6.1 and the formula is known 

as V.Royen-Weisskopf 

formula 42 l (including colour 

and for 4me2«My2
): 

Fig. 6.1: 

0. e 

Leptonic decay of 3s
1(QQ). The 

electrons may be replaced by fS• 
't's or quarks 1 i ghter than Q. 

n (V) u 2. 2. l<.VcoJI2.. "' _,2. 2. I ~(o)l 2 

I ee = -n~ II o{ eQ. - Vo eQ --Mv 2.. I"AG..z_ 
( 6.1) 
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where Mv is the V ~ 3s1 bound state mass and m0<= 1/2 ~~v the quark mass. 

lfCoJ is the spatial and iJ((o) the radial wave function at the origin. 

Quarks couple in the same wa.y to the photon as leptons, so that (6.1) is 

understood for each lepton or quark flavour separately: rqq =3e: ree 

The decay of 3s1 into two photons as well 

as tv10 gluons is impossible. In the t\vo 

photon case this is just the photon C 

Fig. 6.2: 30 decay of 3s1 (QQ). 
parity. Also two gluons, as long as they 

are in a colour singlet state (which is 

symmetric), have even C. But the 3s1 can 

decay into three photons as well as three 

gluons, Fig. 6.2. The three photon decay 

When the photons are replaced 

by gl uons, this denotes the 

"direct" hadroni c decay. 

has been calculated by Ore and Powell 43 ) 

(l1ere including the statistical colour factor) 

~ (V) = j_ ~3e b '1r2._ 3 IC<.CoJ I z 
3't 3 Q. 11 Wla, 

The conversion factor to the three gluo;~ decay is 44 ) 

--~L 
9 a,e,c 

so that we have 

(6.2) 

(6.3) 

f";,~ (V) . ( 6. 4) 

The parts of (6.3) have the following origin. r:x/'/r:X3 e&..(, just converts 

the charges together with Tv ( .A.'%Z_ ;t.t_ )..'/2. )~1..... . TheEabc counts the 

number of co 1 cured graphs in the 3g case, while the 3-2 counts the number 

of coloured graphs in the 3 1" case. We do not consider decays of the 3s1 
into more (~ 5) photons or (;::.4) gluons. 

The pseudoscalar 

Fig. 6.3. The two 

1s ground state can decay into two photons or t~1o gl uons, 
0 45) 

photon decay was first calculated by Pomeranchuk and 
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is (including colour) 

(6.5) 

With the conversion factor 

1 
(6.6) 

9 
whose components are described in the. case of eq.(6.3} one obtains 

2 2 CPS)= 
3 

o<s 

We do not discuss the decay of 1s
0 

in more (~4) photons or (~3) gl uons. 
Assuming, that the 2g decay is the 
basic process for the dominant 

(6. 7) 

hadronic decay of the pseudoscalar, Fig. 6.3: 2~decay of QQ. For the 
a 11 ows to derive the branching hadroni c decay the photons 
fraction for the 20"decay (Table 5.4} are replaced by gluons. 
from eq. ( 6. 6). 

We now turn to P wave annihilation, Fig.6.3 
and 6.4. Here life is more complicated 
because the wave function of a P wave 
at the origin is zero. That means that 
the quarks do not 1 ike to come together 
to annihilate: The annihilation widths 
of P waves will be smaller than that of 
the 1s

0 
wave! The P waves, however, can 

annihilate when the two quarks come near 
each other ard simultaneously have a 
relative velocity ;iO. This is a higher 

~ order process in terms of an expansion 
in B2=(v/c}2• It is governed by the 

Fig. 6.4: The gluonic decay dia- spatial derivative of the wave function. 
grams of spin 1 P waves. In this approximation the widths of the 

spin 0 and spin 2 P waves of Positronium 
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have first been calculated by Alekseev 46 ) The same calculation for 

Charmonium has been done by B2.rbieri, Gatto and Ki:igerler 47 ). They yield 

The 2 t 11idths of 3P
0

, 2 can be obtained from (6.8) and (6.9) by the con­

version factor given in eq. (6.6). 

