Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H1 Collaboration

New measurements of jets in DIS and extraction of α_s at NNLO

H1: 0.5 fb$^{-1}$ of the ep collision data with $E_e=27.5$ GeV and $E_p=920/820/575/460$ GeV, $\sqrt{s} = 319/300/252/225$ GeV

Completion of the jet measurements by the H1 collaboration at HERA:

- new multi-jets cross sections measurements in DIS at low Q^2
- α_s determination at NNLO using jet measurements in DIS by H1
 H1prelim-17-031

ep collider

HERA I: 1992-2000

HERA II: 2003-2007
Jets in deep-inelastic ep scattering at HERA

DIS kinematics:
- $Q^2 = -q^2 = -(e-e')^2$ virtuality
- $x = Q^2 / 2(pq)$ Bjorken x
- $y = (pq) / (pe)$ inelasticity

Breit frame:

Jet production in DIS:
- Defined in the Breit frame
 - (e.g. k_T algorithm with $R=1$)
- Sensitive to α_s already at LO
- Dominated by boson-gluon fusion and directly sensitive to gluon
- Leading order for trijets is $O(\alpha_s^2)$

V. Chekelian, Jets in DIS and α_s at NNLO
New jet measurements in DIS by H1

Inclusive jet, dijet and trijet production cross sections in ep NC DIS at low Q^2 ($Q^2 < 100 \text{ GeV}^2$) with scattered electron in Spacal ($E > 10.5 \text{ GeV}$) at high Q^2 ($Q^2 > 150 \text{ GeV}^2$) - an extension to the low P_T bin: $5 < P_T^{jet} < 7 \text{ GeV}$

- HERA II data (290 pb$^{-1}$, $\sqrt{s}=319 \text{ GeV}$):
 - in the Breit frame using k_T algorithm with $R=1$
 - as a function of Q^2 and P_T at the hadron level
→ also jet cross sections normalised to inclusive NC DIS

<table>
<thead>
<tr>
<th>Application</th>
<th>Low-Q^2 extended phase space</th>
<th>Low-Q^2 measurement phase space</th>
<th>High-Q^2 measurement phase space extension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Used for event selection and unfolding</td>
<td>Phase space of jet cross sections</td>
<td>Phase space of jet cross sections</td>
</tr>
<tr>
<td>NC DIS phase space</td>
<td>$3 < Q^2 < 120 \text{ GeV}^2$</td>
<td>$5.5 < Q^2 < 80 \text{ GeV}^2$</td>
<td>$150 < Q^2 < 15 000 \text{ GeV}^2$</td>
</tr>
<tr>
<td></td>
<td>$0.08 < y < 0.7$</td>
<td>$0.2 < y < 0.6$</td>
<td>$0.2 < y < 0.7$</td>
</tr>
<tr>
<td>Phase space common for all jets</td>
<td>$-1.5 < \eta_{lab}^{jet} < 2.75$</td>
<td>$-1.0 < \eta_{lab}^{jet} < 2.5$</td>
<td>$-1.0 < \eta_{lab}^{jet} < 2.5$</td>
</tr>
<tr>
<td></td>
<td>$P_T^{jet} > 3 \text{ GeV}$</td>
<td>$P_T^{jet} > 4 \text{ GeV}$</td>
<td></td>
</tr>
<tr>
<td>Inclusive jet</td>
<td>$P_T^{jet} > 3 \text{ GeV}$</td>
<td>$4.5 < P_T^{jet} < 50 \text{ GeV}$</td>
<td>$5 < P_T^{jet} < 7 \text{ GeV}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(7 < P_T^{jet} < 50 \text{ GeV published in [26])}$</td>
</tr>
<tr>
<td>Dijet</td>
<td>$N_{jet} \geq 2$</td>
<td>$N_{jet} \geq 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\langle P_T^{jet} \rangle_2 > 3 \text{ GeV}$</td>
<td>$5 < \langle P_T^{jet} \rangle_2 < 50 \text{ GeV}$</td>
<td></td>
</tr>
<tr>
<td>Trijet</td>
<td>$N_{jet} \geq 3$</td>
<td>$N_{jet} \geq 3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\langle P_T^{jet} \rangle_3 > 3 \text{ GeV}$</td>
<td>$5.5 < \langle P_T^{jet} \rangle_3 < 40 \text{ GeV}$</td>
<td></td>
</tr>
</tbody>
</table>

