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1. Introduction

Since the discovery of the J/% and %’ in November 1974 1) e all witnessed
3)

*

a dramatic revival of the quark mode] 2). A new quark flavour, c = charm
was added to the hacdron spectroscdpy, interpreting the J/¥ and ¥’ as cc
bound states. This new system promised to be describable as nenrelativistic
bound states of ¢ and ¢: Charmonium 4). While the guark model for old mesons
suffered from the fact that the quarks move retativistically (mass differences
of old mesens are of the order of the masses themselves), in charmonium the
relatively heavy (% 1.5 GeV) c-quarks should move relatively slowly,
Lr=(Y%)% 2 02 . A perturbation expansion in ;@L then converges
rapidly and the well known powerful tools of exploring a nonrelativistic
bound system could be used. This was the source of rea] excitement,

Meanwhile we learned about the existence of a still heavier meson family,
the ¥, T/ and 77 °), and interpret it as bound states of the b quark and
b, b being the fifth quark flavour 6), much more massive than charm. We
further hope to discover the sixth quark fiavour, t maybe, and its bound
states tt in the new ete” machines PETRA and PEP. The larger masses of the
b and t quark guarantee that their bound systems bb and tt are nonrelati-
vistic to a much higher degree than ct. In this lecture we will discuss

the dynamics of a nonrelativistic QG bound system, 0 = ¢,b,t. As a title
for this lecture we ¢hose the generic name for a nonrelativistic QQ system,
QUARKONTIUM.

On the field theory side, Quantumchromodynamics 7), GCD, turned out to be
the most promising key to an understanding of quark dynamics. QCD is a
nonabelian gauge field theory of the interactions of quarks and eight mass-
less vector gauge bosons, the gluons. The coupling constant %3 , renor-
malized at the relevant momentum transfer q2 or the corresponding distance
R, turns out to be a monotonously falling function of q2 {or rising function
of R). It tends logarithmically to zero as q°—s oo or R —» 0, this is
called asymptotic freedom 8). o5 becomes Targe for some large R of the
order of one fm, the typical hadron size. Up to today this regime is subject
to speculations only, we believe that the rising coupling provides for the
permanent confinement of quarks. Perturbation theory is useless in this



-3 -

case, but lattice gauge thecries 9) or the string medel 10) suggest that
the interquark force for large separations might be independent of the
distance, thus giving rise to a linearly rising static potential betwcen
quarks. At short distances physics is much more pleasant because otgbe-
comes swall. Then perturbation theovy is fine and in Born approximaticn

the guark interaction is just one glucn exchange. The nonabelian seif-

qraphs, and in this approximation gluons are just analogous to photons.
The short distance behaviour of GCD is thus very similar to QED, the static

notential for short distances being of the Coulemd type.

When QCD is in fact the underlying theory for the Quarkonium systems, we
shouid he able to probe some QCD features by studying these systems. lKhat
can we probe? First we should be able to probe the short distance behaviour.

The one gluon exchange at short distences leads tc a static potential of

7R~ 4 . . . .
the form VAF{R) = -3 75 . The subscript AF denotes the origin of this
votential "Asymptotic Froedem". -4/3 ‘s a group factor from SU3 (colour)

and o is the effective coupling. One can take two points of view re-
garding &g . Either g is really k-dependent 11) but indepencent of

the quark flavour. Or one defines an effective g as a constant. different
for each guark fiavour mass 8>. For simplicity we take the second point of

view. Then the o in a heavy Q@ bound state M2 is related to that of a
Tighter one Ml by the approximate formula

-1 :
e (M2} = g (M) {4— 2322 (u2) g (Miyr )I (1.1)

12w

(N is the number of "light" (= lighter than Q) quarks). The potential
VAF(R) with o« given by (1.1) should be correct for very short distances.
It further gives rise to the spin-spin and spin-orbit interactions known
from positronium, because the quark gluon vertex has tne same Dirac struc-
ture as the electron photon vertex ( gja—coup1ing).

The second feature of QCD we might be able to probe is the 1§rge distance
behaviocur, R —> oo, The linear potential as suggested by lattice gauge
theory or string medels should dominate for very large distances R:
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Ve (R)= a 'R . ihe subscript C stands for "Confinement®. The
slope a should be flavour independent and alsc somehow related to the

inverse Regge siope of the Tow mass wesons 1
)

. Furthermore this potential
should be essentially spin independent

We now have guesses for the static potential at very short distances,

VAF(R) = - %{ %g;, and very iTong distances VC(R) = aR. We have no guess
for intermediate distances. The simplest assumption is to write the com-

plete potential as a superposition of these two extremes{E.Eichten et al.,ref.d}:
V(R) = V4e(R) + V_(R) (1.2)

We further assume that all the spin uependence (except the kinematic

Thomas precession) has its crigin in VFF(R) and can be calculated via the
Fermi-Breit Hamiltonian 13). Although fhese Ansdtze have their criticism
they have worked out to be very useful as a first attempt to the probtem.
The first part of this Tecture will try to show now far these Ansitze reach,
In the second part we will discuss decays of Quarkonium and a third test of
QCD, namely of gluon helicities and the gltuon self coupling. With the ex-
perimentally accessible regime of c.m. energies of 10 GeV or more, the
g]uons'which govern annihilations in QCD, might show up as hadron jets 14).
These jets should carry the directed momentum of the initial gluon. In
angular distributions of these jets one should then be able to measure gluon

14’15). One can further speculate on the existence of glueballs 16)

helicities
to be found in Quarkonium decays and on measuring the nonabelian gluon self
coupling by comparing the angular distribution of & 3 gluon decay versus a
Y + 2 gluon decay. The latter two things, however, go beyond the Born

approximation.

2. The Spectrum

Throughout the discussion we will assume that the Quarkonium (QQ) system is
essentially nonrelativistic. The perturbative Hamiltonian can then be ob-
tained by solving the Bethe Salpeter cquation in nonrelativistic approxima-
tion or by expanding the exact relativistic scattering amplitude (Born
graph only). One obtains the Schridinger equation in zeroth order of ﬁz
and the well known Fermi-Breit Hamiltonian terms up to order ﬁz . In



Oth order
o B2 |
H = 2 my Tt 7;3 -+ \/(R) + Cornist, (2.1)

and all states which only differ in their guark spin configurations are

degenerate.

Here we can study the rough structure of the specirun and try to justify

gmonstrated

€1

the choice (1.2) for the potentiai V(R.). In Fig. 2.1 it s

WEETGer] ‘ *

; {

-0.5

R

! ] !

05 10 1.5 [fm]
Fig. 2.1. Four different potentials for charmonium, normalized to the J/Y
and Y’ binding energies. The solid horizontal lines indicate the P wave
of each potential, the experimental c.o0.g.(P) is given for comparison.
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that the center of gravity of the P waves (which is object of 2.1} can

be well described if the potential lies between a Coulombic and a linear

potential. Also a logarithmic potential is not bad. This may serve

to justify the Ansatz (1.2). We note, however, that doing this comparison

we assume that splittings due to spin-spin interactions are either small

or of the same magnitude in the P and S waves. Calculations of the spectrum

of Eq. (2.1) have to be done numerically because of the complicated nature
3

The Tevel splitting of the radial excitation and the ground state (‘PTS.?)

and J/¥ (3.1) in Charmonium) determines one of the potential parameters,

of the potential V(R). There are three parameters, mq, Ke ftcxs and a.

say a, if the other, say K , is given. We then can try to determine w from
two independent scurces, namely the ratio of the S wave functions at the
origin

2 2 _.2
Iw@’m)l _ Mw’f%@(wf)__(gj) 2.7 keV |
V.2 - ma T 2 (2.2)
RETACH sefas A4 (3.7 4 ke
and the relative placement of the center of gravity of the P waves. Beth
procedures are almost independent of the third parameter, mQ, and in
Charmonium they give
K = 0.4 ..., 0.5
(2.3)
A= 1... 0.9 GeV/fm
One remark on Eq. (2.2) is in order. It is derived from the Van Royen-
Weisskopf formula
2
. 22 %)
rleé_ (V) = 167 &« G’Q — (2.4)

MF

This equation is subject to large corrections in the Charmonium system as
we will discuss later but in ratios of rgé’s these corrections cancel.
Therefore (2.2) seems to be quite reliable.
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Is the large value of « reasonable? From the beginning x is just a

free parameter, But with K= g we Tind &g of the magnitude

0.3 ... 0.4. Is this O related to the streong ceupling constant in

annihilation processes? Or is it related to the streng coupling constant

in deep inelestic lepton scattering? From the decay formulae-as described

in the second lecture cne can cerive ol (anininilation at 3 GeV) ~ C.2.