(6.8) 

(6.9) 

The decays of the j = 1 P waves are more complicated. A spin 1 state cannot 

decay into two massless vector bosons, either photons or gluons in a colour 

singlet 48 l. We therefore have to consider the next oraer (in ~s) diagrams, 

which for gluon annihilation are shown in Fig. 6.4. They bring up &noU,er 

complication. He no1·1 have a. three body phase space and have to integrate 

over all possible energies of, say, gluon 1. Gluon 1 is allowed to be soft. 

It further is allm~ed to carry away the angular momentum of the P wave. So 

it has all characteristics of a bremsstrahlungs gluon. The same is true for 

photon annihilation, except that in this case diagram b) of Fig. 6.4 is 

absent. A bremsstrahlungs gluon or photon in the annihilation of a free 

QQ pair with .f.= 1 leads to the typical bremsstrahlungs singularity. The 

cross section factorizes into the bremsstrahlungs part and the annihilation 

of an £ = 0 QQ pair into two photons or· gl uons. For a bound state, however, 

the annihilation amplitude cannot be singular, because the quarks are not 

on shell. Their virtuality is of the order of the bound state dimensions. 

For a bound state annihilation we therefore may cut the amplitude at 

momenta of the soft (bremsstrahlungs) photon or gluon which correspond 

to the bound state radius. In diagram language, the singularity will be 

cancelled• by higher order graphs like vertex corrections. For QED this 

procedure is well defined 49 ). We hope that it will work parallel for 

QCD. As a· cutoff momentum for QCD annihilation we take the typical momen­

tum for a soft "confinement" gluon, 400 MeV, since in a QCD process higher 

order graphs wi 11 i nvo 1 ve such "confinement" gl uons. We wi 11 express the 

cutoff in' terms of a parameter !:, = 2M· 400 ~1eV SO), M being the Quarkonium 
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bound state mass. Let us first discuss tile 
/C = 1+- and therefore only diagra11; a) of 

1 P1 decay. This state has 
Fig. 6.4 can contribute, 

in either photon or gluon annihilatir,n. Its decay has been calculated 
by Barbieri, Gatto and Rer:1iddi 49 ). They find 

where the log arises from the bremsstralilungs singularity of the diagram. 
For the decay of the 3P1 state, jPC = 1++, only diagram c) can contribute 
to the photon annihilation while in principle all three diagrams can con­
tribute to the gluon annihilation. Barbieri, Gatto and Remiddi 49 ) found 
that the singular parts of the diagrams a) and b) cancel each other. Okun 
and Voloshin 32 1 gave the general argument for this: The amplitudes a) 
and b) interfere, since they lead to the same final state. Since they can 
both be factorized into the bremsstrahlungs part times the corresponding 
annihilation diagram for the 2 gluon annihilation of a coloured 3s1 state, 
also their sum can be factorized in this way. This sum, however, contains 
all graphs to this order for 3s1 (coloured)-? 2g, which must be zero 32 1. 
Neglecting the non-singular parts of amplitudes a) and b) against the 
singular c) means that also for the gluon annihilation the calculation of 
graph c) is sufficient. It gives 49 •50 ) 

~ N 
3 

where N is the number of 1 i ght flavours q. The photon versions of ( 6.10) 
and (6.11) can be found in Ref. 32). 

For completeness we note the formula for the decay of the spin 2 D wave 
into 2 gluons which is given by the second derivative of the wave function, 
this is the second order in an expansion of (!/' = ( '7c )land therefore even 
less reliable. Okun and Voloshin 32 ) calculated 

(6.10) 

(6.11) 
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~ C1D ) 
2 I 2 / (i{ 1r o;/ J. 

- CXs --.---
.2~ 2 3 I'M G. 0 

b) Ratios and Applications. 

The ratio of eqs. (6.4) and ( 6. 1) gives 

n:;s,-) 32) -10 2. 
. ot 53 "" 1/f lf-0 _j_ ()( 3 rr- g 

= -· rc"s,-) e e) 81 rr o(ze z. ge z .s 
(I( G. 

If we interpret as usual the 3g annihilation as the total direct hadronic 

annihilation then this is a measurable quantity ard we have e.g. in 

Cha rmon i um 

I,-,( -; ,
 . \ 

, , .J 4" -'> hadV/dir. 

