w-Meson Production by Virtual Photons

by

P. Joos, A. Ladage, H. Meyer, P. Stein, G. Wolf, and S. Yellin
Deutsches Elektronen-Synchrotron DESY, Hamburg

C. K. Chen, J. Knowles, D. Martin, J. M. Scarr,
I. O. Skillcorn, and K. Smith
University of Glasgow, Glasgow

C. Benz, G. Drews, D. Hoffmann, J. Knobloch, W. Kraus, H. Nagel,
E. Rabe, C. Sander, W. D. Schlatter, H. Spitzer, and K. Wacker
II. Institut für Experimentalphysik der Universität Hamburg
To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail):

DESY Bibliothek
2 Hamburg 52
Notkestr 1
Germany
\textbf{Abstract}

Quasi-elastic ω production by ep scattering in the kinematic region $0.3 < Q^2 < 1.4$ GeV2 and $1.7 < W < 2.8$ GeV was studied using a streamer chamber at DESY. The production angular distribution for $\gamma p \rightarrow \omega p$ has a strong non-peripheral component for $W < 2$ GeV. The ω production cross section falls by a factor 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with $|t| < 0.5$ GeV2 is W independent between 1.7 and 2.8 GeV and for $W > 2.0$ GeV consistent in both W and Q^2 dependence with the predictions of a model based on one-pion exchange and diffraction.

1. Introduction

In this paper we present final results on quasi-elastic ω production from an experiment which used the DESY streamer chamber to study inelastic electron-proton scattering. The experiment covered hadron c.m.s. energies W between threshold and 2.8 GeV, and values of the photon mass squared, $-Q^2$ from -0.3 to -1.4 GeV2. The experimental setup had nearly 4% acceptance for detection of charged hadrons. Here we give results on ω production by virtual photons via

$$\gamma p \rightarrow \omega p$$

(1)

Final results on the production and preliminary results on multiplicities and A^{**} production have already been published.1-5

Reaction (1) provides an opportunity to study ω production as a function of the photon mass. At $Q^2 = 0$ the general characteristics of ω production have been determined through the use of a polarized photon beam. The polarized beam has permitted the measurement of the amount of natural and unnatural parity exchange in the t-channel.6 It was found that the cross section associated with unnatural parity exchange has the $1/Q^2$ dependence characteristic of one-pion-exchange (E_γ is the photon energy) while the natural parity exchange cross section is approximately constant as expected for a diffractive process. A model based on a combination of one-pion-exchange (OPE) and diffraction is found to fit the data well.6,7 One of the objects of this experiment is to determine if ω production by virtual photons can also be understood in terms of these mechanisms. To this end we have measured the cross section for reaction (1) and its dependence on Q^2, W and t. We find a large non-peripheral component of the ω cross section which cannot be explained by the contributions from OPE and diffraction alone.

The paper is organized as follows: first we review the experimental procedure. In section 3 we give the $\pi^+\pi^-\pi^0$ mass distribution for the channel $\gamma p \rightarrow p\pi^+\pi^-\pi^0$ and describe how the numbers of ω events were determined. In section 4 we discuss the ω production cross section as a function of W, Q^2 and t, and the ω decay distributions. The data are compared with an OPE-diffraction model in section 5. A summary is given in section 6.
2. Experimental procedure

A detailed description of the apparatus and the event analysis procedure has been given in Ref. 2. A 7.2 GeV electron beam was directed onto a 8 cm long liquid hydrogen target inside a streamer chamber. The streamer chamber, of 1 m length, was in an 8 Kc magnetic field. Two arrays of trigger counters, lucite Čerenkov counters and lead scintillator sandwich shower counters detected the scattered electron. The present analysis is based on data taken with a proportional wire chamber added to each of the two detector arms. The coordinate information from the chambers improved the momentum and angular resolution of the scattered electron by more than a factor two compared with the measurement of the electron in the streamer chamber only.