Asymmetric cuts $\langle P_T^{jet} \rangle_{2,3} \gg P_T^{jet}$ to avoid IR sensitive regions in the theory calculations.
Simultaneous regularised unfolding of inclusive jets, dijets, trijets and NC DIS

Detector effects like migrations, acceptance, efficiency are corrected for in regularised unfolding by minimising

\[\chi^2(x, \tau) = (y - Ax)^T V^{-1}_y (y - Ax) + \tau L^T L \]

Migration Matrix

<table>
<thead>
<tr>
<th>(\vec{e})</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstructed Trijet events which are not generated as Trijet event</td>
<td>Trijet</td>
<td>(Q^2, <p_T>^2, y, \text{Trijet-cuts})</td>
<td></td>
</tr>
<tr>
<td>Reconstructed Dijet events which are not generated as Dijet event</td>
<td>Dijet</td>
<td>(Q^2, <p_T>^2, y, \text{Dijet-cuts})</td>
<td></td>
</tr>
<tr>
<td>Reconstructed jets without match to generator level</td>
<td>Incl. Jet</td>
<td>(p_T, Q^2, y, \eta)</td>
<td></td>
</tr>
<tr>
<td>NC DIS (Q^2, y)</td>
<td>Hadron level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\rightarrow \) two times more bins in \(p_T \) - combined later

Statistical correlations

- all stat. correlations are provided
- systematics: total & eight correlated unc.
- normalisation/lumi uncertainty - 2.5%
- hadronisation corr. to compare to theory
Control distributions

Inclusive NC DIS

Extended phase space \(\rightarrow\) grey areas

Two NC DIS generators:
- Django (blue) / Rapgap (red) reweighed to describe data well
 - half a difference is assigned to syst.

Background (green): Pythia normalised to bkg enriched sample
 \(\rightarrow\) good overall description of data

Inclusive jets

Dijets

Trijets

Low x meeting
Bari 14.06.2017

V. Chekelian, Jets in DIS and alpha_s at NNLO
Doble differential dijets cross sections

\[\sigma(\text{bin}) / \Delta Q^2 \Delta \langle P_T \rangle_2 \]
- as a function of \(Q^2 \) and \(\langle P_T \rangle_2 = (P_{T\text{jet}}^1 + P_{T\text{jet}}^2)/2 \) with \(P_{T\text{jet}}^{1,2} > 4 \text{ GeV} \)

\[5.5 < Q^2 < 80 \text{ GeV}^2 \]
\[5 < \langle P_T \rangle_2 < 50 \text{ GeV} \]

- compared to calculations at NLO, aNNLO, NNLO (NNPDF3.0, \(\alpha_s(m_Z) = 0.118 \)) multiplied by hadronic corr.

\(\rightarrow \) reasonable description of the dijet data over 4-5 orders of magnitude
Dijets: aNNLO & NNLO calculations

\[\frac{\sigma}{\sigma_{\text{NLO}}} \]

\begin{align*}
5.5 < Q^2 < 8 \text{ GeV}^2 & \quad 8 < Q^2 < 11 \text{ GeV}^2 & \quad 11 < Q^2 < 16 \text{ GeV}^2 \\
16 < Q^2 < 22 \text{ GeV}^2 & \quad 22 < Q^2 < 30 \text{ GeV}^2 & \quad 30 < Q^2 < 42 \text{ GeV}^2 \\
42 < Q^2 < 60 \text{ GeV}^2 & \quad 60 < Q^2 < 80 \text{ GeV}^2 \end{align*}

aNNLO (approximate NNLO)