,...,{ -r·L ) 
l'"'~ee 

from which folioh'S that the c<s at annihilation distances is cXs -'=0.19. 

Because of the third power of cXs in (6.13) this value is quite stable 

even ~gainst large corrections on the widths. The kinds of corrections we 

have discussed to eq. (6.1) at the end of Ch. 3 and different ones for 

(6.12) 

(6.13) 

(6.14) 

r3~ will not be able to achieve an agreement between o<.s.(spectrum)!:! 0.4 

and ~.s.(annihilation) ~ 0.2 in the Charmonium system. But this discrepancy 

does not surprise, as we have discussed in Chapter 1. 

A very interesting ratio is that of eq. (6.8) to eq. (6.10) to eq. (6.9): 

(6.15) 

15' 

It leads to ratios of 
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15 2 .1 015 'I· 7/f 
-15 !J. ?015 4- Jn the r system. ( 6. 16) 
15 11cxs · 'f 30 GeV QQ 

11e can of course calculate more than these ratios, namely the total v1idths 
of the P waves, assuming that these are given by the gluon annihilation width 
and radiative transition width essentially. The result is shown in Table 6.1 

r;_ot (3P o) U'1eV J r;ot ( 3Pl) [r~ev] r;:ot ( 3P2 )[1·1eVJ 

theory 4 0.5 1.5 -cc 
"quasiexp." 6 ± 6 + 1 - 0.2 3.2 ± 1.6 

0<5 = 0.15 0.35 0.05 0.15 
bb 

o!.s = 0. 2 0.6 0.08 0.2 

Table 6.1: Comparison of "experiment" and theoryfor the P wave total widths, 
including the radiative transitions. The ''experiment'' line is 
taken from Tables 5.2 and 5.3. The prospects of the j[ system 
are also given. 

