The Higgs couplings and self-coupling in the EFT framework

Jiayin Gu

DESY & IHEP

The 2017 International Workshop on Future Linear Colliders
October 25, 2017

and current work, S. Di Vita, G. Durieux, C. Grojean, JG, Z. Liu, G. Panico,
M. Riembau, T. Vantalon
Introduction

▷ Higgs and nothing else? What next?
▷ An $e^+ e^-$ collider is an obvious direction to go.
▷ Higgs factory ($e^+ e^- \rightarrow hZ$ at 240-250 GeV, $e^+ e^- \rightarrow \nu \bar{\nu} h$ at higher energies), and many more other measurements.
▷ The scale of new physics Λ is large \Rightarrow effective field theory (EFT) is a good description at low energy.
▷ A global analysis of the Higgs coupling constraints, in the EFT framework. See also e.g.,
 ▷ [arXiv:1510.04561, 1701.04804] Ellis et al.,

▷ Robust constraints on the triple Higgs coupling at both circular and linear colliders. (current work)
Higgs measurements

- $e^+ e^- \rightarrow hZ$, cross section maximized at around 250 GeV.
- $e^+ e^- \rightarrow \nu\bar{\nu}h$, cross section increases with energy.
- $e^+ e^- \rightarrow t\bar{t}h$, can be measured with $\sqrt{s} \gtrsim 500$ GeV.
- $e^+ e^- \rightarrow Zh$ and $e^+ e^- \rightarrow \nu\bar{\nu}hh$ (triple Higgs coupling).
\(\kappa \) framework vs. EFT

- Conventionally, the constraints on Higgs couplings are obtained from global fits in the so-called \(\kappa \) framework.

\[
g_h^{\text{SM}} \rightarrow \kappa g_h^{\text{SM}}.
\]

- Anomalous couplings such as \(hZ_{\mu\nu} Z_{\mu\nu} \) or \(hZ_{\mu} \partial_{\nu} Z^{\mu\nu} \) are assumed to be zero.

- EFT framework
 - Assuming \(\nu \ll \Lambda \), leading contribution from BSM physics are well-parameterized by D6 operators.
 - Gauge invariance is built in the parameterization.

- Lots of parameters! (Is it practical to perform a global fit?)

From the CEPC preCDR and "Physics Case for the ILC" ([arXiv:1506.05992])
The “12-parameter” framework in EFT

- Assume the new physics
 - is CP-even,
 - does not generate dipole interaction of fermions,
 - only modifies the diagonal entries of the Yukawa matrix,
 - has no corrections to Z-pole observables and W mass (more justified if the machine will run at Z-pole).

- Additional measurements
 - Triple gauge couplings from $e^+e^- \rightarrow WW$. (The LEP constraints will be improved at future colliders.)
 - Angular observables in $e^+e^- \rightarrow hZ$.
 - $h \rightarrow Z\gamma$ is also important.

- Only 12 combinations of operators are relevant for the measurements considered (with the inclusion of the Yukawa couplings of t, c, b, τ, μ).

- All 12 EFT parameters can be constrained reasonably well in the global fit!
EFT basis

- We work in the Higgs basis (LHCHXSWG-INT-2015-001, A. Falkowski) with the following 12 parameters,

\[\delta c_Z, \ c_{ZZ}, \ c_{Z\square}, \ c_{\gamma\gamma}, \ c_{Z\gamma}, \ c_{gg}, \ \delta y_t, \ \delta y_c, \ \delta y_b, \ \delta y_\tau, \ \delta y_\mu, \ \lambda_Z. \]

- The Higgs basis is defined in the broken electroweak phase.

- Couplings of h to W are written in terms of couplings of h to Z and \(\gamma \).

- 3 aTGC parameters (\(\delta g_{1,Z}, \delta \kappa_{\gamma}, \lambda_Z \)), 2 written in terms of Higgs parameters.

- It can be easily mapped to the following basis with D6 operators.