Approximately 200 000 pictures were taken with this setup. The integrated flux was \(-2 \times 10^{12}\) electrons. The photographs were scanned twice and ambiguities were resolved in a third scan. The procedure for the measurement of the film was similar to that used in bubble chamber experiments. Geometrical reconstruction and kinematical fitting were done using the programs MCREN and GRIND.

Omega-norn production via reaction (1) was studied in the final state

\[\text{ep} \rightarrow \pi^+ + \pi^- + \pi^0 \]

The events selected as reaction (2) were required (a) to have a 1C fit with \(x^2 < 28\) consistent with the observed track ionization (b) to have no 4C fits of the type ep \(\rightarrow\) em + e + \(\pi^+\pi^-\), consistent with the track ionization. A total of 2746 events satisfying these criteria were found in the kinematical region

\[1.7 < W < 2.8 \text{ GeV}, \quad 0.3 < q^2 < 1.4 \text{ GeV}^2. \]

In the determination of \(\omega\) cross sections, corrections of approximately \(\pm 40\%\) have been applied for fit losses due to measurement errors and due to radiative effects (external and internal bremsstrahlung). The corrections were obtained from a Monte Carlo program which simulated the event production and detection in the streamer chamber. The Monte Carlo events were processed through GRIND in the same way as the measured events. It was found that events were lost for the following main reasons: \((4)\% - \) through bremsstrahlung causing the scattered electron to miss the trigger counters, \((15.5\% = \) no 1C fit, \((10.5\% = \) a 3C or 4C fit to ep \(\rightarrow\) em + \(\pi^+\pi^-\)). The correction factors, given in table 1, show some dependence on \(W\) and the four momentum transfer squared, \(t\), between the initial and final state proton, but do not vary systematically with \(q^2\). An extra \(\pm 1\%\) correction was applied for vertex and propagator effects. Corrections of \(11\%\) and \(10\%\), respectively, were made for \(\omega\) decays into neutrals and \(\omega\) events outside the 0.72 - 0.84 GeV mass interval.

Cross sections were determined by normalizing the total number of inelastic ep events (after correcting for acceptance and radiative effects) to the total inelastic ep cross section measured in a single arm experiment. The errors quoted include the statistical error plus the uncertainty of the background subtraction under the \(\omega\). A systematic uncertainty of \(\pm 10\%\) has to be added which covers the uncertainties from event selection, radiative corrections and cross section normalization.

3. Mass distribution for \(\gamma p \rightarrow p \pi^+ \pi^- \pi^0\)

The \(\pi^+ \pi^- \pi^0\) mass spectra from reaction (2) are shown in Figs. 1-2 for different \(Q^2\) and \(W\) intervals. The shaded parts have a t-cut, \(|t| < 0.5 \text{ GeV}^2\). The \(w\) peak is clearly seen at all energies. The numbers of \(w\)'s and hence the cross sections were determined using different procedures depending on the energy. For the lowest \(W\) interval, 1.7 - 2.0 GeV, the mass spectrum was fitted to a sum of \(\omega\) production and three pion phase-space background. For the higher \(W\) intervals a fit was made to the mass interval 0.6 - 1.0 GeV with an \(\omega\) contribution plus a second-order polynomial background. The \(w\) peak was described in the fit by a gaussian with an r.m.s. width of \(\pm 20\) MeV. In all cases the results of the fits were checked with estimates using hand-drawn backgrounds. For those intervals where the numbers of events were small only hand-drawn backgrounds were used.