Byt this o refers to annihilation distances which are shorter than the

average interquark distances. From decp inelastic Tepton scattering we find
(3 GeV)~ ™ (0.07 fm) = 0.4 taking the renormaliz aticn point

“ = 0.5 GeV, as you have learned in this school 17). From Fig. 2.2 we see
T T T T 1 T T I ]
V{GeV]

']._
0hi
O+
-051

-] ]

| 05 Rl

Fig. 2.2. The shape of the standard potential, eq. (1.2). VAF dominates
below, VC above R = 0.3 fm.

that 0.07 fm are just in the middle of the range where the asymptotic

freedom potential V¢ dominates, between 0 and 0.3 fm. The wg as deter-

mined from the spectrum with the simple Ansatz (1.2) for V(R) agrees roughly
with the ©o¢ as measured in scaling violations of deep inelastic lepton
scattering. This result encourages us 1o ask the next guestion: Is the para-
meter o in VC(R) = aR unigue for alil flavours (quark masses) as QCD suggests?
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The first estimates of the V'-V splittings in 0] systems heavier than
Charmonium predicted a decrease of this splitting with m 1), At 10 Gev

the mass splitting should be 450 Mey only (compared to 580 MeV in Chay-
“monium). As soon as the next Quarkonium system, ¥ and Y, was found,

this pred1ct1on was destroyed. The Y- 7 mass splitting was around 600 Mev
again as in Charmonium. The potential to describe this fact is the logarith-
mic potentiai 19). Here mass splittings are completely independent of the

- quark mass. But an overall log potential has no Justification within QLD
For intermediate distances, on the other hand, it is not worse than the
simple superposition (1. 2). An interesting - and phenomenologically succass-
ful Ansatz was then proposed with the log potential for intermediate

distances only 20),
- KR R <R,
VI(R) = A Loy %O for R,sR<R, (2.5)
xR R >R,

The ambiguities coming in by 6 parameters, k, a, Rl’ RZ’ RO, b in this
potential are removed by demanding V(R) to be continuously differentiable
at R1 and RZ' These are four conditions which remove 4 parameters and for
comparison one chooses # and a to be the only independent potential para-
meters. The Charmonium system has been solved with this potential and one
finds a very good fit to all available data with

i

o= 0.775 GeV [

Applying the potential (2.5) - with the unigue a = 0,775 GeV/fm -
to the Y system gives the mass difference T' -1 to 560 MeV.

Very recently a precise measurement of the 2 and Qf‘/masses at DORIS gave
us the experimental value: 560 MeV 5). This coincidence is of course no
prove for the correctness of the potential (2.5) but it shows that - with
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a more sophisticated potential - the assumption of a flavour independent
constant force between quarks at Tong distances is not in contradiction

with what we observe., It is amusing to note that this value of a = 0.775GeV/fm
is even in agreemenf with what one would expect from the old meson spectro-.
scopy 12), - |

e want to add a remark on quark masses. Quark masses only slightly influence
the two 1np0ts we used, the ratio of wave functions at the origin and the P
wave location. What they mainly influence is the wave functions themselves,
the dipole matrix elements and the velocity of the quarks. But here is some
ambiguity. Fitting Y (o) to the naive V. Royen Weisskopf formula (2.4) gives
a rather small value, m. = 1.1 GeY. For the dipole matrix elements on the
other hand one would 1ike a large quark mass, m_= 2 GeV. In the best known
studies at Cornell 21) the requirement of Sma1lcquark velocities restricts

me tc be mcfr 1.6 GeV. To fix m. or mQ resp. is not as easy as to fix &g

and a,because the decay formulae (2.4) and the dipole formula are subject

to large corrections as we will discuss in the second lecture. We will use
scaling arguments for scale variations of the quark mass. To overcome the
ambiguities of determining the quark masses we will set quark mass ratios
ecual to the corresponding bound state mass ratios. We emphasize that

smaller quark masses like m_ = 1.1 GeV do not destrecy the nonretativistic

. ¢ 2 —7 2
approximation. We have calculated B” = (v/c)” and find that # <0.3 in J/¥
and BZ<:O.4 in LV’for m. = 1.16 GeV and K< 0.55. We feel that this justifies

to leave the quark masses themselves an open question.

3. Spin Interactions

In the physical charmonium spectrum the Schrodinger states are split up due
to spin interactions. In this chapter we want to compare the magnitude of
these splittings with the simplest Ansatz we can imagine, the Fermi Breit
Hami]tonia%?)These higher order corrections to (2.1) are relativistic kine-
matic corrections: and spin corrections:

1

Ho= HO & HTE! 4 ySPIN (3.1)

The spin corrections have three contributions.
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spinorbit:  HC = X I:-S[—~dRJ(VAF(R)—i\/(R))

a R 9
.' T 4 s A s A _a A z—i .
tensor: H = T (3 ,'R&,'R _'5"4°<Tz)[dg ROIR]\AF(R) (3.2)
spin-spin: M = de& K_'f,‘ ' 6‘_2 A\/AF (R)

—_

Here E?;/}_ is the quark spin, S = 1/2(§i+-§1) the meson spin, L its
angular momentum, R the interquark distance. For the potential V(R) we
again take the simplest Ansatz (1.2) with only VAF(R) being spin-dependent.
As mentioned in the introduction lattice gauge theories suggest that the
confinement part VC(R) of the potential is spin-independent. Mevertheless
it contributes to the spin orbit interaction due to the relativistic kine-
matic effect of the Thomas precession %), ~1/4V(R) in HS

3P2 —*3Pl spiitting rela-

. In Querkonia
the Thomas precession leads to a decrease of the

tive to the 3P1 - 3PO splitting. While in Positronium, where V{R} ~ -l/Rﬂ«VAF(R)
2 =0.8 (3.3)

MR = M(3p,)

the additional VC(R) in the interquark potential (1.2) leads to a decrease
of (3.3), which experimentally is found to be 0.5 in. Charmonium.

We are confident that the Fermi Breit Hamiltonian (3.2) is not a too bad
approximation. As an example let us consider the part of the relativistic
corrections due to the kinetic energy of the quarks. This correction is
(P /dma > ™ B < % p2> . Up to 3% of 0.4 the
relativistic kinetic energy correction is less than 10 %. The pi one ob-~
tains in the Charmonium calculations are 0.2 to 0.3 for J/¥ and 0.27 to
0.4 for ¥/ varying m. from 1.6 to 1.16 GeV.

Let us now compare experiment with the predictions from (3.2). We start
considering the experimental states as discussed at this scggol 23). The

three P waves are quite well established, the X(3.55)as §j " =2 * state,
Cthe P/¥(3.51) as §°C = 17" state and the %(3.41) as 3C = 0" state. For

+
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the pseudoscalar partners of J/Y and W' the experimental situation is not
<o clear. Candidates for the pseudoscalars are X(2.83), X(3.45) and
Y(3.59 or 3.18).

The P wave splittings can be paramétrized as
CH™ = A <L-S»>
CH™> = B <T>

(3.4)

where the tensor cperator T = 3 Eﬂ-R &, R —-Eﬁ,‘ﬁi . The expectation
values of L.+ §‘ and'? can be found in textbooks on Quantum mechanics 24).

For P waves they are displayed in Table 3.1. A Charmonium analysis with the

j <T-3> LT )

2 + 1 - 2/5

1 -1 + 2

0 -2 -4

Table 3.1

State 3P2 3P1 3PO center of gravity
mass [GeV] 3.552 3.508 3.415 3.522

Table 3.2

experimental masses of Table 3.2 yields for A and B

A = 34 MeV, B = 10 MeV (3.5)

On the theoretical side we read off (3.2)

A= -E (G (- VRY) )
: (3.6)

-

7'3’”422' <(diu %dﬁ)\/A_F (R)>

B=



including the Thomas precession.
gives

- 17 -

With our

stendard polential

(1.2) this

We see that the spin dependence from the one gluon exchange {V, F) 18 governed

by R ~’> whﬂe the Thomas |3Y‘FCESS'IOH 15 '*ow\ ned by <£"7>

® g = <R >"’OG7(:e‘J

of m

c

+)

0.4, m.

and <ﬁ

= 0.4 GeV from numerical fits
yields the va]ues of A and B given in Table 3.3 for two different valucs

m. [Gev] 1.6 1.1
A [Hev] 35-12 56-32
B [MeV] 6 9

Table 3.3: A and B from numerical fits,

Taking our

In row A the second

number is the contribution from the Thomas precessicn.

. By comparison of Table 3.3 with eq.

Let us now try the spin-spin interaction.

arises from the short range one gluon exchange (VAF) atone. The relevant

term in the Fermi-Breit-Hamiltonian (3.2) was

(3.5) we see that we are in
the right ball park. We could not have expected a better agreement from our
crude approximation!