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_H)</td>
<td>(\frac{1}{2} (\partial_\mu</td>
</tr>
<tr>
<td>(O_{WW})</td>
<td>(g^2</td>
</tr>
<tr>
<td>(O_{BB})</td>
<td>(g' \)^2</td>
</tr>
<tr>
<td>(O_{HW})</td>
<td>(ig(D_{\mu} H)^\dagger \sigma^a (D_{\nu} H) W_{\mu\nu}^a)</td>
</tr>
<tr>
<td>(O_{HB})</td>
<td>(ig'(D_{\mu} H)^\dagger (D_{\nu} H) B_{\mu\nu})</td>
</tr>
<tr>
<td>(O_{GG})</td>
<td>(g_s^2</td>
</tr>
<tr>
<td>(O_{yy})</td>
<td>(y_u</td>
</tr>
<tr>
<td>(O_{yd})</td>
<td>(y_d</td>
</tr>
<tr>
<td>(O_{ye})</td>
<td>(y_e</td>
</tr>
<tr>
<td>(O_{3W})</td>
<td>(\frac{1}{3!} g_{\epsilon abc} W_{\mu\nu}^a W_{\nu\rho}^b W_{\rho\mu}^c)</td>
</tr>
</tbody>
</table>
Results of the “12-parameter” fit

precision reach of the 12-parameter fit in Higgs basis

Assuming the following run plans (no official plan for CEPC 350 GeV run)

- CEPC 240 GeV(5/ab) + 350 GeV(200/fb)
- FCC-ee 240 GeV(10/ab) + 350 GeV(2.6/ab)
- ILC 250 GeV(2/ab) + 350 GeV(200/fb) + 500 GeV(4/ab)
- CLIC 350 GeV(500/fb) + 1.4 TeV(1.5/ab) + 3 TeV(2/ab)
Impact of beam polarization

- Beam polarization helps discriminate different parameters.
 - Two polarization configurations are considered, $P(e^-, e^+) = (-0.8, +0.3)$ and $(+0.8, -0.3)$.
 - $F(-+)$ in the range of 0.6-0.8 gives an optimal overall results.
- Runs with different polarizations probe different combinations of EFT parameters in Higgs production.
Triple Higgs coupling in the EFT framework
(global fit with 12+1 parameters)

Triple Higgs coupling at low energies (250 & 350 GeV)

- $K_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{SM}^{hhh}}$,
 $\delta K_{\lambda} \equiv K_{\lambda} - 1 = c_6 - \frac{3}{2} c_H$,
 with $\mathcal{L} \supset -\frac{c_6}{\nu^2} (H^\dagger H)^3$.

- One loop corrections to all Higgs couplings (production and decay).

- 250 GeV: hZ near threshold (more sensitive to δK_{λ})

- at 350 GeV:
 - WW fusion
 - hZ at a different energy

- $h \rightarrow WW^*/ZZ^*$ also have some discriminating power (but turned out to be not enough).
Triplet Higgs coupling at low energies (250 & 350 GeV)

- Runs at both 250 GeV and 350 GeV are needed to obtain good constraints on δK_{λ}!
- Bounds are further improved if combined with HL-LHC measurements.

<table>
<thead>
<tr>
<th></th>
<th>ILC alone</th>
<th>ILC + HL-LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-zero aTGCs</td>
<td>zero aTGCs</td>
</tr>
<tr>
<td>250 GeV(2 ab)</td>
<td>[-5.72, +5.87]</td>
<td>[-5.39, +5.62]</td>
</tr>
<tr>
<td>250 GeV(2 ab)+350 GeV(200 fb)</td>
<td>[-1.26, +1.26]</td>
<td>[-1.18, +1.18]</td>
</tr>
<tr>
<td>250 GeV(2 ab)+350 GeV(1.5 ab)</td>
<td>[-0.84, +0.84]</td>
<td>[-0.56, +0.56]</td>
</tr>
</tbody>
</table>

Double-Higgs measurements \((e^+e^- \rightarrow Zhh \& e^+e^- \rightarrow \nu\bar{\nu}hh)\)

- Destructive interference in \(e^+e^- \rightarrow \nu\bar{\nu}hh!\) The square term is important.
- \(hh\) invariant mass distribution helps discriminate the “2nd solution.”
\(\chi^2 \) vs. \(\delta \kappa_\lambda \), ILC