4. The reaction \(\gamma p \rightarrow \omega p\)

4.1 Cross sections

Fig. 3 and Table 2 show the \(W\) dependence of the \(\omega\) cross section (a) for all values of \(|t|\) and (b) for \(|t| < 0.5 \text{ GeV}^2\). The latter cut was made to select peripherally produced \(w\)'s. Comparison of Figs. 3(a) and (b) shows that close to the \(\omega\) threshold most of the cross section is due to nonperipheral \(\omega\) production, which falls with increasing \(W\). In contrast the peripheral \(\omega\) production is approximately constant within 1.7 < \(W\) < 2.8 GeV. The curves in Fig. 3 will be discussed in section 5. The open points in Fig. 3(a) are from photoproduction experiments.**

* The Monte Carlo events show the presence of non-gaussian tails in the \(\omega\)-resolution function, which contain 10% of the events outside the interval 0.72-0.84 GeV.

** The definition of the \(\gamma p\) cross section is given in the Appendix.
Figs. 4(a) and (b) display the total and peripheral \(\omega \) production cross section as a function of \(Q^2 \). A significant \(Q^2 \) dependence is seen only between \(Q^2 = 0 \) (open circles from Refs. 6 and 7) and \(Q^2 = 0.3 \text{ GeV}^2 \) where \(\sigma_w \) drops by a factor 2 - 3. For comparison we show the \(\omega \) cross sections from the SLAC up streamer chamber experiment 12 (open squares). Fig. 5 shows the production angular distribution in the \(\gamma p \) center of mass system for \(1.7 < W < 2.0 \text{ GeV} \). Apart from a weak forward peak the bulk of the production cross section is nonperipheral. For \(W > 2 \text{ GeV} \) the forward peak is more pronounced as can be seen from the differential cross section \(d\sigma/dt \) in Fig. 6 (full points). The electroproduction cross sections of Figs. 5 and 6 are also listed in Table 3. The open points in Figs. 5 and 6 are from photoproduction experiments at comparable values of \(W \). For \(|t| < 0.5 \text{ GeV}^2 (\cos\theta^E > 0.6) \) the electroproduction cross sections are lower by a factor 3 - 4. In contrast the nonperipheral contributions for \(|t| > 0.5 \text{ GeV}^2 (\cos\theta^E < 0.6) \) decrease only by a factor 1.5 between \(Q^2 = 0 \) and \(Q^2 = 0.7 \text{ GeV}^2 \).

4.2 \(\omega \) decay angular distribution

The \(\omega \) decay angular distribution has been analysed in terms of the \(\omega \) density matrix elements in the helicity system using the formalism of Ref. 13. The values of the density matrix elements are given in Table 4. ** Only \(o_0 \) differs significantly from zero. We find no evidence that \(o_0 = Q^2 \) dependent within the range \(0.3 < Q^2 < 1.4 \text{ GeV}^2 \) The values of \(o_0 \) are found for peripheral \(\omega \)'s at both low and high \(W \) are, within errors, equal to those found in photoproduction; 6 this indicates that, in contrast to \(\rho \) electroproduction, there is no substantial increase in the production of longitudinal \(\omega \)'s when going from \(Q^2 = 0 \) to \(Q^2 = 0.7 \text{ GeV}^2 \).

In polarized photoproduction it has been possible to separate the contributions from natural and unnatural parity exchange in the t channel. With unpolarized electrons and protons we can only determine a lower limit to the natural parity exchange part \(o_N \) of the transverse \(\omega \) production cross section \(o_w \) from the relation (see sec. 4.2 of Ref. 13)

\[
o_N / o_w = \frac{1}{2} \left[1 + (2 \cos^2 \phi - 1) \right] o_0
\]

\[(3) \]

** We use the same formulae as in our study of \(\rho \) production. 6 The \(\omega \) decay angles are defined as in the Appendix of Ref. 5 replacing the direction \(\gamma \) of the \(\nu \) from \(\rho \) decay by the normal \(I^+ = \frac{1}{2} \) to the \(\omega \) decay plane in the \(\omega \) rest system. The angular distributions \(W(\cos\theta^E) \) and \(W(\phi^E) \) (not shown) are consistent with isotropy.

** The density matrix elements were determined by the method of moments from all events in the interval \(0.72 < W < 2.0 \text{ GeV} < 0.8 \text{ GeV} \). We have checked (from control regions) that the background does not change the results within the errors quoted.