for charmonium and the r system, and compared to the quasiexperimental 
bounds of Table 5.3. For the calculation of eqs. (6.8) ... (6.10) v1e need 
10</rol /2. tlumerical calculations give I (R~C: loJ I 2 m,-4"" 15"HeV and 
~~~];(o)/.2. Y>1b't ~ 2.5 f·1eV. These quantities are relatively quark mass 

independent. We conclude that althou9h the widths of Table 6.1 are very 
model dependent, the pattern of (6.16) agrees very well with the observed 
branching ratios of the Charmonium P waves. This is one of the successful 
predictions of QCD within Charmonium. 

We complete our discussion of ratios of widths with a discussion of the 3s1 decays. The decay channels of the vector ground state are: i) into lepton 
pairs, ee, tAP,,-:;:: , ii) into hadrons,2: qq, the ratio of ii) against 
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i) is essentially given by tile famous R, iii) the three gluon dnnihilation, 

and iv) the annihilation into one photon and two gluons. The only ratio 

missing so far is that of iv) to iii). We can estimate it by comparing the 

electromagnetic and strong coupling for one fermion-boson vertex and by 

taking into account the different coupling of the colours of two versus 

three gluons 

-cc 

a) 

bb 

b) 

tt 

rC 3SA---+ r~~) 
r( 3s,-~3~) 

decay channel: ee+ f<f" 

eQ = 2/3 2 

OC5 = 0.19 2 

decay channel: ee+f'f 

eQ =-1/3 2 

ots= 0.15 2 

ex's = 0.18 2 

( 30 G. elf) 

.30 - 5 

:I qq : 

: R : 5' 
18 

: 2.5 : 

:2_ qq + r"T: 

R 
20 

: 
18' 

: 5 : 

: 5 : 

3g : '"( 2g 

'i'rl_ 9 ot5 3 8 'irz- 9 ots2. 

0(2. 
: 

If 9 'iT o<. 

' 
10 : 1.2 

3g . r2~ 

",__ 9 <><'s3 I? 7i 1._ g ~ ... 2. 

'iT' o( 2. • g 'iT o<. 

20 : 0.8 

34 : 1.1 

decay channel : ee+rr : L9Cf +'C~: 3g : '(2<;! 

eQ = 2/3 2 : R : s- 'irl- 9 ots3 
: 8' 7i 1.._ !3 <><'s2. 

1J' Tf o(Z. 9 'ii oL 

c) o<5 =''0.12 2 : 5 : 2.5 : 0.5 

0<'5 = 0.15 2 : 5 : 5 : 0.8 

Table 6.2: Ratios of the ground state decay channels a) in Charmonium, 

b) in the J( system, c) in a 30 GeY tt system. For Charmonium 

or5 = 0.19 agrees with experiment (lowest order formulae). For 

Tdecaysthe value of o!s best compatible with experiment,Brp: 52 l, 
seems to be 0.18 at present. 

(6.17) 
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Fo1· Channoni um three excl us-; ve contri bu~ions to 3s1 _, '(99 have been seen 
so far. namely J/i.f----> i"t, 't'1._ 1,tf~ 1 ). Together with eq. (6.13) this 
is all we need to put up Table 6.2. 

7. Jets 

The exploration of QCD suffers from the fact that its constituents, the 
quarks and gluons,cannot exist as free particles because of the confinement. 
Their properties cannot be investigated directly. But there is a surrogate 
for the observation of the free constituents, that are the jets. Experimentally 
jets are observed not only in deep inelastic hadron-hadrorl and lepton-f1adron 
scattering but especially in e+e- annihilation, once the c.m. energy of 5 GeV 
is exceeded. The angular distribution of these jets i~ completely consistent 
with the production of two spin 1/2 (almost) massless particles 53 ), the 
quarks, via photon vacuum pol<~risatiun. The fragmentation of quarks into 
hadrons is imagined as a nonperturbative confinement effect, which conserves 
the original directed momenta. 

At present there is no way of calculating this process, but there exists a 
very suggestive picture: Inside a small space region of ool/2 fm colour can 
exist and within this region the q~ pair (or gluon) production is a short 
distance effect (see Fig. 7.1). When hard coloured quanta (quarks or gluons) 

Fig. 7.1. Quark jets. 

with momenta pi reach the con­
finement sphere they must frag-

ment into white hadrons since 

colour fields cannot exist out­

side this sphere. The coloured 
quanta break up into hadrons 

with a finite perpendicular 

momentum p1 . This breaking up 

is energetically much favoured 

over a further existence as 

coloured quanta. When the 
perpendicular momenta are small compared to the longitudinal hadron momenta, 
which add up to the momentum of the ori gina 1 quantum, we see hadron jets. The 
confinement effects, however, are assumed to be soft, carried by long 11ave­
length quarks and/or gluons. The wavelength corresponds to the colour bag of 
l/2 fm. Therefore the jet r.1omenta equal the original quantum momenta up to 