Inputs:
- 500 GeV (4 ab\(^{-1}\)) : \(\sigma(Zhh) \) measured to 16.8\% [C. F. Düorig, PhD thesis, Hamburg U. (2016)]
- 1 TeV (2 ab\(^{-1}\)) : \(\sigma(\nu\bar{\nu}hh) \) measured to 2.7\(\sigma \) significance \(\Rightarrow \sim 37\% \) [talk by Düorig at ALCW15]

Complementarity between the 500 GeV run and the 1 TeV run.

Single Higgs measurements provide non-negligible improvement.
- up to 500 GeV: \([-0.31, +0.28] \rightarrow [-0.26, +0.25]\),
- up to 1 TeV: \([-0.20, +0.23] \rightarrow [-0.18, +0.20]\),

The Higgs couplings and self-coupling in the EFT framework
\(\chi^2 \) vs. \(\delta K_\lambda \), CLIC

Input:

- \(\sigma(\nu \bar{\nu} hh) \) measured to 44% at 1.4 TeV and 20% at 3 TeV (Higgs Physics at the CLIC Electron-Positron Linear Collider [arXiv:1608.07538], Assuming unpolarized beam.)

- \(\sigma(Zhh) \) measured to \(\sim 50\% \) at 1.4 TeV (our own naive estimation).

- The measurement of \(Zhh \) or the \(M_{hh} \) distribution of \(\nu \bar{\nu} hh \) can help resolve the “2nd solution.”

- The bounds on \(\delta K_\lambda \) can be further improved by having a \(hZ \) threshold run (e.g., by combining with CEPC 240 GeV or ILC 250 GeV).
A summary of the (future) bounds on $\delta \kappa_\lambda$

bounds on $\delta \kappa_\lambda$ from EFT global fit

- **HL-LHC**
 - 68%, 95% CL bounds, lepton collider only
 - 68%, 95% CL bounds, combined with HL-LHC

- **CEPC & FCC-ee**
 - HL-LHC results from arXiv:1704.01953
 - 14 TeV (3/ab), rates & distributions

- **ILC**
 - 240 GeV (5/ab) only (CEPC)
 - 240 GeV (5/ab) + 350 GeV (200/ab)
 - 240 GeV (5/ab) + 350 GeV (1.5/ab) (FCC-ee)
 - FCC-ee with zero αTGCs

- **CLIC**
 - 250 GeV (2/ab) only
 - 250 GeV (2/ab) + 350 GeV (200/ab)
 - above + 500 GeV (4/ab)
 - above + 1 TeV (2/ab)

$\delta \kappa_\lambda = \frac{\lambda_{hh}}{\lambda_{hh}^{SM}} - 1$

Jiayin Gu
DESY & IHEP

The Higgs couplings and self-coupling in the EFT framework
After the discovery of Higgs at the LHC, a plausible “next step” is to build an e^+e^- collider to perform Higgs precision measurements.

It makes sense to go beyond the “κ” frame and study Higgs physics in the EFT framework.

We can obtain strong and robust constraints on the coefficients of the relevant dimension-6 operators!

We can obtain robust constraints on the triple Higgs coupling!
backup slides
Global Determinant Parameter ($GDP \equiv \sqrt[n]{\text{det} \sigma^2}$).

Ratios of GDPs are basis-independent.

Smaller GDP \rightarrow better precision!
Impact of the single Higgs measurements

- What if the single Higgs measurements are much better or much worse?

- Much better: can further improve the bounds on \(\delta K_\lambda \) from double-Higgs measurements.

- Much worse: can significantly worsen the bounds on \(\delta K_\lambda \) from double-Higgs measurements.
Angular observables in $e^+ e^- \rightarrow hZ$

- Angular distributions in $e^+ e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.