According to cur philosophy it

*) The tensor operator T of eq. (3.4) possesses off diagonal matrix elements,

too. They lead to an S-D mixing. Two physical Charmonium states would e.g.

be W'(3.7)=va-er 235+ ¢ 43D,
-e235, +/i-er 13D,
With <2%s, IQ~"143D> <43PIR3I43P>

leading to a

it is 17 %.

with

and %" (277)

e= 2T2% (o35 (R3(a3p,y ),
@.

we can evaluate £ ~ 0.3

eé (Ww'(3.37)) of 10 % of that of k{"(3.?). Experimentally
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H> = C—i-@} AVAF(Q) | (3.8)

The eigenvalues of the operator T,-T, = 2 g2 -3 are +1 in a spin
triplet state and -3 in a spin singlet state. Because AVAF(R) ~A(-:.é )=
= 47 §{R) the integral over the wave functions becomes
trivial and we have

CHSS — gqo(s_w,_”_ (25%-3) |Gy [? (3.9)

e

fzking (%o ® from fzé via eq. (2.4) and ™ g from eq. (2.3) gives
us for the splittings

M(435 V= M[175 ) Fo MeV

a7 o/

y (3.10)
M 235,y — M(271s,) = 35 MeV

Trving to identify (1S )= X(2.83) means 70 MeV = 250 MeV,

wig {2130) = Y{3.45) means 35 MeV = 230 MeV, or “E;(leo)i Y (3.59) means
35 MeV = 80 MeV. Many solutions have been proposed to solve this puzzie,

25) and an anomalous colour magnetic

among these are instanton effects
moment of the c—quar*&eHhe simplest solution might be that the |4 ot

in eq. (2.4) and in (3.9) are different objects. The next order correction

to [Yeonf? in {2.4) comes in through a transverse gluon exchange between

the two quark lines before annihilation . It has a large factor in
_ A6 s z7)
no case is small. But before continuing this discussion let us wait for

front and the total correction is a factor , which in

estimates of some decay rates involving the pseudoscalars. Then we will
find that we have much more severe problems which question the identifica-

tions above.

4, Scaling the Schrddinger Equation

The radial form of the Schrddinger equation reads

[ﬂdé+ ﬁ%§)+2m(v(ﬁ)—f)] @) =0 (4.1)
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For all potentials of the form

£
we can bring it into the dimensionless form
2 2(er1) £
— N I —_
d9 o2 + 8 g:} &Y?)
with the substitutions
~2/(2+¢)
35 = fgﬁ' (:2h4)(;?n4cz)
+1/(2+6)
=R - (2na)
One can now immediate1y read off the scaling laws for E and R:
~ &/(2+c)
£~ m
- 1/(2+¢)
R ~ m
(4.5) is also applicable for g = 0, in which case the potential is
V(R) = q'éégigéé. We Ieave the derivation to the reader.
Let us now consider some aspects of scaling for Quarkonia We begin with
the level spacing. In a potential like VAF(R) =-:§ ?f atone level spacings
scale Tike AE ~ c(s V"(x » in a linear potential like VC( ) = aR
—A
they scale Tike AE ~ mg /3 - To estimate the intermediate scaling
behaviour in the standard potential we try a very crude approximation:
Let us consider the level spacings given by the linear potential with the
Coulombic part VAF(R) as a first order perturbation. Then
E, = E (V) +<n-421pn>
n n C 3 R

(4.3)

(4.4)

(4.5)

(4.6)
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~ . - . s ) . +Y3
and AE sceles like mg 7 with 2 Tirst order correction -~ g Mg
Because of the mass deucndence of g , 29. (1.1), this perturbation
procedure starts to break down not before My 2, 100 GeV. The curve
is shown in Fig. 4.1 (dashed line}. Asymptotically the states fall into

T T T 1 T 1 T
Nt |

600

3001~ mg [GeVl 7
] ] i ! | 1 1
03 15 L5 530 300

Fig. 4.1. The scaling behaviour of AE in different potentials.
— - —— —~ standard potential with uS(ME) via eq. (1.1)
————————————— standard potential with fixed o4
—_— — . — - logarithmic potential

our guess

the Coulombic potential V,- and the scaling law becomes AE ~ 0452 Mg

If o would be a universal constant, this would happen much earlier
(dotted line in Fig. 4.1). From the Y '-71 mass difference we know that

the simple standard potential is not adopted by nature. Using the ¢ '-J/¥
mass difference as input, the standard model prediction for the TL-r mass
difference is much lower than the experimental one (Fig. 4.1). The pre-
diction can be faised to the experimental value by fixing &g to its
Charmonium value everywhere, but this seems not appealing thecretically.

In Ch. 2 we saw that a reasonable description of the Y ’—I“ mass difference
was possible by introducing a logarithmic potential for intermediate distan-
ces. In the log potential AE = constant ( £= 0), and an intermediate part
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in the potential would tend Lo 111 up the valley of the dashed curve

in Fig. 4.1. We show & guess for ihe result, the solid line in Fig. 4.1.
This result means, that we expect no dramatic change of AE for the next
Quarkonium. Only for quark masses weil above 100 GeV the states would

sit deeper and deeper in the VAF singularity and AE starts to increase.
Asymptotically the scaling behaviour of AE is &2 mg ~ Mg /ﬁs.g (wdy.

© We now turn to Tevel splittings and begin with the P waves. Ve have shown
that the Fermi-Breit Hamiltonian (eq. 3.2) gives a reasonable description.
From there we have

T LS A4 { A A
T Her ~ i (g o (7)) ~ 5 .7

mQZ Qs

where Hk? is the spin orbit term without the Thomas precession. In contrast

the Thomas precession term behaves like

Ls
¢

A

u 4
H "‘v’“’;;a<—g-dg(f)\)>’v

The scaling behavicur of R {eq. 4.5) is somewhere between that in a log and

in a linear potential, R ~ ma':%- MQ’VB » and we can estimate
the 3P2 - 3PO splitting of more massive Quarkonium P waves shown in Table 4.1.
Quarkonium: cc(3.5 GeV) bb(9.8 GeV) 30 GeV

MP,) - 1P ) [re] 150 (input) 50-70 20-40

Table 4.1: P wave splittings in Quarkonia

A comparisoﬁ of (4.8) with (4.7) shows one more important fact. The ratic of
eq. (3.3) which is 0.5 in Charmonium should increase with mQ and approach 0.8
asymptotically!

The spin spin splittings go essentially as cxs-fgé » which can be seen by

combining eq. (3.9) with eq. (2.4). Experimentally TJs

quark charge, is remarkably constant, Fig. 4.2. In the frame of nonrelativistic

. hormatized to the
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[EE/eg
[keV]
20t

10

05 5
Fig. 4.2. Scaling behaviour of 5 /e2 |
------- Experimental eviderce below mQ = 5 GeV
— — — in a pure Coulcmb pctential
. . .2 .
in VAF with o (I17) via eq. (1.1)

potential models there is no way tc explain this for g)u;,gﬁ . From J/¢
to Y , however, we can use the scaling arguments. Tabie 4.2 shows the

. . ol
Scaling in Vg (R) ~ —Ef V{R)~1ogR VC(R)AJ R
of
2 -3 3 3 3
I‘-P(O)I ~ R g Mg ‘M&l M q
-3 -2 -4 -
[;é ~ R “mg s Mo g Mg

Table 4.2: Scaling behaviour of [Wior[ 2  and (ﬂéé in different
potentials.

scaling behaviour of [Wor 12 and Tee via eq. (2.4). |4 @[*and
therefore lﬁéé' should feel more of the short distance potential thén

e.g. the level splittings. Numerical calculations indeed show almost
mQ—independence of [,z in the range from Charmonium to T 28). In the
asymptotic Timit mQ———soo, Feg ~ 0(53 Mg ~ Mg @3 ()

which also gives no net mq dependence from Charmonium to X' . We are there-
fore led to plot this asymptotic mQ dependence for [,z starting with J/¥



This is done in Fig. 4,
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interaction which depend stronger on
constant fixes the threshold for the

mey pose then is:

How many QQ S wave

threshold? This question can

(4.9

be answered by semiclassical methods indepandent of the particular potentiat,

The number n of bound S states below a given energy (r.h.s. of eq.

this case) is given by the Bohr-Sommerfeld condit

K
fodaym

( E-qu, - \/(R))1

where K, is the classical turning point, V(R,)

(4.9) in
ion

(- V)

29)

+

= E'H‘H’,

For low

numbers n (4,10) is only approximately valid (but maybe not worse than our

other approximaticns) and we find

n -~ const, - y -{Eéi

o

(4.10)

(4.11)
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Quigg and Rosner fixed the constant of {(4.11) in the Charmonium system

(g
Fig. 4.3 that in the Y system 3 S waves will be below the threshold

= mc) arnd their result is displiayed in Fig. 4.3. We can read off

! SR R
- i :Hlﬁ%ﬂQSi"fj
— Continuum = ?S_ ~
ﬂiﬂa' ::5$ 2//’
AT
LS —
3§ 7
g | f —
L Y y
1
!
= | —
- ! ]
]/(«l) | [;Y 1 L1 11 Il 13
| 2 5 10 %

Fig. 4.3. Number of bound states below the strong decay threshold

(Ref. 29 ). The Y "will be above the thresold.
of strong decays, the fourth, A may be even below Qﬁ(ﬁq)l’lE threshold.
In any case Y ¥ witt decay into BE or BEX- BBy, B = Qq. The question for
the actual threshold energy is not jet answered, to do that we would need
calculations of the B masses, e.g. in a potential model. Unfortunately a
potential model for the B mesons suffers from the relativistic motion of
the 1ight quark q inside the B. However, applying our knowledge about the
number of bound T S waves, it is sufficient for us to know the masses of
Y and T, since we already know the threshold relative tc these. The
latter masses are calculable much more reliably. In Table 4.3 the results
of two orthogonal approaches are shown.
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.-:[ﬂ" o' ! V‘Y- it /V\ fe!
L L LI
Mass 2 faev] | 9.46 (innut) 10.09 10.45 10.72
Mass ©) [cev] | 9.45 (input) 10.02 10.34 10,60
~ b Y
s b kev] | 1. 0.5 0.35 0.3

™1 - . e :
Table 4.3: Masses and [ox  of ¥ radial excitations in the two
orthogonal models of a) Ref, 30) and b} Ref. 20).