From the data of Table 4 we obtain \(|t| < 0.5 \text{ GeV}^2 o_N^w > (0.6 \pm 0.1,o) \) for both \(1.7 < W < 2.0 \text{ GeV} \) and \(2.0 < W < 2.8 \text{ GeV} \), i.e. more than half of the peripheral transverse cross section is due to natural parity exchange. A determination of the longitudinal part is not possible within the present experiments; from the model discussed in section 3 one expects that only \(10 \% \) of the unnatural parity exchange contribution (from one-pion exchange) are due to longitudinal photons.

4.3 Comparison of \(\rho \) and \(\omega \) electroproduction

In Figs. 7 and 8 we compare differential cross sections for \(\rho \) and \(\omega \) production. At small production angles the \(\omega \) cross section is smaller than the \(\rho \) cross section by a factor 3 - 4. In the nonperipheral region \(|t| > 0.5 \text{ GeV}^2 \) the cross sections are approximately equal. The ratio of \(\omega \) to \(\rho \) production as a function of \(Q^2 \) for different \(W \) intervals is shown in Fig. 9 for all \(t \). Within errors the ratio is \(Q^2 \) independent. For comparison we show the data of Ref. 14 (open triangles) which are compatible with our data. The electroproduction has been found to be consistent with a dominantly diffractive process for \(W > 2 \text{ GeV} \). If \(\omega \) electroproduction were also dominated by diffraction an \(\omega \) to \(\rho \) cross section ratio of about 1.9 (corresponding to the ratio of the square of the \(\rho \) and \(\omega \) coupling constants) would be expected. We conclude from the data of Figs. 7 - 9 that other mechanisms contribute to \(\omega \) production, in particular for \(|t| > 0.5 \text{ GeV}^2 \).

5. Comparison with a model

Photoproduction of \(\omega \) mesons has been successfully explained by contributions from one-pion exchange and diffraction. Starting from this Frans 15 has developed a similar model for the electroproduction of \(\omega \) mesons in which the production takes place through elementary one-pion exchange (OPE) and diffraction. We have modified his approach by including Benecke-Rivera form factors 16, 17 in the OPE term and have used a diffractive term derived from photoproduction, so that at \(Q^2 = 0 \) the model fits photoproduction within 10%. We have used the value of \(\Gamma_{\gamma \omega} = \gamma_{\gamma \omega} = 0.90 \text{ MeV} \) for the radiative width and, following Frans, we have used the VDM relation

\[
\Gamma_{\gamma \omega} (Q^2) = \frac{m_\omega^2}{4} \left(\frac{Q^2}{m_\omega^2 + Q^2} \right)^2 \Gamma_{\gamma \omega} (0)
\]

for the relation between the \(\gamma \omega \) and \(\gamma \omega \) coupling constants. The coupling constant \(\Gamma_{\gamma \omega} \) could be \(Q^2 \) dependent but in the calculations presented here we have kept it constant at its \(Q^2 = 0 \) value. The basic formulae of the model are given in the Appendix.

* We use the usual VDM picture, where the virtual photon couples to the \(\omega \) meson with a subsequent diffractive up scattering.

* We use the same formulae as in our study of \(\rho \) production. 6 The \(\omega \) decay angles are defined as in the Appendix of Ref. 5 replacing the direction \(\gamma \) of the \(\nu \) from \(\rho \) decay by the normal \(I^+ = \frac{1}{2} \) to the \(\omega \) decay plane in the \(\omega \) rest system. The angular distributions \(W(\cos\theta^E) \) and \(W(\phi^E) \) (not shown) are consistent with isotropy.