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the order of 400 t·1eV. This picture demonds the production of the ori gina 1 

jet quanta to be a short distance effect (<<1/2 fm). This is certainly true 

for the (electromagnetic) quark pair production in e+e-. It is also true 
. 54) . 

for a hard gluon bremsstrahlung process . Resonance decays, however, are 

not pointlike but involve propagators (Fig. 7.2 and 6.2). Here it is not ~o 

clear, how well the jet 

jet 2 

jet 1 ~ 

\ 
,r \ / 
o;r;'-,_ ......-/<'., 

Cfuarks -;~\vo 

Fig. 7.2. QQ ~ 3 gluon jets. 

resonance it will definitely be so. 

picture will work. However, 

because the propagators are 

mass dependent the picture 

will work the better the 

higher the mass of the 

decaying QQ resonance is. 

For a Q-mass of 5 GeV the 

propagator length in Fig. 7.2 

is probably already short 

enough to apply the jet 

picture and for the next 

new flavour (higher) QQ 

The quark jets in e+e- annihilation became visible above s = (p1+p2)2.::(5 GeV) 2, 

i.e. a massless quark needs~ 2.5 GeV of energy against the c.m. to be able 

to form a jet. For gluons the jet threshold certainly is not lower. But a gluon 

carries the colour indices of a quark antiquark pair and each index may frag­

ment separately. Then the multiplicity of the jet may be higher and the longi­

tudinal hadron momenta may be lower. In the limit of asymptotic energies the 

gluon may just fragment like a qq pair, each quark carrying half the gluon 

momentum 55 ). From this picture follows that a gluon jet of a certain longi­

tudinal momentum will have a higher multiplicity and a larger opening angle 

than a quark jet of the same momentum. The threshold for gluon jet production 

will be higher than that for quark jet production with an upper bound of bto 

times the quark threshold+}. 

Some possible sources of gluon jets are shown in Fig. 7.3, the pseudoscalars 

+) Speaking of a jet threshold we refer to the energy of a single quark 

or gluon versus the center of mass of the colour bag. 
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g g gory 

Fig. 7.3. Possible sources of gluon jets in heavy Quarkonia. 

are omitted, they may also form 2 jets out of the 2 decay gluons. We 
begin with the 3s 1 decay into 3 gl uons. The three gl uons of this decay 
will form a plane. The angular distribution of the normal rt of this 
plane against the beam is 

For these decays one defines a variable T "Thrust", which is just the 
sea 1 ed ener;gy of the most energetic gl uon, T = x1 = 2p9,f~1QQ . The di rec­
ti on of g

1 defines the Thrust axis. The differential rate of the 3 gluon 
decay together with the angular distribution of this Thrust axis is sh01~n 
in Fig. 7.4. While off resonance the coefficient of the cos 2 term, OC, is 
uniquely 1, it shows aT dependence for QQ decays. The average of ~(T) for 
QQ~3g is 0.3g. A much more detailed discussion is given in Ref. 56). 

( 7.1) 
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02 1-------

Fig. 7.4. The differential rate of 3s 1 (QQ)~3g and the thrust angular 

distribution W ~ 1 +octTl c.o">z~e. as functions ofT. Srr is 

the angle between the thrust axis and the beam. 

Once the 3 gluon jet decay and the 1"+ 2 gluon jet decay is found, we can 

start to compare deviations from the lowest order angular distributions, 

which arise through different interactions between two gluon jets, Fig. 7.5. 

The lowest order (Born-approximation) graph gives for the opening angle of 

the second and third energetic gluon 8~3 (compare Fig. 7.6) the distribu­

tion displayed in Fig. 7.7. The deviations from this distribution will be 

different in case a) and b) of Fig. 7.5 because in case a) the interaction 



a) 

g 

b) 

Fig. 7.5. Possible next order 
(~) interactions be­rr 
tween gl uon jets. 
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between the two gl uon jets happens in 
a colour octet (they should repel) 
whereas in case b) it is in a colour 
singlet (they should attract). 

We will remain at the 1.2~ decay for 
another while. The kinematics of this 
process differ from the 3g decay because 
the r can be identified for all photon 
momenta between 0 and 1·1qq/2. ThE distri­
butions corresponding to Fig. 7.4 are 
given in Fig. 7.8. One notices that the 
angular correlation drops very fast to 
a mini mum if one goes away from the 
kinematical limit Et= H00;2. For the 