- Previous studies

- 6 independent asymmetry observables from 3 angles

 \[A_{\theta_1}, \ A_{\phi}^{(1)}, \ A_{\phi}^{(2)}, \ A_{\phi}^{(3)}, \ A_{\phi}^{(4)}, \ A_{c \theta_1, c \theta_2}. \]

- Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).
TGC measurements (using ILC 500 GeV results)

- 3 aTGC parameters, 2 ($\delta g_{1,Z}$ & $\delta \kappa_{\gamma}$) related to Higgs observables.
- Linear colliders (large \sqrt{s}, beam polarizations) could potentially constrain the aTGCs very well.
- At the moment we simply use ILC numbers
 - I. Marchesini, PhD thesis, Hamburg U. (2011), assuming 500 fb$^{-1}$ data at 500 GeV with $P(e^-, e^+) = (\pm 0.8, \pm 0.3)$.
- CLIC can potentially do much better!
 - An updated experimental study that performs a global fit among all three aTGC parameters is desired.
- Will $e^+ e^- \rightarrow WW$ be much better measured than the Z-pole measurements? The “TGC dominance” assumption may not be valid anymore.

<table>
<thead>
<tr>
<th>ILC</th>
<th>uncertainty</th>
<th>$\delta g_{1,Z}$</th>
<th>$\delta \kappa_{\gamma}$</th>
<th>λ_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta g_{1,Z}$</td>
<td>6.1×10^{-4}</td>
<td>1</td>
<td>0.634</td>
<td>0.477</td>
</tr>
<tr>
<td>$\delta \kappa_{\gamma}$</td>
<td>6.4×10^{-4}</td>
<td>1</td>
<td>1</td>
<td>0.354</td>
</tr>
<tr>
<td>λ_Z</td>
<td>7.2×10^{-4}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
If you don’t like the Higgs basis...

Results in the SILH'(-like) basis ($\mathcal{O}_{W, B} \rightarrow \mathcal{O}_{WW, WB}$)

$$\mathcal{L}_{D6} = \frac{c_H}{v^2} \mathcal{O}_H + \frac{\kappa_{WW}}{m_W^2} \mathcal{O}_{WW} + \frac{\kappa_{BB}}{m_W^2} \mathcal{O}_{BB} + \frac{\kappa_{HW}}{m_W^2} \mathcal{O}_{HW} + \frac{\kappa_{HB}}{m_W^2} \mathcal{O}_{HB}$$

$$+ \frac{\kappa_{GG}}{m_W^2} \mathcal{O}_{GG} + \frac{\kappa_{3W}}{m_W^2} \mathcal{O}_{3W} + \sum_{f=t,c,b,\tau,\mu} \frac{c_{y_f}}{v^2} \mathcal{O}_{y_f}.$$
Advantages of the runs at higher energies

- Much better measurement of the WW fusion process ($e^+ e^- \rightarrow \nu \bar{\nu} h$).
- Probing $e^+ e^- \rightarrow hZ$ at different energies.
- Improving constraints on aTGCs ($e^+ e^- \rightarrow WW$).

Very helpful in resolving the degeneracies among parameters!
The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- There is some overlap in the information from different measurements.
- Measurements at different energies can be very helpful.
The precision reach of δK_λ at circular colliders

- The precision reach of δK_λ in the luminosity plane (luminosities at 240 GeV and 350 GeV).

- $e^+ e^- \rightarrow WW$ measured very well \Rightarrow setting aTGCs to zero is a good approximation.
Impact of δK_λ on the other parameters

- Adding one more parameter could worsen the bounds on others.
- The effect is under control if the degeneracies are well-resolved.
- The HL-LHC bounds on δK_λ can also help.
Impact of the Higher energy runs

precision reach at CEPC with different luminosities at 350 GeV

precision reach at FCC-ee with different luminosities at 350 GeV

precision reach at LHC with different run scenarios

precision reach at LHC with different run scenarios at 1 TeV

Jiayin Gu
DESY & IHEP
The Higgs couplings and self-coupling in the EFT framework
\[e^+ e^- \rightarrow \nu \bar{\nu} h \]