** The density matrix elements were determined by the method of moments from all events in the interval \(0.72 < W < 2.0 \text{ GeV} < 0.8 \text{ GeV} \). We have checked (from control regions) that the background does not change the results within the errors quoted.
The curves on Figs. 3, 4(b) and 6 show the predictions of the model. The dashed line in Fig. 3(b) gives the contribution from OPE alone. For \(W > 2 \) GeV and \(|t| < 0.5 \text{ GeV}^2\), the model is in reasonable agreement with the data. However, for \(W < 2 \) GeV there is substantial \(\omega \) production which is non-peripheral and nearly isotropic, and which shows a weak \(Q^2 \) dependence; these features cannot be explained by the model. This is in contrast to photoproduction for which the model gives a good description down to threshold (see dash-dotted curves in Figs. 3a, 5 and 6). Hence we conclude that an additional production mechanism, e.g., formation of \(s \)-channel resonances, contributes strongly in \(\omega \) electroproduction for \(W < 2 \) GeV.

6. Summary

We have measured the cross section for \(\omega \) production by virtual photons as a function of \(Q^2, W \) and \(t \).

We find:

(1) \(\omega \) production near threshold is dominantly non-peripheral (Fig. 5).

Some non-peripheral production persists at higher energies (Fig. 6).

(2) The non-peripheral component is weakly \(Q^2 \) dependent and strongly energy dependent. It is responsible for the decrease of the total \(\omega \) cross section from \(-4 \text{ \{pb\}}\) at threshold to \(-1.1 \text{ \{pb\}}\) at \(W = 2.8 \) GeV (see Fig. 3).

(3) The peripheral component of \(\omega \) production (\(|t| < 0.5 \text{ GeV}^2\)) is essentially energy independent in the range \(1.7 < W < 2.8 \) GeV. For \(W > 2 \) GeV its \(Q^2 \) and \(W \) dependence is compatible with a model based on VDM-modified OPE and diffraction (Figs. 3(b), 4(b), 6).

(4) The value of \(\sigma^0_{\omega} \) for peripheral \(\omega \)'s is consistent with that found in photoproduction, indicating that, in contrast to \(\phi \) electroproduction, there is little increase in the production of longitudinal \(\omega \)'s when \(Q^2 \) changes from 0 to 0.7 GeV2.

(5) Within errors the ratio \(\sigma_{\omega}/\sigma_{\phi} \) is independent of \(Q^2 \) for \(0 < Q^2 < 0.8 \) GeV2 and \(W < 2.6 \) GeV (Fig. 9). At large \(|t| \) the \(\omega \) cross section is approximately equal to the \(\phi \) cross section (Figs. 7, 8).

In conclusion: \(\omega \) production by virtual photons in the kinematical region \(1.7 < W < 2.8 \) GeV and \(Q^2 < 1.4 \) GeV2 has two main contributions:

- a non-peripheral part, which is strongly energy dependent, suggestive of \(s \)-channel resonance formation,
- and a peripheral part, consistent with a production mechanism via OPE and diffraction.

Acknowledgements

We thank I. Bloodworth, B. Naroska, D. Notz and W.J. Podolsky for their contributions in the early stages of this experiment. We are indebted to K. Gollmer, E. Hell, V. Heynen, A. Huber, K. Klinkmüller, G. Kraft, H.H. Sabath, S.W. Sass, K. Westphal, and K.H. Weoblevski, for technical assistance. The excellent performance of the Synchrotron crew, of the Hallendienst and of the Kältetechnik is gratefully acknowledged. We want to thank our scanning and measuring personnel for their careful work. The cooperation by Mr. Kuhlmann and the Rechenzentrum has been very helpful.