The model of Ref. 30) dircctly integrates the Bethe Salpeter equation
for a 40 system with a aistant~dependent ™ (R). The second model, Ref. 20),
is the phenomenologically successfyl mocification of the standard mode] as

~

tiscussed in Ch. 2. A ook ot Fig, and Table 4.3, and sTightly rescaling
the first model, convinces us that tire BE threshold will be around 10.4

to 10.5 GeV.

O

Independenitly of the exact locaticn of the thrashold and the exact validity
of F

g
—
W)

4.3 we expect that the first radial ¥ excitation above the BB
threshold is a "B-factory™. {We think that this will be 1?"’, of course),
The reason is simply that in the decay of " to BE or BE *the large
number of radial nodes in the ¥ wave function will suppress its decay
width into two slowly moving ground state S waves like B or B¥. The width

of ¥" may therefore be well below the resonance machine width in ee”
production but, on the other hand, the branching fraction into BE (or BE™)
should be substantial.

One comment on our saying "BE or BE¥" is in order: Either the B-B* splitting
is as large (or larger) as the DD¥ splitting, then B* could decay in T8,
But in this case T"would Tie below the BE * threshold, as can be seen from
Fig. 4.3. Or the B-B*sp]itting is less than the D-D*sp]itting (in non-
relativistic potential models this splitting goes Tike l/mQ - but neither
the D nor the B are nonrelativistic), then B* decays to 4B, which experi-
mentally is almost as clean as a pure BB decay.
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Znd LECTURE

The second lecture covers Quarkonium decays. We will first discuss the
“radiative pnoton transitions in E1 and M1 approximation and g]uon'tran-
sitions. These decays have in common that they depend on the medium and
Tong distance behaviour of the wave function. We then (Ch. 6} turn to
annihilations which are governed by the short distance behaviour of the
wave functions. The annihilation can take place into photons and/or gluons.
The gluors may form hadron jets. This is dealt with in Ch. 7.

5. Padiation

a) Electric Dipole Radiation

For photon or gluon wave lengths long against the bound state dimensions
of Quarkonium one can try a multipole expansion. The widths of different

multipcle orders are typically 31)
k3 RZ I 2¢{n-1) J’En
% kR : vf
FNNQ _ (——) or 'ékaHStétOnﬂ. 5.1
A gt 3 f | (5.1)

up to numerical factors. k is the photon (gluon) wave number, R the bound
state radius in the reduced system (R/2 is the true bound state radius). We
see that the expansion parameter in (5.1) is (k -R/Z)2 which is roughty

1/4 . 3/100 in Charmonium and smaller in heavier Quarkonia. This justifies
a multipole expansion and we will therefore confine ourselves to the lowest
order transitions, E1 and Ml.

in hydrogen the formula for an electric dipole transition (E1) is 31)

™ Eﬂ(lb.—»qr!b): -%o( kgl.i;{lz (5.2)

where §}¢ is the matrix element of the dipole operator. In Quarkonia we
now have three modifications to the case of eq. (5.2). First, both quarks
can radiate, not only just one lTike the electron in hydrogen. Secord, the



relevant mass is the reduced mass of the quark, mﬁfg, net just the

particle mass 1ike m, in hydvogen. Thivd, the charae of the quark is

only eQ- e. The First two modif celions cancel each other, so that we
are left with
— — 2 2 . 2 ’
’ 1 £ P = ff. ~S o -
( Q - 7&&))_3 O‘{_} k..G k F{XJCL/ {bn3

in Quarkonium.

Of course, there ere corrections to this naive formulz. The First ong are
higher muitipoles. In Y7 decays they amount to at most 5 % if present
(compare eg, (5.1)). The second one is an-intcrference of ithe finite wave

+ik-R

Tength of the photen field e with the bound state wave function. In

-3
atomic and nuclear transitions this interference is negligible, 12‘R & A1

CEF . o . .
= " R oA 1 F‘E/ .+ But in Quarkonium transitions higher
. AR 2. . . .
terms of the expansion of £ wi1ll partly contribute to dipole tran-
sitions and tend to reduce the trarsition rate. However, Okun and Voloshirn 32)

have shown that this interfererce correction amounts to at most 5 % in
Charmonium. The third but most imperiant corrections are of relativistic
nature. They consist of a} recoil corrections, b) relativistic corrections
to the wave functions and ¢) the interaction of the quark magnetic moments
with the electric vector of the photon field. The corrections of type ¢)
have been studied by Okun and Voloshin 32). They find correcticon factors
between essentially 1.0 and 0.6.

The radiative widths of the standard model withcut correcticns of the last
type are given in Fig. 5.1 and Table 5.2. An example for the corrections
of this type is shown in Table 5.1, The remaining discrepancy between theory

LV 3. 3 3 3

[oder {4 Pi) Py Py Po
without corr. [keV] 36 50 58

with corr. type ¢) 36 40 41

Table 5.1. Example for the magnitude of relativistic corrections to the

naive dipole widths. 32)
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MeV .
6§00 $'3.7) |
- 36 KeV— . .
5 o
00— )
[P (17 8} KeV = x (3.55)
X (351
400+ N
X340
3001 ]
200 model 7
100+ _
0 _

Fig. 5.1: £l transitions in Charmonium. Model widths are calculated
via eqs. (5.8) and (5.9) and do not incluce corrections.

(Table 5.1) and experiment (Fig. 5.1) might be due to relativistic correc-
tions of type a) and b). The recoil correcticns have been found to be

33). In any case this indicates that

~ + 20 % in a relativistic mode]
also the model numbers for [(P/X —— ¢ J/4 )  are only good within

a factor 2.
b) E1 Sum Rules.

A very powerful tool for the discussion of electric dipole transitions
has been rediscovered for Charmonium, namely the dipole sum rules 34).
We know two kfnds of dipole sum rules, the so called Thomas-Reiche-Kuhn
(TRK) sum rule and the Wigner (W) sum rule. Both apply to the dipole
matrix element (eq. (5.3)) and any corrections like those discussed have
to be done afterwards. The starting point for the dipole sum rules is

Heisenberg's uncertainty relation
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’ D | o= \f? A (b 4)
L i
(we set 4 = c = 1}. In a static potential fTor QO without velecity aependont

terms. e.4. no spin-orbit inleraction, we can replace @ via the eguation

of motion

—
(&g ]
(6]

—

[T= = (5.0)

~ .0 . . .
ves of HY. The number of final states [ 2 i¢ re-

14 nd - S ue iy f
Here BT oevre encroy e

stiicted by selaction rules. [n an arbitrary static poicntial ad=7T 71 for

il
¢ -
]
-5
=
e}
ot
[5)]
=
P

ial, however, the number
of ©inal states is further restricted by the oscillater selection rule:

The chenge of the number of vadial modes A% s either 0 or — Al . It
fellows that from the S wave ground state one can only reach the P wave
ground state, from this 1 P wave one can reach the radially excited S wave,
2 S, the ground state, 1 S, and the U wave 1 D. These are all possible final
states. We call this fact the saturation of the sum rule by the harmonic
oscillator. To write down the first sum rules it is convenient to express

the dipole operator ?3:,; through the radial operator R;; 35)

w} \<ry et iRIT, 0> |2 _
(5.7)

P+ Py 2‘-._
zjm;l<ra€-ﬂV“,X]%eﬂ“>l . £ 20 +4

where m is the magnetic quantum number. We can now write some rates (5.3)
as

P(4P-—é@*45)=%c¥eé L(SlRoc,;lz (5.8)



and _
pa
M (2%, — 9 1'P,) = s weg | R;{rl

1]
3 (‘5.9_a)

3 3 241 213
(2 S— 1 P,j)=%—jg—+ioée§l< lQaqlz (5.90)
The TRK sum rule (5.6) gives us a bound

o o 2 3 |
(EJP —E,) Ip4P,4sJ < ZN (5.10)

which implies an upper bound on 1P — 15

[T(1P—g15) € T g . (5.11)

2 k3
C¥f?a .