- It is hard to separate the \(WW \) fusion process from \(e^+ e^- \rightarrow hZ, \ Z \rightarrow \nu \bar{\nu} \) at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- For CEPC/FCC-ee 240 GeV, we analyze the combined \(e^+ e^- \rightarrow \nu \bar{\nu} h \) process, assuming new physics can contribute to both processes.
\[e^+ e^- \to WW \]

- \(e^+ e^- \to WW \) offers a great way to probe the anomalous triple gauge couplings (aTGCs, parameterized by \(\delta g_{1,Z} \), \(\delta \kappa_{\gamma} \), \(\lambda_Z \)).
- \(\delta g_{1,Z} \) and \(\delta \kappa_{\gamma} \) are related to Higgs observables.
- CEPC with 5 \(ab^{-1} \) data at 240 GeV can produce \(\sim 9 \times 10^7 \) \(e^+ e^- \to WW \) events.
- With such large statistics, the aTGCs can be very well constrained ([1507.02238] Bian, Shu, Zhang), but with two potential issues:
 - Systematic uncertainties can be important!
 - If \(e^+ e^- \to WW \) is measured more precisely than the \(Z \)-pole measurements, is it still ok to assume the fermion gauge couplings are SM-like?
The interplay between Higgs and TGC

- $\delta_{g_{1,2}}, \delta_{\kappa_\gamma}$ ↔ $c_{ZZ}, c_{Z\square}, c_{\gamma\gamma}, c_{Z\gamma}$

- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).

- Detailed study of $e^+e^- \rightarrow WW$ required to estimate the systematic uncertainties!
Asymmetry observables

\[A_{\theta_1} = \frac{1}{\sigma} \int_{-1}^{1} d\cos \theta_1 \ \text{sgn}(\cos(2\theta_1)) \ \frac{d\sigma}{d\cos \theta_1}, \]
\[A^{(1)}_{\phi} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \ \text{sgn}(\sin \phi) \ \frac{d\sigma}{d\phi}, \]
\[A^{(2)}_{\phi} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \ \text{sgn}(\sin(2\phi)) \ \frac{d\sigma}{d\phi}, \]
\[A^{(3)}_{\phi} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \ \text{sgn}(\cos \phi) \ \frac{d\sigma}{d\phi}, \]
\[A^{(4)}_{\phi} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \ \text{sgn}(\cos(2\phi)) \ \frac{d\sigma}{d\phi}, \]

\[A_{c\theta_1,c\theta_2} = \frac{1}{\sigma} \int_{-1}^{1} d\cos \theta_1 \ \text{sgn}(\cos \theta_1) \ \int_{-1}^{1} d\cos \theta_2 \ \text{sgn}(\cos \theta_2) \ \frac{d^2\sigma}{d\cos \theta_1 d\cos \theta_2}, \]
The “12-parameter” framework in the Higgs basis

- The relevant terms in the EFT Lagrangian are

\[\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc}, \]

- the Higgs couplings with a pair of gauge bosons

\[
\mathcal{L}_{hVV} = \frac{h}{v} \left[(1 + \delta c_W) \frac{g^2 v^2}{2} W^{+}_\mu W^{-}_\mu + (1 + \delta c_Z) \frac{(g^2 + g'^2)v^2}{4} Z_{\mu} Z_{\mu} \right. \\
+ c_{WW} \frac{g^2}{2} W^{+}_{\mu \nu} W^{-}_{\mu \nu} + c_{W\square} g^2 (W^{-}_\mu \partial_\nu W^{+}_{\mu \nu} + \text{h.c.}) \\
+ c_{gg} \frac{g_s^2}{4} G^{a}_{\mu \nu} G^{2}_{\mu \nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu \nu} A_{\mu \nu} + c_{Z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2} Z_{\mu \nu} A_{\mu \nu} \\
+ c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu \nu} Z_{\mu \nu} + c_{Z\square} g^2 Z_{\mu} \partial_\nu Z_{\mu \nu} + c_{\gamma\square} gg' Z_{\mu} \partial_\nu A_{\mu \nu} \right].
\]

Jiayin Gu
DESY & IHEP

The Higgs couplings and self-coupling in the EFT framework
The “12-parameter” framework in the Higgs basis