The work at Hamburg has been supported by the Bundesministerium für Forschung und Technologie. The work at Glasgow has been supported by the Science Research Council.
Appendix

Differential cross section for the electroproduction of ω-mesons

1. Definition of virtual photon cross sections

Following Hand, the differential cross section $d^2\sigma/dQ^2dw$ for electroproduction of ω's can be expressed in terms of σ_T and σ_L, which refer to ω production by transverse and longitudinal photons, respectively, using

$$\frac{d^2\sigma}{dQ^2dw} = \frac{P}{E'} \frac{m_p}{E} \Gamma L \left[\frac{d\sigma_T}{d\Omega} + \frac{d\sigma_L}{d\Omega} \right]$$

Here E, E' are the energies of the incident and scattered electron, m_p is the mass of the proton, ΓL measures the flux of transverse photons and t is the four-momentum transfer squared from γ to ω.

$$\Gamma L = \frac{2}{4\pi} \frac{E'}{m_p} \frac{m_p^2 - \frac{1}{m_p^2} - \frac{1}{t}}{1 - t}$$

with

$$\epsilon = \left[1 + 2 \frac{\xi^2 + Q^2}{4EE' - Q^2} \right]^{-1}$$

$$\xi = \frac{4m_p^2}{4m_p^2 + Q^2 - 2Q^2}$$

w - hadron rest energy

$-Q^2$ - photon mass squared

2. Model for ω production cross sections

(a) One-pion-exchange contribution

Here we follow closely the equations of Fraas, but we introduce the Benecke-Ditt form-factors, which are found necessary to describe ω photoproduction.

For transverse photons the differential cross section $d^2\sigma_T/dQ^2dw$, is given by

$$d^2\sigma_T/dQ^2dw = \frac{1}{2} \frac{m_p^4}{P(Q^2)P(O)Q^2} \frac{G^2}{16} \frac{\omega^2}{(t - m_p^2)^2} \frac{\omega^2}{(Q^2 + m_p^2)^2} \cdot \left[4(B + C) - 2Q^2uw \right] \cdot \frac{4(B + C)}{4 (-C)} \cdot \frac{1}{F_N \cdot F_H}$$

while for longitudinal photons the corresponding expression is

$$d^2\sigma_L/dQ^2dw = \frac{1}{2} \frac{m_p^4}{P(Q^2)P(O)Q^2} \frac{G^2}{16} \frac{\omega^2}{(t - m_p^2)^2} \frac{\omega^2}{(Q^2 + m_p^2)^2} \cdot \frac{1}{F_N \cdot F_H}$$

where G^2 is the square of the pion-nucleon coupling = 14.6.

$$Q^2 = 96\pi \left(\frac{m_p^2}{m_N^2} \right)^3 \Gamma_{\omega\gamma\gamma}$$

with $\Gamma_{\omega\gamma\gamma}$ being the partial width for $\omega \rightarrow \gamma\gamma$, $\Gamma_{\omega\gamma\gamma} = 0.9$ MeV.

$P(O), P(Q^2)$ are the photon moments in the hadron cms for real and virtual photons, respectively;

w_γ, m_ω, m_p are the masses of the γ, ω and p respectively.

F_N, F_H are the form-factors for the n-nucleon and ω-nucleon vertices respectively with:

$$F_N = \left[1 + (2.9)Q^2/(1 + (2.9)Q^2) \right]^{\frac{3}{2}}$$

$$Q^2 = m_N^2 - m_p^2$$

where $Q^2 = m_N^2 - m_p^2$.

and

$$Q^2 = t = m_p^2 - m_\omega^2$$

$$U(x) = \frac{2x^2 + 1}{4x^2} \log(4x^2 + 1) - \frac{1}{(2x^2)^2}$$

Q_T is the momentum of the off-shell pion (or γ) in the ω rest frame and Q_F is the momentum of the off-shell pion (or γ) in the ω rest frame.

The quantities B, C, H_3 are as defined by Fraas, namely,

$$B = -0.5Q^2(t - 2m_p^2) + 0.25(w_\gamma^2 + Q^2 - w_\omega^2)m_p^2 + w_\omega^2 - w_\omega^2 - t$$

$$C = -0.25 \{(m_\omega^2 - m_p^2)^2 + Q^2\}(m_\omega^2 - Q^2)^2$$

$$H_3 = 0.5 \{w_\gamma^2 + w_\omega^2\}(m_p^2 - m_\omega^2 - m_p^2)Q^2 + m_\omega^2/2$$

with $w_\omega^2 = t + m_p^2 - Q^2 + m_p^2$.