Wl

We can obtain more bounds with the help of the Wigner sum rule. Recall

eq. {b.4). As an expectation value in state !i> il can be written as
Zg<i]>’<‘(§><§\$\:;> — LIPIIRETR LAY = 34

The angular selection rule now enables us to project out the final states

with A £ = + 1 and those with A€ = - 1, We thus arrive at two sum rules
after some elaborate algebra 35)

o oy 22  —RR(-4) 4
Z-SIQ—‘i(E’C EA_)JxJi’ = W'Ka (5.13)

Cpe ey e A (@2043) 4
ZLEH(EJ ESNIK,.] YvRi (5.14)
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which of course add up £0 (5.5). We have gained two things: first, the
number of final states cn the 1.h.s. of (5.13) and (5.14) ic smaller
than in the TRK sum ruie, and second, (5.13} is negative, which is very
helpful. For =1 in the initial state the first two terms of (5.13)
give (using (5.7}) |

2

(E.;s ‘“E;/)) / st,w{ + (542_54%) mﬂ,m/

2 ~ 1
S — (5.15
G

L

An upper bound for the second term on the 1.h.s. is known from (5.10}). This
Teaves us with

(E°.—E° VIR |7 < 2 (5.16)

5 AP 254D m a

and we can deduce an upper bound on transition {5.93:

. | b7
(2%, — g 1°P;) < 4 ﬁz}c;_'f o ed 2 -—2-& (5.17

Next we will make use of the negative sign in eq. (5.13) with /£ =1, the
initial state being the 1P wave. The only contribution to (5.13) or (5.15)
which is indeed negative is the transition to the 1S5 ground state. Its mag-
nitude must be larger than the sum of all others! Therefore the knowledge
of one of the other transitions, e.g. 25 —> 7~ 1P , gives us a lower
limit on 1P~— ¢ 185 ! We write (5.15) as

2

) -0 1 o o
(Ep = Ef ) Rl ™ 2 T (E)=E )] st,m/Z (5.18)

and obtain by "inverting" (5.17)

3 (
M(pmgt3s) » Y2 K2 o 3l kaso (2B |
Q f LS,rP 4P’45
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' e
The 4 sum rule gave us lr uppor bouna oF 25

Tower bound an

AP~ g AL

uppar Timit on the latter transition, We

—= W QP
. Trie TRK zum vulz

and a

CAVe LS &an

Table 5.2. Combining the bounds of Table 5.2 and the experimeataliy

transiticn TR SR _ W SR . modal
3 3 T B
2%, -—> 1P, < ) 36
03 3 - -
2%, —s 1P < 56 50
235, — 71 < 64 58
2 3 .
1%, —» 7175, £ 490 > 160 + 140 460
3 3 N |
1, — 175 £ 370 5125 + 75 250
13 — o1 < 140 > 60 + 30 170
0 Y 1

Table 5.2: Upper and lower

limits on E1 transitions from the Thomas-
Reiche-Kuhn (TRK) and Wigner (W) sum rules {(SR). All widths

in keV. The seceond numbers in the lower half of the W SR

column arise from the second term r.h.s. of {5.19). The

quark mass is taken to be LN 1.6 GeV.

weasured BRs for B /X —> 7T I/ ¥
total widths of the P states in Charmonium. This is shown in

Tahle 5.3.

conbine ail our information 1n

one can deduce bounds for the

P states y(3.41) = 0" P/X(3.51) = o ar3.5) = 2T
. R ot 4 o
BR{ /&), exp. [ %]l 353 3557 1476
- £
7, (P/Y). bounds [evl} 3 ... 6 0.57...1.05 2.15...3.5

Table 5.3: Bounds on fzo

and the experimental BRs of

correspond to an uncorrec

t{Pr/kj derived from the zum rules, Table 5.2,

tional theoretical uncertainty of a factor 2.

R/X— 7 J/4 . The sum rules

tod E1 transition, this gives an addi-
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The tutal widihs of the Pcﬁxistates shouid be calculable as the sum of
the radiative widths plus the gluen annihilatior widths. A compariscn of
these total widths with the bounds of Table 5.3 will be a comparison of
theory with "experiment”. We will do that in a forthcoming chapter.

¢) Magnetic Dipole Transitions.

M1 decays arise from an interaction of the magnetic photon field vector
—

M=K x € and the quark magnetic moment Mo = €'€q /-2"”(2 . The
matrix eiement. therefore reads

<{//,«Q€~‘.(l€><‘€) lo > (5.20)

and acts on the spin part of the states |i> and [f> only. Again we have

two graphs for the emission of a photon and therefore 4 times the rate as

in atomic M1 transitions 31) |

P 2 T/ 3 /
[ (V—»PS) "é’/u;;‘k § = -l—/o(eQz Lo (5.

5 3 Wn 2

[((PS—ypV) = B[ (V— yPS)

I

L]
[
—
e

]

An M1 transition requires af=o and the spatial overtap between the

two states {i D> and |f > with number of radial nodes r and r' is either
I{r=r') or O(r # r', forbidden M1) in this approximation. Relativistic
corrections of course modify the rate (5.21) and lead to small transitions
also between orthogonail (r # r') states. In allowed M1 transitions (r =r')
the spatial overlap of 1 cannct be changed much by relativistic corrections.

d} Scaling of E1 and MI.

Before we now discuss the M1 transitions in charmonium, let us lock at the
scaling behaviour of both kinds of dipele transitions. For E1 transitions
the scaling behaviour is most easily obtaired from the sum rules.

U S Y &

kt’O) ma m@
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Ml transitions, on the other hand, scale like

2z

3 |
r‘ﬁ,fﬂé K3 o 7%; | (5.23)

ive, T{M4) ~ MiEs) 'kf//PHci.Since in the next heavy Quarkonia k does not
increasz with m the relative magnjtude of 1M1 compared to El goes down at
teast 1ike lme. A comparison of related radiative transitions in different
Quarkonia can thus help to distinguish E1 from Ml transitions!

e) Prcblems with ML in Charmonium.

In Fig. 5.2 possible candidates for the pseudoscalarsand the corresponding
M1 tronsitions are shown. If the second 7%, is not at 3.59 GeV but at

3.18 GeV {second experimental solution) 1t can hardly be explained as @

=

seucoscalar, In Fig. 5.2 the calculated M1 widths are shown. They have

B, B, ¢'(37)
(032011°s

(0.86+0.6}%

,» Phel Bi<l7%
aet XEETS o <tk

B2

2y

Fig. 5.2: Ml transitions in Charmonium. Theoretical widths, eq. (5.21)
are indicated at the transition lines. 81(11) and 81-82 are

from experiment, Ref. 1)+ 36).
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at first to be contrasted with the experimental bound on these tronsitions
as indicated Together with the experimental product of branching ratios

these bounds allow to derive lower limits on the decay branching fractmnQ
of these states. This is shown 1n Table 5. 4. There is no way of assigning

State X(3.59) X(3.45) X(2.83)

By * By (Exp.) [#] 0.3%0.1 0.8%0.4 0.014 ¥ 0.004
B, (Exp.)  [¥%] <2 | <2 <17

B, (Theory) ~ [%] 20,5 ~ 9 ~ 45

B, (Exp.)  [%] | >0 > 20 >0.7

B, (Theory) [’o] <1 <1 ~0.1

Table 5.4: Experimental upper bounds on Bl and lower bounds on 82 via
By * Byjand comparison with theory. The kind of transition
for Bl’ 82 is indicated in Fig. 5.2. The theoretical riumbers
arise from allowed and “forbidden" M1 transitions and the
ratio of 24 versus 2 gluon annihilation. For the latter see

Chapter 6. The forbidden M1 transition shou]d lead to a B,
not bigger than a few 10 keV/a few MeV =~ 10

one of the experimental states to a pseudoscalar state without coming

in trouble with a) absolute M1 widths, b) branching fractions for the
decay of this state. Considering ¢ and M. in context leads to even
larger discrepancies, e.g. take %(3.59) as '{c and X(2.83) as Yo o
Then the M1 transition I/ — 7’7F1s down by a factor of 30 compared to
the naive theory. The same factor must work in %/ — T ¥’ leading to
Iy = 1/30 keV and consequently to B, > 30! For Ml widths only one un-
pleasant way out seems possible: to give the quarks a vanishing magnetic
moment Ma in this 1imit of a static interaction 37).

A much more pleasant way out would be finding the true pseudoscalars much
nearer to J/Y and Y4/ respectively. Experimentally this is in no way ruled
out. Then the X and X states are either not real or at Teast no simple
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38)

Q) states . Pemember that QCL is consistent with g possible exisience
. . - = 39)
of multiquark or multiquark-gluon stetes different from QG 7/, However.

their properties are not accessible in our simplc Quarkonium model.
f} Gluon Radiation

Radiative gluorn transitions

as electromagnetic radiation.

. . - r
the expansion in o A7 needs
of the order of the wave function radius and oo¢ will be large. iois is the
essertial reasorn why we do not expect to be able Lo calouiate rates for

glucn radiation. Bul we midht be able fo estimate fhe scaling beheviour of

3 3~
< A2 I
2 ‘-JA' > 7 o 4 s 1 V(j’
Lo__q_.;} Y. s e {5.24)
Y
The emitted states must be Iscsingiels, because giluuns
-
- - A
For the radiation of an &{ 7% Swave) from 278,
[ K 1
an g
4
—, - Phate space {5.25)
#1 <L !
Q

If this scaling law is already valid in the Charmonium system,

W' —> 5w J/¢ = 100 keV implies ¥ —> T Y = 10 keV. In

a 30 CeVeQQ system this width would be ro more than 1 keV. Transitions via
gluon radiation will be important for a search for QQ states which are not
accessible directly or via photon transitions, like the 11P1 state. In the
v or higher QQ systems the 3351 state (ifﬂe.g.) will be narrow and under-
go such a transition to the 11P1 state.

335, — 1 P+ y,e (5.26)

The findfng of a 11

P1 state via (5.26) would be very interesting because
the knowledge of the 11P1 mass allows to determine, whether there are long
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range spin spin correlations or not. In our Ansatz for the Hamiltonian

and pétential we only had short range spin spin forces. They do not

act on P waves and therefore the 11P1 state is degenefate with the ¢.c.g.
of the 13P states. A long range spin spin force, however, would act on the
P waves and would 1ift this degeneracy.