- Not all the couplings are independent, for instance one could write the following couplings as

\[
\delta c_W = \delta c_Z + 4\delta m, \\
c_{WW} = c_{ZZ} + 2s_{\theta w}^2 c_{Z\gamma} + s_{\theta w}^4 c_{\gamma\gamma}, \\
c_{WW} = \frac{1}{g^2 - g'^2} \left[g^2 c_{Z\square} + g'^2 c_{ZZ} - e^2 s_{\theta w}^2 c_{\gamma\gamma} - (g^2 - g'^2) s_{\theta w}^2 c_{Z\gamma} \right], \\
c_{\gamma\square} = \frac{1}{g^2 - g'^2} \left[2g^2 c_{Z\square} + (g^2 + g'^2) c_{ZZ} - e^2 c_{\gamma\gamma} - (g^2 - g'^2) c_{Z\gamma} \right],
\]

- we only consider the diagonal elements in the Yukawa matrices relevant for the measurements considered,

\[
\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f=t,c,b,\tau,\mu} m_f (1 + \delta y_f) \bar{f}_R f_L + \text{h.c.}
\]
\[\mathcal{L}_{\text{tgc}} = i g s_{\theta_W} A_\mu (W^{-\nu} W_{\mu \nu}^+ - W^{+\nu} W_{\mu \nu}^-) \]
\[+ i g (1 + \delta g_1^Z) c_{\theta_W} Z^\mu (W^{-\nu} W_{\mu \nu}^+ - W^{+\nu} W_{\mu \nu}^-) \]
\[+ i g \left[(1 + \delta \kappa_Z) c_{\theta_W} Z_{\mu \nu} + (1 + \delta \kappa_\gamma) s_{\theta_W} A_{\mu \nu} \right] W_{\mu}^- W_{\nu}^+ \]
\[+ \frac{i g}{m_W^2} (\lambda_Z c_{\theta_W} Z_{\mu \nu} + \lambda_\gamma s_{\theta_W} A_{\mu \nu}) W_{\nu}^- W_{\rho \mu}^+ , \] (7)

\[V_{\mu \nu} \equiv \partial_\mu V_\nu - \partial_\nu V_\mu \] for \(V = W^\pm, Z, A, \). Imposing Gauge invariance one obtains \(\delta \kappa_Z = \delta g_1, Z - t_{\theta_W}^2 \delta \kappa_\gamma \) and \(\lambda_Z = \lambda_\gamma. \)

\[\forall \delta g_1, Z, \delta \kappa_\gamma \text{ and } \lambda_Z, \text{ 2 of them related to Higgs observables by} \]
\[\delta g_1, Z = \frac{1}{2(g^2 - g'^2)} \left[-g^2 (g^2 + g'^2) c_{Z \square} - g'^2 (g^2 + g'^2) c_{Z Z} + e^2 g'^2 c_{\gamma \gamma} + g'^2 (g^2 - g'^2) c_{Z \gamma} \right] \]
\[\delta \kappa_\gamma = - \frac{g^2}{2} \left(c_{\gamma \gamma} \frac{e^2}{g^2 + g'^2} + c_{Z \gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{Z Z} \right) . \] (8)
CEPC/FCC-ee Higgs rate measurements

<table>
<thead>
<tr>
<th>Production</th>
<th>CEPC</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[240 GeV, 5 ab$^{-1}$]</td>
<td>[350 GeV, 200 fb$^{-1}$]</td>
</tr>
<tr>
<td>Zh $\nu\bar{\nu}h$</td>
<td>0.50% -</td>
<td>2.4% -</td>
</tr>
</tbody>
</table>