(b) Diffraction contribution

We use a parametrisation for the diffractive ω cross section σ_D, which is based on vector dominance and which at $Q^2 = 0$, fits the SLAC-LSL-Tufts data on ω production.
where
\[E_y = \left(\frac{u^2 - m_y^2}{2m_y} \right) \]
R = \frac{0.4 \, Q^2 / m_y^2}{P(0)}

and \(P(0)/P(Q^2) \) takes account of the difference in photon flux for different \(Q^2 \) at a given \(W \).

Fig. 10 illustrates the relative magnitude and \(Q^2 \) dependence of the diffractive, the transverse OPE and the longitudinal OPE contributions to the cross sections from the above model for \(|t| < 0.5 \, \text{GeV}^2 \) and \(2.0 < W < 2.8 \, \text{GeV} \).
Table 1
Correction factors for fit losses due to measurement errors and due to external and internal bremsstrahlung.

<table>
<thead>
<tr>
<th></th>
<th>(1.7 - 2.0)</th>
<th>(2.0 - 2.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 - 0.5)</td>
<td>(1.38 \pm 0.03)</td>
<td>1.45 \pm 0.04</td>
</tr>
<tr>
<td>(0.5 - 1.0)</td>
<td>(1.26 \pm 0.03)</td>
<td>1.55 \pm 0.05</td>
</tr>
<tr>
<td>(1.0 - 2.0)</td>
<td>(1.47 \pm 0.06)</td>
<td>1.70 \pm 0.07</td>
</tr>
<tr>
<td>(2.0 - \max t)</td>
<td>(1.8 \pm 0.07)</td>
<td>2.0 \pm 0.34</td>
</tr>
<tr>
<td>(\max t)</td>
<td>(1.40 \pm 0.04)</td>
<td>1.53 \pm 0.05</td>
</tr>
</tbody>
</table>

Table 2
Reaction \(\gamma p \rightarrow \gamma p\), \(\gamma\) production cross section (in \(\mu b\)) as a function of \(Q^2\) and \(w\). The data at \(Q^2 = 0\) are from Refs. 6 and 7. For completeness we also give the ratio \(\sigma_{\gamma p} / \sigma_{\gamma p}^{\text{tot}}\), where \(\sigma_{\gamma p}^{\text{tot}}\) was determined by a fit to the data of Ref. 11.

<table>
<thead>
<tr>
<th>(W) (GeV)</th>
<th>(Q^2) (GeV(^2))</th>
<th>(<Q^2>) (GeV(^2))</th>
<th>all (t) (\sigma_{\gamma p})</th>
<th>(\sigma_{\gamma p} / \sigma_{\gamma p}^{\text{tot}})</th>
<th>(<Q^2>) (GeV(^2))</th>
<th>(\sigma_{\gamma p}^{\text{tot}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.3 - 0.5)</td>
<td>(0.4)</td>
<td>(3.9 \pm 0.8)</td>
<td>(0.038 \pm 0.008)</td>
<td>0.39</td>
<td>(1.46 \pm 0.46)</td>
<td></td>
</tr>
<tr>
<td>(<w> = 1.85)</td>
<td>(0.8 - 1.4)</td>
<td>(1.05)</td>
<td>(4.9 \pm 0.9)</td>
<td>(0.058 \pm 0.011)</td>
<td>0.65</td>
<td>(1.78 \pm 0.43)</td>
</tr>
<tr>
<td>(0)</td>
<td>(7.0 \pm 0.8)</td>
<td>(0.055 \pm 0.005)</td>
<td>(4.2 \pm 0.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<w> = 2.09)</td>
<td>(0.8 - 1.4)</td>
<td>(1.20)</td>
<td>(2.3 \pm 0.7)</td>
<td>(0.033 \pm 0.010)</td>
<td>0.61</td>
<td>(1.05 \pm 0.40)</td>
</tr>
<tr>
<td>(0)</td>
<td>(7.4 \pm 1.0)</td>
<td>(0.051 \pm 0.007)</td>
<td>(5.3 \pm 0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<w> = 2.43)</td>
<td>(0.8 - 1.4)</td>
<td>(1.60)</td>
<td>(3.0 \pm 1.3)</td>
<td>(0.068 \pm 0.015)</td>
<td>0.92</td>
<td>(0.32 \pm 0.24)</td>
</tr>
<tr>
<td>(0)</td>
<td>(5.4 \pm 0.6)</td>
<td>(0.046 \pm 0.004)</td>
<td>(4.6 \pm 0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<w> = 2.09)</td>
<td>(0.8 - 1.4)</td>
<td>(1.20)</td>
<td>(3.0 \pm 1.3)</td>
<td>(0.058 \pm 0.025)</td>
<td>0.90</td>
<td>(0.94 \pm 0.50)</td>
</tr>
</tbody>
</table>
Table 3