6. Annihi]ation

Quarkonium states may annihilate into photons and/or gluons. Since annihi-
lation is a pointlike process (the quarks must come together) not only the
‘annihilation into photons is governed by a small coupling X= 1/137, but
hopefully also that into gluons by W¢(small R) . We can apply the
'minimal gluon scheme', i.e. approximaté the decay by the lowest order
(Born-) graph *1). This will be justified by finding that indeed the
u%(annihilation) is small, even in Charmonium it is much smailer than the
effective o¢¢ for the bound state description (see Chapter 2). We proceed
in the following way. First we collect well known formulae for annihilations
in Born approximation. In this approximation there is no gluon selfinter-

- action yet, so that the conversion from photon annihilations to gluon anni-
hilations is just done by redefining the charge. We will then discuss ratios
of these widths as an application in Quarkonia. Our results will also be
fundamental for the next chapter on jets.

a) Annihilation Formulae.

The vector 351 ground state [1
can decay via one photon 33 .
into lepton or quark pairs 1
(hadrohs). The corresponding

€
graph is din]ayed in Fig.
6.1 and the formula is known Fig. 6.1: Leptonic decay of 3Sl(QQ). The

as V.Royen-Weisskopf electrons may be replaced by IF
formu1a42) (including colour Ts or quarks lighter than Q.
and for 4m %M ?):

z 2
Pe'é_(\/)=46'ﬁo<ze§ Nl:"” ~ ool | R0l o)

2 2
v Ma
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where MQ is the V = 351 bound state mass and mQﬁ 1/2 Mv the quark mass.
W (o) is the spatial and (o) the radial wave function at the origin.
Quarks couple in the same way to the photon as leptons, so that (6.1) 1is
understood for each lepton or quark flavour separately: qu =3€; r'eg .

a

The decay of 351 into two photons as well
as two gluons is impessible. In the two 35
photon case this is just the photon C 1
parity. Also twe gluons, as long as they

are in a colour singlet state (which is Fig. 6.2: 3y decay of SSI(QQ).
symmetric), have even C. But the 381 can When the photons are replaced:
decay into three photons as well as three by gluons, this denotes the
gluons, Fig. 6.2. The three photon decay “"direct” hadronic decay.

has been calculated by Ore and Powell 43)
(here including the statistical colour factor)

4 3 .6 -9 [Reor)*
. — e
3 (V) = 3% % T Mg

(6.2)

The conversion factor to the three gluen decay i3

_ o AT (XX 2 .
Gg/rg,a, Cwled 9 Zaec [T"r\z 22 >$>’M- (6'3.)

so that we have

3' 72.9 Ry ¢
nov) = Lo 2 (6.4)
9 i

P1 an.Z

The parts of (6.3) have the following origin. 0(53/053 e@f’ Just converts
the charges together with Ty (}'Q[z Rg/,g *% )gy....._ . The Eabc'counts the
number of coloured graphs in the 3g case, while the 37 counts the number
of coloured graphs in the 3 3~ case. We do not consider decays of the 3Si
into more (2 5) photons or (24) gluons.

The pseudoscalar 1
Fig. 6.3. The two photon decay was first calculated by Pomeranchuk

SO ground state can decay into two photons or two gluons,
45)
and
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is (including colour)

q [02(0)’2‘

2
Mg

G‘r(PS) = 304 (6.5)

With the conversicn factor

2 g 12 |
_ odg __4_ 1 _a-q.i ,
Bﬂ/gf T el g Za,@ [T"(.z 2 )J (6-6)

whose components are described in the case of eq.(6.3) one obtains

Cper 2 2 1@ | .
1

We do not discuss the decay of S0

in more (24) photons or (23) gluons. 3P 15 —
Assuming, that the 29 decay is the 02’

basic process for the dominant -
hadronic decay of the pseudoscalar, Fig. 6.3:723*de;ay of QQ. For the
allows to derive the branching hadronic decay the photons

fraction for the 27 decay (Table 5.4) are replaced by gluocns.
from eq.(6.6).

9, We now turn to P wave annihilation, Fig.6.3

]P 3P g and 6.4. Here life is more complicated
1 Z because the wave function of a P wave
a) g3 at the origin is zero. That means that

the quarks de not like to come together

3p - % to annihilate: The annihilation widths

L 9, of P waves will be smaller than that of

,5) g3 the 1So wave! The P waves, however, can

annihilate when the two quarks come near

3|:1> :( ‘:' each other amd simultaneously have a
o) :: . . .. .

relative velocity #0. This is a higher

9 order process in terms of an expansion
in B (v/c) It is governed by the
Fig. 6.4: The gluonic decay dia- spatial derivative of the wave function.

grams of spin 1 P waves. In this approximation the widths of the
' spin 0 and spin 2 P waves of Positronium
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46).

have first been caiculated by Alekseev The same calculation for

Charmonium has been done by Barbieri,-Gatto and Kogerler 47). They yieild

s o Ry ]? - .
g CGR) = 6o =0 | (6.8)
| R o)1 -

B% (37,) = j{ogz -—-—h—ll—q | | (6.9)

- The 2 ¢~ widths of 3Po 5 can be obtained from (6.8) and (6.9) by the con-

b ]

version factor given in eq. (6.6).

 The decays of the j = 1 P waves are more complicated. A spin 1 state cannot
decay inte two massless vector bosons, either photons or gluons in a colour

48). We therefore have to consider the next order (in &g ) diagrams,

singlet
which for gluon annihilation are shown in Fig. 6.4. They bring up another
complication. We now have a three body phase space and have to integrate
over all possible energies of, say, gluon 1. Gluon 1 is allowed to be soft.
It further is allowed to carry away the angular momentum of the P wave. So
it has all characteristics of a bremsstrahlungs gluon. The same is true for
photon annihilation, except that in this case diagram b) of Fig. 6.4 is
absent. A bremsstrahlungs gluon or photon in the annihilation of a free

QG pair with £= 1 leads to the typical bremsstraklungs singularity. The
cross section factorizes into the bremsstrahlungs part and the annihilation
of an £=10QQ pajr into two photons or gluons. For a bound state, however,
the annihilation amplitude cannot be singular, because the quarks are not
on shell. Their virtua]ity is of the order of the beund state dimensions.
For a bound state annihilation we therefore may cut the amplitude at
momenta of the soft (bremsstrahlungs) photon or gluon which correspond

to the bound state radius. In diagram Tanguage, the singularity will be
cancellediby higher order graphs like vertex corrections. For QED this
procedure: is well defined 49)‘ We hope that it will work parallel for

QCD. As a cutoff momentum for QCD annihilation we take the typical momen-
tum for a’soft "confinement" gluon, 400 MeV, since in a QCD process higher
order graphs will involve such "confinement" gluons. We will express the
cutoff in:terms of a parameter A= 2M - 400 MeV 50), M being the Quarkonium
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bound state mass. Let us first discuss the 1P1 decay. This state has

jPC = 1+- and therefore only diagram a) of Fig. 6.4 can contribute,

in either photon or gluon annihilaticn. Its decay has been calculated

by Barbieri, Gatto and Remiddi 49)3 They find
/ 2 2
4 ~ 20 4 “Q(O)L _ﬂ
3%( P ) = 55 ol s R (6.10)

where the log arises from the bremsstrahlungs singularity of the diagram.

For the decay of the 3P1 state, jPC = 1+t

,'only diagram c) can contribute
to the photon annihilation while in principle all three diagrams can con-
tribute to the gluon annihilation. Barbieri, Gatto and Remiddi 49) found
that the singular parts of the diagrams a) and b) cancel each other. Okun
and Voloshin 32) gave the general argument for this: The amplitudes a)
and b) interfere, since they lead to the same final state. Since they can
both be factorized into the bremsstrahlungs part times the corresponding
annihilation diagram for the 2 gluon annihilation of a coloured 351 state,
also their sum can be factorized in this way. This sum, however, contains
all graphs to this order for 351 (coloured)~—» 2g, which must be zero 32).
Neglecting the non-singular parts of amplitudes a) and b) against the
singular ¢) means that also for the gluon annihilation the calculation of

graph c) is sufficient. It gives %9:%0)
3 o N P /6?.{0)/’*( M2 4 |
/_3"707 ( eﬁ) -3 37 mg 4 fo? A2 ) (6.11)

whereN is the number of 1ight flavours q. The photon versions of (6.10)
and (6.11) can be found in Ref. 32).

For completeness we note the formula for the decay of the spin 2 D wave
into 2 gltuons which is given by the second derivative of the wave function,
this is the second order in an expansion of /%L== (5&)Zand therefore even
less reliable. Okun and Voloshin 32) calculated



G% ('D,) = 5 s -“{: o (6.12)

b} Ratios and AppTications.

The ratio of egs. (6.4) and (6.1) gives

[(35,—39) 40 w9 o° 4 3 ,
= L , = M40 o (6.13)
(%5, e&) 1T Ped 9 = |
1f we interpret as usual the 3g annihilation as the total direct hadronic
annihilation then this is a measurable quantity and we have e.g. in
Charmonium
=/ ; )
{ 3/ > hadv /g .

(04 —= o8 )

From which Tolicws that the o(¢ at annihilation distances is ¢ =0.19.