NNLO
Rev.Lett.117(2016)042001

- scale unc. from variation of \(\mu_r \) and \(\mu_f \) by factors 0.5/2, excluding (0.5,2) and (2,0.5)

→ aNNLO and NNLO improve \(P_T \) shape dependence
→ NNLO reduced scale unc. at high \(P_T \) compared to NLO

H1 Dijets

\[\frac{\sigma}{\sigma_{\text{NLO}}} \]

\[P_T \] [GeV]

H1 HERA-II

Systematic uncertainty

NLO \(\otimes \) hadr. corr.

aNNLO \(\otimes \) hadr. corr.

NNLO \(\otimes \) hadr. corr.
Normalised dijet cross sections divided by σ_{NLO}

\[\sigma_i^{\text{norm}} = \frac{\sigma_i}{\sigma_{\text{NC}}} \]

- jet cross sections
- incl. NC DIS in Q^2 bin

- some reduction of exp. unc.
- NNLO overshoots dijet data a bit
- best suited for possible "PDF+α_s" fits together with inclusive NC & CC DIS data

Low x meeting
Bari 14.06.2017
V. Chekelian, Jets in DIS and α_s at NNLO
Double diff. inclusive jet cross sections divided by σ_{NLO}

$$\sigma(\text{bin}) / \Delta Q^2 \Delta P_T^{\text{jet}}$$

New measurements:
- low Q^2: 5.5 - 80 GeV2
 \hspace{1em} 4.5 < P_T < 50 GeV
- high Q^2: 150 - 15000 GeV2
 \hspace{1em} 5 < P_T < 7 GeV

Similar to dijets:
- scale unc. from variation
 of μ_T and μ_F by factors 0.5/2,
 excluding (0.5,2) and (2,0.5)

→ aNNLO and NNLO
improve P_T shape dependence
→ NNLO
reduced scale unc. at high P_T
compared to NLO

Low x meeting
Bari 14.06.2017

V. Chekelian, Jets in DIS and
alpha_s at NNLO
Normalised inclusive jet cross sections
divided by σ_{NLO}

$$\sigma/\sigma_{\text{NC}} / \Delta P_{T,jet}$$

New measurements:
- low Q^2: 5.5 - 80 GeV2
 4.5 < $P_T < 50$ GeV
- high Q^2: 150 - 15000 GeV2
 5 < $P_T < 7$ GeV

Similar to dijets:
- scale unc. from variation of μ_T and μ_F by factors 0.5/2, excluding (0.5,2) and (2,0.5)

\rightarrow aNNLO and NNLO
improve P_T shape dependence
\rightarrow NNLO
reduced scale unc. at high P_T
compared to NLO
Trijet cross sections \(\langle P_T \rangle_3 = (P_{T\text{jet1}} + P_{T\text{jet2}} + P_{T\text{jet3}})/3 \)

absolute (divided by \(\sigma_{\text{NLO}} \)) normalised

\[
\begin{align*}
\text{H1 Trijets} & \quad \uparrow \text{H1 HERA-II} \\
\text{Systematic uncertainty} & \quad \text{NLO } \otimes \text{ hadr. corr.}
\end{align*}
\]

→ good description of the data by calculations at NLO
→ NNLO is not available yet

Low x meeting
Bari 14.06.2017
V. Chekelian, Jets in DIS and \(\alpha_s \) at NNLO
Extraction of α_s at NNLO from jet data in DIS

Input jet data in DIS: 5 inclusive jet sets and 4 dijet sets published by H1

Jet cross section & α_s-dependence:

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\bar{q}} \int dx f_k(x, \mu_F) \hat{\sigma}^{(n)}_{i,k}(x, \mu_R, \mu_F) \cdot c_{\text{had},i}$$