limit Et= 1/2 M20 the coefficient cx_ in 
front of the cos ~ term is + 1. This is 
easy to understand. In this limit the two 
gluons have to go parallel. Their hel ici­
ties (transverse polarisation) have to 
add up to either 0 or± 2 (For scalar 
gluons it is 0). Since the photon on the 
other side is also transverse, the decay­

ing helicity state is the 
~ = ± 1 state. This leads to 
1 + cos 29 . One can show 
further, that the helicities 
of the parallel gluons are 
opposite. If we give the gluon 
pair a small angle, the net 
helicity remains zero most of Fig. 7.6. Definition of e23 • 
the time. But now we can 

Lorentz transform to the c.m.s. of the gluon pair and find Acms = ± 2! This 
means: If low mass hadrons are produced in the process QQ-? '(+ 2g -'>'{+ hadron, 
the gluon mechanism favours spin~ 2 hadrons over spin 1 or spin 0 hadrons. By 
this spin argument we can understand the rate for J/<f~ 0f, which is of the 
same magnitude as Jj+ ~ rt and pr., 1 although the 'tL and "/.'should couple 
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1.0 
o.s (cos e23)T 
0.6 
0.4 ((cr:s e23}T) = 0.26 
0.2 
0 --....-::: ----

-02 --- --
-0.4 
- 0.6 
- o.s T 
- 10 . 2 0.7 o.a Q9 1 . 7'3 

Fig. 7.7. The mean value of G.z.:!., as defined in Fig. 7.6. as a function 

ofT. The dashed lines sho~1 the kinematic boundaries. 

10 ..... ~..--.~-,--,-.~~..-......,.--,-.,.--,--,-..,.-, 

F (Xyl 
u 

0.~ 

0.4 

0.2 

~ 8~<=+-~-+-+-+-t-lr-'r-+-++-1~++-;-,1--+-f 

alxyl 
o.a 

0.6 

dr 
Fig. 7 .8. Differential rate F()(rl"dJ(r-

and angular distribution 

1 +o<(x,-)ctiS(e as a function 

of XT ,:z£r/HQQ. 

to two gl uons much stronger because 

of their large violation of the Zweig 

rule. The whole argument can of course 

be made quantitative. The ratios of 

the helicity amplitudes for 
-- 3 ++ 3 . 1 ( S1)-7'(+ gg ~r+ 2 ( P2) Wlll 

depend on the two gluon (or hadron) 

mass. This is shown in Fig. 7.9 57 l. 
At the point, J/'+'-')rf. these ratios 

have been measured and agree with 

this QCD estimate, see Fig. 7.10. 

They also agree with the tensor 

meson dominance (TMD) model studied 

here at Karlsruhe 58 ). 

From our short excursion we now 

return to two jets from P wave 

decays. The first P wave of Quarko­

nium can be reached from the first 
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Fig. 7.9. Helicity amplitudes in 3s1(QQ)"""''f + 3P2 (qq) as a 
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radially excited S wave, e.g. "£: 1
; .via an £1 tr·ansition. Experimentally 

it will be necessary .to trigger on thi~ monochromatiC; photon .to identify 

the P wave. The P :sta~e thimca11 deca,x ihto 2 gluons in case of the ~~0 
and 3P2 states. We Wi,ll .. dtscuss the jetdecay of the =P 1 state later.· 

These two gluons have a distinct energy of half tbe P state mass~ This 

is the essential difference to the .3 jet decay of Quar~onium. Here we 

have monochromatic jets! In T 1
the jet energy is almost 5GeV, this should 

be sufficient to d.etermine the original gluon direction via the jet direction. 

A measurement of the gluon angular distributions bec01res feasible! For the 

decay of the 3P 
0 

state this angular distribution is trivial: no matter, 11hat 

the dynamics are, there is only one hel icity amplitude which can contribute. 

But in the 3P2 decays there are two independent helicity amplitudes for mass­

less gluons. The QCD matrix element for the 3P2 -7 gg decay reads with q:: k1-k2 

. (1)[" k I. Jr.r *" -If 'if ,.. " k * ~~ r" 'I( ~~ r "J e1Ail It 't ~·oz EA c.,~. - s;c.2.. q q + 2. ~· E.z. E~ q - 2.. k.2.· £~ E.t q (7.2) 

and it turns out that the decay is in the helicity 1..= :t 2 state. Eq. (7.2) 

~1 i th ~)'v (ol just vanishes for transverse £~,f.:. . The formula for the 

kinematics gives us, integrated, the distribution 

where Gri 
measured in 

is the angle between the trigger photon and one of the jets, 

the c.m.s. of the jets (Fig. 7.11). If the 
3
P2 would decay into 

3 -

(7.3} . 

Fig. 7.11. 2 S1(QQ) _ __, 

'j+ 13P 
0

, 2(QQ)-'-'>tf+ 2 g jets, 

as imagined within the 

colour bag. 

k( y) 
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two quark. jets by some arbitrary mechanis1~1, the helicity of the b:o quarks 

can at mast add up to A = ± 1. The kinematic formula then gives 

(7.4) 

where A gives the 1·:eight of helicities A=:!: 1 over helicity 0. The sign 