Recause of the third power of s in {6.13) this value is quite stable

even against large corrections on the widths. The kinds of corrections we
have discussed to eq. {6.1) at the end of Ch. 3 and different ones for

f?B will not be able to achieve an agreement between o{g{spectrum) = 0.4
and oc{annihilation) & 0.2 in the Charmonium system. But this discrepancy
does not surprise, as we have discussed in Chapter 1. '

A very interesting ratio is that of eq. (6.8) to eq. (6.10) to eq. (6.9):

G% (Bpo-H') . Gq'q’ (3P4 ) rg“a (3pz++) (6.15)

_ 15 . JZOQN Ois(go% ): oy

11

It Teads to ratios of
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15 20t 4 /¢

15 | 5 70 : U in the I system. (6.16)
15 : 770, : # . 30 GeV QQ

We can of course calculate more than these ratios, namely the total widths
of the P waves, assuming that these are given by the gluon annihilation width
and radiative transiticn width essentially. The result is shown in Table 6.1

3 . 3 ‘ 3 Y
Feot(7P) [ev] [eot (°Pp) [iev] Moot (P, )[ey)
theory 4 0.5 - 1.5
cc
- "quasiexp."| 6 z 6 1102 3.2% 1.6
&s=0.15 | 0.35 0.05 0.15
bb
o = 0.2 0.6 0.08 | 0.2

Table 6.1: Comparison of "experiment" and theery for the P wave total widths,
including the radiative transitions. The "experiment" Tine is
taken from Tables 5.2 and 5.3. The prospects of the T system
are also given.

for charmonium and the Y system, and compared to the quasiexperimental
bounds of Table 5.3. For the calculation of eqs. (6.8) ... (6.10) we need
IR’o> |2 MNumerical calculations give IQ:;E )| ? mS "t = 45 HeV and
[4225(0)13 nqg'q &= 2.5 MeV. These guantities are relatively quark mass
independent. We conclude that although the widths of Table 6.1 are very
model dependent, the pattern of (6.16) agrees very well with the observed
branching ratios of the Charmonium P waves. This is one of the successfu?

predictions of QCD within Charmonium.

We complete our discussion of ratios of widths with a discussion of the 351
decays. The decay channels of the vector ground state are: i) into lepton
pairs, ee, MM » T , ii) into hadrons, ). q3, the ratio of 11) against
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i) is essentially given by the famous R, iii} the three g]uon.dnnihﬁlation,
and ivj the annihilation into one photon and two gluons. The only ratio
missing so far is that of iv) to ii{). We can estimate it by comparing the
electromagnetic and strong coupling for one fermion-boson vertex and by
taking into account the different coupling of the colours of two versus
three gluons

M35, — ¢43) _ 3¢ xeq

(6.17)

r'(354_> 3%) 5 0(5
cC decay channel: leetup : 5 qq 39 : v-29
5 wi-9 %3 $ F:-9 o2
= 2/3 2 ¢ R = S = — —
®q / 18 7 2 9 T
a) ™= 0.19 2 : 2.5 : 10 : 1.2
bb decay channel: |ee+pu :E_ q'§+'t:f: 3g : g"ch
. . 20 779 o0 9 729 4t
®q © 1/3 2 + R 418w xz" 9 T o
b} og= 0.15 2 i 5 : 20 : 0.8
=018 [ 2 : 5 : 34 ;1.1
tt (30 GeY) o _
decay channel : lee+pp 3an+TT: 3g : t2q
, : .5 729 &3, & 729 o
e, 2/3 2 : R YT oz Y g = =
c) He=10.12 2 : 5 : 2.5 : - 0.5
= 0.15 2 : 5 : 5 : 0.8
Table 6.2: Ratios of the ground state decay channels a) in Charmonium,
b) in the ¥ system, c) in a 30 GeV tE System. For Charmonium
o = 0.19 agrees with experiment (lowest order formulae). For
52)

Y decaysthe value of o/ best compatible with experiment,BrF
seems to be 0.18 at present.

H
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For Charmonium three exclusive contributions to le—éwygg have been seen
so far. namely J/4 —> ¥ , 9’ #F 21} Together with eq. {6.13) this
is all we need to put up Table 6.2,

7. Jets

The exploration of QCD suffers from the fact that its constituents, the
quarks and gluons,cannot exist as froe particles because of the confinement.
Their properfies cannot be investigated directly. But there is a surrogate
for the observation of the free constituents, that are the jets. Experimentally
jéts are observed not only in deep %neTastic hadron-hadron and lepton-hadron
scattering but especially in ete” annihiiation, once the c.m. energy of 5 GeV
is exceeded. The angular distribution of these jets ic completely censistent
with the production of two spin 1/2 (almost) massless particles 53), the
quarks, via photon vacuum polarisation. The fraguentation of quarks into
hadrons is imagined as a nonperturbative confinement effect, which conserves
the original directed momenta.

At present there is no way of calculating this process, but there exists a
very suggestive picture: Inside a small space region of =1/2 fm colour can
exist and within this region the qq pair (or gluon) production is a short
distance effect (see Fig. 7.1). When hard coloured quanta {quarks or gluons)

with momenta Pj reach the con-

\ \53{85 . finement sphere they must frag-
qfi”" H‘“§Q§9 ment into white hadrons since
// y* \{)\r colour fields cannot exist out-
jet1 / \ jet2 side this sphere. The coloured
-— |a— =1‘E:EE;§::l—- uanta break up into hadrons
7\ Bya) p,@ /™ * o .
\\ _ / with a finite perpendicular
qéé> ' ',1§§° momentum P,. This breaking up

52&;;E¥::1§°> is energetically much favoured
o over a further existence as
Fig. 7.1. Quark jets. coloured quanta. When the
perpendicular momenta are small compared to the longitudiral hadron momenta,
which add up to the momentum of the original quantum, we see hadron jets. The
confinement effects, however, are assumed to be soft, carried by long wave-
Tength quarks and/or gluons. The wavelength corresponds to the colour bag of

1/2 fm. Therefore the jet momenta equal the original quantum momenta up to
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the orderof 400 MeV. This picture demands the production of the original

jet quanta to be a short distance effect (<«1/2 fm). This is certainly true

for the (electromagnetic) quark pair production in ete”. It is also true

for a hard gluon brémsstrahlung process 54). Resonance decays, however, are

not pointlike but involve propagators {Fig. 7.2 and 6.2). Here it is not so
clear, how well the jet

_ picture will work. However,

jet 2 because the propagators are

~mass dependent the picture

4éf:i:”" will work the better the
higher the mass of the
decaying QQ resonance is.
For a Q-mass of 5 GeV the

jet3 propagator length in Fig. 7.2
is probably already short

enough to apply the jet

Fig. 7.2. Q) —> 3 gluon jets. . picture and for the next
' new flavour (higher) QQ

resonance it will definitely be so.

25(5 Gev)Z,

i.e. a massless quark needs 2 2.5 GeV of energy against the c.m. to be able

The quark jets in ete” annihilation became visibie above s = (p1+p2)

to form a jet. For gluons the jet threshold certainly is not lower. But a gluon
carries the colour indices of a quark antiquark pair and each index may frag-
ment separately. Then the multiplicity of the jet may be higher and the longi-
tudinal hadron momenta may be lower. In the limit of asymptotic energies the
gluon may just fragment like a qq pair, each quark carrying half the gluon
momen tum 55). From this picture follows that a gluon jet of a certain longi-
tudinal momentum will have a higher multiplicity and a larger opering angle
than a guark jet of the same momentum. The threshold for gluon jet production
will be higher than that for quark jet production with an upper bound of two
times the quark threshold +).

Some possible sources of gluon jets are shown in Fig. 7.3, the pseudoscalars

+) Speaking of a jet threshold we refer to the energy of a single quark
or gluon versus the center of mass of the colour bag. '
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Fig. 7.3. Possible sources of gluon jets in heavy Quarkcnia.

are omitted, they may also form 2 jets out of the 2 decay gluons. We
begin with the 351 decay into 3 gluons. The three gluons of this decay
will form a plane. The angular distribution of the normal *  of this
plane against the beam is

d ~ 3 = cos?0n, (7.1)

C{COS éke '

For these decays one defines a variable T “Thrust”, which is just the
scaled energy of the most energetic gluon, T = Xy = 2p31/MQQ . The direc-
tion of 9y defines the Thrust axis. The differential rate of the 3 gluon
decay together with the angular distribution of this Thrust axis is shown
in Fig. 7.4. While off resonance the coefficient of the cos2 term, & , is
uniquely 1, it shows a T dependence for Qf decays. The average of &(T) for
Q3 —>3g is 0.39. A much more detailed discussion is given in Ref. 56).
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Fig. 7.4. The differential rate of 1(00)-—»39 and the thrust angular
distribution W ~ 1 +x(T) (n26r, as functions of T. &,is
the angle between the thrust axis and the beam.

Once the 3 gluon jet decay and the Y+ 2 gluon Jet decay is found. we can
start to compare deviations from the lowest order angular distributions,
which arise through different interactions between two gluon jets, Fig. 7.5,
The lowest order (Born- approximation) graph gives for the opening angle of
the second and third energetic gluon 8,3 (compare Fig. 7.6) the distribu-
tion displayed in Fig. 7.7. The deviations from this distribution will be
different in case a) and b) of Fig. 7.5 because in case a) the interaction



b)

ol

Y

Fig. 7.5. Possible next order
(3#) interactions be-
tween gluon jets.