PDFs ME

NNLO calculations for ep DIS jet production (2016):

Double-real

Real-virtual

Double-virtual

using antenna subtraction technique

Input H1 jet data compared to α_s NNLO fit

5 inclusive jet cross section sets
- data period: 300 GeV / HERA-I / HERA-II
- Q^2 range:
 - low-Q^2 (5/5.5-100 GeV2)
 - high-Q^2 (150-15000 GeV2)
- P_T ranges:
 - 4.5/5/7 < P_T < 50 GeV
- common for all sets:
 - $-1 < \eta_{\text{jet, lab}} < 2.5$, 0.2 < y < 0.7

4 dijet cross section sets
- $\langle P_T \rangle_2$ ranges
 - 5/7 < $\langle P_T \rangle_2$ < 50 GeV
 (m$_{12}$ > 16/18 GeV)
- open points with $\mu = \sqrt{Q^2 + P_T^2} < 2m_b$
 are excluded from α_s NNLO fit
Scale dependence of jet cross sections at NNLO

Scales (renormalisation and factorisation) are chosen to be

\[\mu_R^2 = \mu_F^2 = Q^2 + P_T^2 \]

- scale dependence by varying multiplicative factors to \(\mu_R, \mu_F \)
in four phase space domains (low & high \(\mu \), incl.jets & dijets)

\(\rightarrow \) reduction of scale dependency at NNLO compared to NLO

\(\rightarrow \) still relevant scale dependence at NNLO at low scales

- \(\mu_F \) dependence small (green band)
Methodology of the $\alpha_s(m_Z)$ determination

The strong coupling constant is determined in a fit of theory to jet data with free parameter $\alpha_s(m_Z)$ by minimizing χ^2 based on log-normal probabilities

$$\chi^2 = \sum_{i,j} \log \frac{S_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{S_j}{\sigma_j}$$

$\zeta=$Data, $\sigma_i=$NNLO, $V=$covariance matrices

- experimental uncertainties (stat. & syst.)
- scale uncertainty (varying multiplicative factors to $\mu_{R,F}$ by 0.5, 2)
- PDF uncertainties (repeating fits without V_{PDF} in χ^2)
- hadronisation unc. (repeating fits without V_{had} in χ^2)

Theory: α_s dependences of the jet cross sections (factorisation theorem)

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\bar{q}} \int dx f_k(x, \mu_F) \tilde{\sigma}^{(n)}_{i,k}(x, \mu_R, \mu_F) \cdot c_{\text{had},i}$$

explicit dependence in hard ME:

$$\tilde{\sigma}^{(n)}_{i,k} = \alpha_s^n(\mu_R) \tilde{\sigma}^{(n)}_{i,k}(x, \mu_R, \mu_F)$$

perturbative expansion in orders of α_s

implicit dependence in PDFs:

$$\frac{\partial f}{\partial \alpha_s} = \frac{\mathcal{P} \otimes f}{\beta}$$

splitting kernels \mathcal{P}

$$\mu^2 \frac{d\alpha_s}{d\mu^2} = \beta(\alpha_s)$$
ME & PDF dependencies on $\alpha_s^\sigma(m_Z)$, $\alpha_s^f(m_Z)$

$$\sigma_i = f(\alpha_s^f(m_Z)) \otimes \hat{\sigma}_i(\alpha_s^\sigma(m_Z)) \cdot c_{\text{had},i}$$

ME: orders of $\alpha_s^{(n)}$

PDF: by integration of

$$\frac{\partial f}{\partial \alpha_s} = \frac{\mathcal{P} \otimes f}{\beta}$$

or

$$\tilde{f}(\mu) = f(\sqrt{K}\mu), \exp\left[\frac{1}{2} \int_{\alpha_s^{(\text{ref})}}^{\alpha_s'} \frac{d\alpha_s'}{\beta(\alpha_s')}\right] = \sqrt{K}$$