difference betvteen (7.4) and (7.3) allov1s a clear test of the QCD mechanism. 
The rate for this process will be around 5% of all I' 1

decays 15 l. 

As we have discussed in Chapter 6) the 3r1 decay proceeds viil the compli­

c;:ated graph c) of Fig. 6.4. The decay is displayed again in Fig. 7.12. 

---__,.- ........ 
jet I / Y* / 

/ 
I \ I 

no \/ 

\ 
\ 
I . t .....jl 
I Je /II 

l\ I 
I 

I \ 
"\ 

" jet 2 
/ -----

k I y I 

Fig. 7.12. 3 - 3 -2 s1(QQ)->'(+ 1 P1(QQ)-7'r+ 2 quark jets. Here a soft gluon 

recoils against the two quark jets. 

We will see two quark jets and a hadron cloud from the soft gluon from this 

decay. The quark jets should be easy to detect. Their angular distribution is 

given by 

' 
(7.5) 
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already. smeared over the important kinematic regime of small gluon momen­

tum 50 ' 59 ). <i-ri is the same angle as before, fJre is the ang 1 e between the 

trigger photon and the beam, say e-. and eie is the angle between the same 

jet arm as for e'Oi and e-. ()te is measured in the 1 ab frame, but rJ;'e as 

well as Bri are in the c.m.s. of the jets. As an alternative process, the 

decay into two massless quarks would give 59 ) 

• 

Here the cos 2efe term is missing and the term linear in the cosines 

ha> a different sign. But the most important difference between 

the two alternatives (7.5) and (7.6) is the recoil of the soft gluon in 

the gqq decay of the 3r 1 state. This recoil will be much larger than the 

recoil of the trigger photon alone which of course is always present. But 
' 

with the recoil of the trigger photon alone, the 2 jets would be collinear 

(7.6) 

up to a 10° deviation at most. From the recoi 1 of the soft gluon in the 

decay of the 3r1 state, however, the angle between the two quark jets may 

be as small as 110°. This is true for the JC system. For a heavier Quarkonium 

the "soft" gluon may even form a third jet in a small subset of all events. 

8. Conclusions 

The simplest ansatz for the QQ potential, which is possible using the hints 

from QCD, works astonishingly well. The short distance spin dependent part 

of the potential describes the spin orbit splittings reasonably well! If it 

is correct, heavier Quarkonia should show i) a decrease of the LS splittings 

~Yu .. (Xroughly, ii) a tendency of R.= ~:~:;~ ~~~::/ ~ o.g from 0.5 

in cc. The confinement part of the potential may be spin-independent, as 

suggested by, lattice gauge theories. Its strength depends on the ansatz for 
I 

the potential at intermediate distances, it is, however, very close to the 

value suggested by the higher orbital excitations of light mesons (Regge 

slope). ~1any details depend on the proper choice for the intermediate distance 

potential. QCD gives us no hint here. To speculate a little, level spacings 

might remain almost the same for the next Quarkonium while ree /e~ might 

increase very slightly. The number of narrow (=bound} states below the new 

flavour threshold will increase for the next Quarkonia. 'f 111
might turn out as 

a perfect B meson factory (~1(1'"')~ 10.6 GeV). 
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We seem to understa.nd parity changing photon transitions in terms of E1 
radiation. This means that we understa11d the ''size'' of Charmonium. We also 
seem to understand the branching fractions of P wave decays via the spr,cial 
QCD annihilation mechanism into gluons. This is a short distance phenomenon. 
1\e further seem to understand the relative magnitude of J/'f'-> rf and 'J'l[ via 
a simple gluon spin argument. 

Up to now we do not know any Quarkonium pseudoscalar state definitely. The 
experimental cu.ndidates X(2.83), >::'(3.45), X'(~:i~) cannot be understood 
in terms of QCO. Especially their 1·11 tra.nsitions and gluon annihilation 
properties should be much different from v1hat is observed for these states. 

Our hopes for the future are that gluon jets show up. Then we can measure 
the gluon spin and verify certain QCD processes like 3P1 ---7 gqq. In the 3s1 decay we can study the gluon selfinteraction by comparing 1~~ vs. 3~ 
decays. Finding the gluons is most interesting and important, since they 
are the gauge Losons of the+supposed nonabeliar: gause theol'Y of strong 
interactions, QCD, as theW-, Z, and tin weak and clL"ctromagnetic inter­
actions. 
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