Fig. 7.6. Definition of 8

23"
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between the two gluon jets happens in
a colour octet (they should repel)
whereas in case b) it is in a colour
singlet (they should attract).

We will remain at the 3h23 decay for
another while. The kinematics of this
process differ from the 3g decay because
the 4 can be identified for all photon
momenta between 0 and MQQ/Z. The distri-
butions corresponding te Fig. 7.4 are
given in Fig. 7.8. One notices that the
angular correlation drops very fast to
g minimum if one goes away from the
kinematical limit Eqs= MQQ/Z. For the
Timit Ey=1/2 MQO the coefficient & in
front of the cos“® term is + 1. This is
gasy to understahd. Ir this 1imit the two
gluons have to go parallel. Their halici-
ties {transverse polarisation) have to
add up to either 0 or ¥ 2 (For scalar
gluons it is 0). Since the photon on the
other side is also transverse, the decay-

ing helicity state is the

A =11 state. This leads to
F2 1+ c0529 . One can show
further, that the helicities
of the parallel gluons are
opposite. If we give the gluon
pair a small angle, the net
helicity remains zero most of
the time. But now we can

Lorentz transform to the c.m.s. of the gluon pair and find 2 = T 21 This

cms

means: If low mass hadrons are produced in the process QQ —> o+ 29 —y+ hadron,
the gluon mechanism favours spin? 2 hadrons over spin 1 or spin O hadrons. By
this spin argument we can understand the rate for J/%—igf, which is of the
same magnitude as J/v-P — 7‘41 and Tt’a]though the % and ol/should couple
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Fig. 7.7. The mean value of 9. 23 » a5 def1ned in Fig. 7.6. as a function

of 7. The dashed lines show the k1nemat1c boundaries.
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to two gluons much stronger because
of their large violation of the Zweig |
rule. The whole arguient ‘can of course

be made quahtitafive.'The ratios of

 the helicity amplitudes for

177(3s,)> 7+ gg v+ 27 CP,) will
depend on the two gluon (or hadron).
mass. This is shown in Fig. 7.9 57)._
At the point, J/¥-yf; these ratios

‘have been measured and agree with

this QCD estimate, see F1g 7.10.

‘:'They also agree with the tensor

meson dominance (TMD) model stud1ed‘

here at Karlsruhe 58)

- From our short excursion we now

return to two Jets from P wave
decays The first P wave of Quarko-

" nium can be reached from the first
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Fig. 7.9. Helicity amplitudes in 351(05)—>g“+ 3P2(_q51) as a Fig. 7.10. A measurement of the predicted (x,y)
function of M(BPZ)/M(QQ). The AH[ are helicity amplitudes. . p2ir of Fig. 7.9 for J/¢»¢f by the PLUTO colla-
El, M2, E3 denote the familiar multipole transiticns, the boration. The cross is the central value of the

{x,y) pair for J/v=>¢f is indicated. xZAq/é{o Y ZAL/A:' experiment,the 1ines indicate standard deviations.
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radially . exc1ted S wave e g,fﬁf", v1a an El trans1t1on. Exper1menta1}y S
it will be necessary to tr1gger on th1s monochromat1c photon to identify Tifﬂ“"
the P wave. The P state theh can: decay 1nto 2 gluons-in case of ‘the. 3P ,h.;.
and 3P2 states We. w141 d1scuss the Jet decay of the: 3P1 state Iater.-" o
These two g1uons have a d1st1nct energy of ha]f the’ P state mass. This

is the essent1a1 d1fference to: the 3 Jjet decay of Quarkon1um Here we.

have monochromatic Jets' In 1T the- Jjet energy is. a]most 5 GeV this shou]d

be suff1c1ent o determ1ne the or1g1na1 gluon - d1rect1on via the jet direction.
A measurement of the gluon angu1ar d1str1but1ons becomes feasible! For the
decay of. the 3P state this’ angu]ar distribution is trivial: no matter, what
the dynamics are, there s onTy one he11c1ty amp11tude which can contribute.
But in the 3P2 decays there are two 1ndependent helicity amplitudes for mass~
Iess gluons. The QCD matr1x e1ement for the 3P2-—>gg decay reads with qs k1 k2

Euv (A)[M ﬁ—sA-ezq_q + .’zk,,-_sl 54. q ~ 2k, ¢, 5:._ q J (7.2)

_ L o o L

and it turns out that the decay is in the helicity A=-2 state._Eq. (7.2)
with €, (0) Jjust vanishes for transverse £, €, . The formula for the
k1nemat1cr gives us, 1ntegrated the distribution

Wj% (QT,}‘) ~ // +. cos -92,7' B | o (7.3) -

where é%rg is the angle between the trigger photon and one of the Jets,

measured in the c.m.s. of the jets (Fig. 7.11). If the 3P2 would decay into

Fig. 711 2% 1(00)——-—>
1 Po 2(QQ)—)¢+ 2 g jets,
- as 1mag1ned within the

colour bag.
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two quark jets by some arbitrary mechanism, the helicity of the two quarks
can at most add up to A= T 1. The kinematic formula then gives

| 2+t | b+ B3 A* 2 _
WE(0) ~ 4o 134T 0 6

where A gives the weight of helicities A= I 1 over helicity 0. The sign

difference between (7.4) and (7.3) allows a clear test of the QCD mechanism,
The rate for this process will be around 5 % of all T 'decays 19),

3

As we have discussed in Chapter 6) the P1 decay proceeds via the compli-

cated graph c) of Fig. 6.4, The decay is dispiayed again in Fig. 7.12.

kivy)

Fig. 7.12. 2°,(Q0) > + 1%, (@)~ 7 + 2 quark jets. Here a soft gluon
recoils against the two quark jets.

We will see two quark jets and a hadron cloud from the soft gluon from this
decay. The quark jets should be easy to detect. Their angular distribution is
given by

W

A+

y (7.5)
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already smeared over the important kinematic regime of small gluon momen-

tum 50 59) 937 is the same angle as before, -Qre1s the angle between the
trigger photon and the beam, say e , and 6&e is the angle between the same
jet arm as for O and e . Epe is measured in the lab frame, but Gye as
well as f?m€ are in the c.m.s. of the jets. As an alternative process, the

decay into two massless quarks would give 59)
At .
Wa ~A- o G e oooQ“ B e | (7.6)

-

Here the coszeT term is missing and the term linear in the cosines

has a different sign. But the most important difference between

" the two alternatives (7.5) and (7.6) is the recoil of the soft gluon in

‘the gqq decay of the 3P1 state. This recoil will be much larger than the
recoil of the trigger photon alone which of course is always present. But
with the recoil of the trigger photon alone, the 2 jetskwould be collirear

up to a 10° deviation at most. From the recoil of the soft gluon in the

decay of the 3P1 state, however, the angle between the two quark Jjets may

be as emall as 110°. This is true for the X system. For a heavier Quarkonium
the "soft" gluon may even form a third jet in a small subset of all events.

8, Conclusions

The simplest ansatz for the QQ potential, which is possible using the hints
from QCD, works astonishingly well. The short distance spin dependent part
of the potential describes the spin orbit splittings reasonably well! 1f it
js correct, heavier Quarkonia should show i) a decrease of the LS splittings
~“/nua roughly, 1) a tendency of R = ﬁff:::z;;::; — 0, from 0.5
in cc. The confinement part of the potential may be spin-independent, as
suggested byilattice gauge theories. Its strength depends on the ansatz for

the potent1a1 at intermediate distances, it is, however, very close to the

value suggested by the higher orbital excitations of 1ight mesons (Regge
slope). Many details depend on the proper choice for the intermediate distance
potential. QCD gives us no hint here. To speculate a little, level spacings
might remain almost the same for the next Quarkonium while Mz /el might
increase very slightly. The number of narrow (=bound) states below the new
flavour threshold will increase for the next Quarkonia.TTWnﬁght turn out as

a perfect B meson factory (M(X")=10.6 GeV). |
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We seem to understand parity changing photon transiticns in terms of El
radiation. This means that we understand the "size® of Charmonium. We also
seem to understand the branching fractions of P wave decays via the snecial
QCD annihitation mechanism into gluons. This is a short distance phenomenon.
ke further seem to understand the relative magnitude of J/¥— yf ana Ty via
a simpTe gluon spin argument.

Up to now we do not know any Quarkonium pseudoscalar state definitely. The

experimental candidates )((2.83),CK(3.45),:M(§'?§) cannot be understcod

in terms of QCD. Especially their M1 transitions and gluon annihilation
properties should be much different from what is observed for these states.

Our hopes for the future are that gluen jets show up. Then we can measure
the gluon spin and verify certain QCD processes like 3P1—? 09G. In the
351 decay we can study the glucn selfinteraction by comparing'fgg vs.i%g
decays. Finding the gluons is most interesting and important, since they
are the gauge bLosons of the+supposed nonzbeliar gauge theory of strong
interactions, QCD, as the W , L, and Y in weak and electromagnetic inter-
actions,
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