- cross sections are sensitive to both $\alpha_s^\sigma(m_Z)$
- cross sections are sensitive to both $\alpha_s^\sigma(m_Z)$

Jet cross sections at NNLO

Simultaneous fit to $\alpha_s^\sigma(m_Z)$ & $\alpha_s^f(m_Z)$

- both $\alpha_s^\sigma(m_Z)$ from fits are consistent within unc. using NNPDF3.0_nnlo_as_0.118
Variations of the scale and the scale choices

- our choice of scales: \(\mu_R^2 = \mu_F^2 = Q^2 + P_T^2 \)
- \(\mu_R \) variation has more impact than \(\mu_F \)
- theory uncertainty related to scale from variation of \(\mu_R, \mu_F \) by 0.5 & 2.0

- Q² as scale is disfavored (larger \(\chi^2 \))
- other choices are within scale unc.
- NNLO has smaller scale uncertainty compared to NLO

Low x meeting
Bari 14.06.2017
V. Chekelian, Jets in DIS and \(\alpha_s \) at NNLO
Variation of the input PDF sets

\[\alpha_s(m_Z) \equiv \alpha_s^\sigma(m_Z) \equiv \alpha_s^f(m_Z) \] and \(\chi^2/\text{ndf} \) from repetitive fits with different input PDF sets as a function of "\(\alpha_s(m_Z) \) of PDF"

→ different PDF sets obtained for our default \(\alpha_s(m_Z) = 0.118 \) deliver very stable fit results:

\[\text{additional PDF unc. "PDFset": } \frac{1}{2} \max[\Delta(\text{all PDFs at 0.118})] \]

→ the \(\alpha_s(m_Z) \) results are sensitive to input "\(\alpha_s(m_Z) \) of PDF"
- minimum of \(\chi^2/\text{ndf} \) is obtained around our default value 0.118

\[\text{additional PDF unc. "PDF} \alpha_s": \frac{1}{2} [\Delta \alpha_s(m_Z) = 0.004] \]
(2nd largest unc. after scale unc.)
Strong coupling from jets in DIS at NNLO

Results for $\alpha_s(m_Z)$ at NNLO using
- 9 individual H1 data sets separately
- all H1 inclusive jets data
- all H1 dijets data
- all H1 jets (excluding dijets HERA-I since no correlations to incl. jets)

all H1 jet data sets are consistent:
- χ^2/ndf is around unity for all fits

all $\alpha_s(m_Z)$ results are consistent

H1 jets (203 data points, χ^2/ndf=1.03)

$\alpha_s(m_Z) = 0.1157 (6)_{\text{exp}} (3)_{\text{had}} (6)_{\text{PDF}}$

$ (12)_{\text{PDF}} (2)_{\text{PDF set}} (\pm 27)_{\text{scale}}$

- excellent experimental precision
- still scale uncertainty is the largest
- in agreement with the world average
Fits are performed for groups of jet data points at similar scales and resulting $\alpha_s(m_Z)$ are transported to the average μ_R of the group.

- running of α_s in one experiment from 7 to 90 GeV is demonstrated

- in the full range α_s is in agreement with other α_s results at NNLO and the world average with a tendency to be a bit lower

- scale uncertainty is about the same at all μ_R values
Conclusions

The last missing piece in the jet measurements by H1 is on place:

<table>
<thead>
<tr>
<th>Process</th>
<th>HERA-I</th>
<th>HERA-II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dijets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trijets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dijets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trijets</td>
<td></td>
</tr>
</tbody>
</table>

The first determination of the strong coupling constant $\alpha_s(m_Z)$ at NNLO using ep DIS jet data from H1

$$\alpha_s(m_Z) = 0.1157(6)_{\text{exp}}(^{+31}_{-26})_{\text{theo}}$$

→ very close and nice cooperation of theoreticians and experimentalists

Jets in DIS: precision QCD phenomenology with NNLO accuracy