$h \rightarrow \bar{b}b$	0.21%*	0.39%♦	2.0%	2.6%	0.20%	0.28%♦	0.54%	0.71%
$h \rightarrow c\bar{c}$	2.5%	-	15%	26%	1.2%	-	4.1%	7.1%
$h \rightarrow gg$	1.2%	-	11%	17%	1.4%	-	3.1%	4.7%
$h \rightarrow \tau\tau$	1.0%	-	5.3%	37%	0.7%	-	1.5%	10%
$h \rightarrow WW^*$	1.0%	-	10%	9.8%	0.9%	-	2.8%	2.7%
$h \rightarrow ZZ^*$	4.3%	-	33%	33%	3.1%	-	9.2%	9.3%
$h \rightarrow \gamma\gamma$	9.0%	-	51%	77%	3.0%	-	14%	21%
$h \rightarrow \mu\mu$	12%	-	115%	275%	13%	-	32%	76%
$h \rightarrow Z\gamma$	25%	-	144%	-	18%	-	40%	-

Table: For $e^+e^- \rightarrow \nu\bar{\nu}h$, the precisions marked with a diamond ♦ are normalized to the cross section of the inclusive channel which includes both the WW fusion and $e^+e^- \rightarrow hZ$, $Z \rightarrow \nu\bar{\nu}$, while the unmarked ones include WW fusion only.
ILC Higgs rate measurements

<table>
<thead>
<tr>
<th>Production</th>
<th>[250 GeV, 2 ab$^{-1}$]</th>
<th>[350 GeV, 200 fb$^{-1}$]</th>
<th>[500 GeV, 4 ab$^{-1}$]</th>
<th>[1 TeV, 1 ab$^{-1}$]</th>
<th>[1 TeV, 2.5 ab$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zh</td>
<td>Zh</td>
<td>Zh</td>
<td>$\nu \bar{\nu} h$</td>
<td>$\nu \bar{\nu} h$</td>
</tr>
<tr>
<td>σ</td>
<td>0.71%</td>
<td>2.1%</td>
<td>1.1%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$h \to bb$</td>
<td>0.42%</td>
<td>1.7%</td>
<td>0.64%</td>
<td>0.5%</td>
<td>0.3%</td>
</tr>
<tr>
<td>$h \to c\bar{c}$</td>
<td>2.9%</td>
<td>13%</td>
<td>4.6%</td>
<td>3.1%</td>
<td>2.0%</td>
</tr>
<tr>
<td>$h \to gg$</td>
<td>2.5%</td>
<td>9.4%</td>
<td>3.9%</td>
<td>2.3%</td>
<td>-</td>
</tr>
<tr>
<td>$h \to \tau\tau$</td>
<td>1.1%</td>
<td>4.5%</td>
<td>1.9%</td>
<td>1.6%</td>
<td>1.0%</td>
</tr>
<tr>
<td>$h \to WW^*$</td>
<td>2.3%</td>
<td>8.7%</td>
<td>3.3%</td>
<td>3.1%</td>
<td>2.0%</td>
</tr>
<tr>
<td>$h \to ZZ^*$</td>
<td>6.7%</td>
<td>28%</td>
<td>8.8%</td>
<td>4.1%</td>
<td>2.6%</td>
</tr>
<tr>
<td>$h \to \gamma\gamma$</td>
<td>12%</td>
<td>44%</td>
<td>12%</td>
<td>8.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>$h \to \mu\mu$</td>
<td>25%</td>
<td>98%</td>
<td>31%</td>
<td>31%</td>
<td>20%</td>
</tr>
<tr>
<td>$h \to Z\gamma$</td>
<td>34%</td>
<td>145%</td>
<td>49%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CLIC Higgs rate measurements

<table>
<thead>
<tr>
<th>production</th>
<th>[350 GeV, 500 fb$^{-1}$]</th>
<th>[1.4 TeV, 1.5 ab$^{-1}$]</th>
<th>[3 TeV, 2 ab$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zh</td>
<td>$\nu\bar{\nu}h$</td>
<td>$\nu\bar{\nu}h$</td>
<td>tth</td>
</tr>
<tr>
<td>σ</td>
<td>1.6%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: We also include the estimations for $\sigma(hZ) \times \text{BR}(h \to b\bar{b})$ at high energies in [arXiv:1701.04804] (Ellis et al.), which are 3.3% (6.8%) at 1.4 TeV (3 TeV). For simplicity, the measurements of ZZ fusion ($e^+ e^- \to e^+ e^- h$) are not included in our analysis.