Reactions $p + p \rightarrow p + p$ at $0.3 < Q^2 < 1.4 \text{ GeV}^2$,
Differential cross sections do/dQ (in the hadron c.m.s.) for $1.7 < W < 2.0 \text{ GeV}$ and do/dt for $2.0 < W < 2.8 \text{ GeV}$.

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>W (GeV)</th>
<th>cosθ</th>
<th>do/dQ (ub/sr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9 - 1.0</td>
<td>0.68 ± 0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8 - 0.9</td>
<td>0.50 ± 0.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6 - 0.8</td>
<td>0.30 ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.2) - 0.2</td>
<td>0.23 ± 0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.6) - (-0.2)</td>
<td>0.23 ± 0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.8) - (-0.6)</td>
<td>0.23 ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.0) - (-0.8)</td>
<td>0.37 ± 0.13</td>
<td></td>
</tr>
</tbody>
</table>

| Q^2 (GeV2) | W (GeV) | | do/dt (ub/GeV2) |
|-----------------|---------|----------------|
| | < 0.1 | * |
| | 0.1 - 0.2 | 3.8 ± 0.3 |
| | 0.2 - 0.3 | 1.4 ± 0.6 |
| | 0.3 - 0.5 | 0.90 ± 0.37 |
| | 0.5 - 0.7 | 1.20 ± 0.36 |
| | 0.7 - 1.0 | 0.42 ± 0.23 |
| | 1.0 - 1.5 | 0.26 ± 0.15 |
| | 1.5 - 2.0 | 0.22 ± 0.14 |
| | 2.0 - 2.5 | 0.10 ± 0.10 |

* We have a signal of 20 ± 3.5 events corresponding to a cross section of 0.2 ub. We do not quote a differential cross section, since t_{min} varies drastically in the Q^2 and W interval considered.

Table 4

Spin density matrix elements for $p + p \rightarrow p + p$ in the s-channel helicity system ($0.3 < Q^2 < 1.4 \text{ GeV}^2$).

| W (GeV) | | all t |
|---------|----------------|
| 1.7 - 2.0 | 2.0 - 2.8 |
| 1.7 - 2.0 | 2.0 - 2.8 |

| $|t| < 0.5 \text{ GeV}^2$ |
|------------------------|
| Re r_{00}^4 | 0.27 ± 0.07 | 0.28 ± 0.06 |
| Re r_{00}^4 | 0.01 ± 0.04 | 0.07 ± 0.04 |
| Re r_{00}^4 | -0.02 ± 0.06 | 0.13 ± 0.06 |
| Re r_{10}^2 | -0.03 ± 0.12 | -0.16 ± 0.09 |
| Re r_{10}^2 | -0.01 ± 0.07 | 0.12 ± 0.07 |
| Re r_{10}^2 | -0.07 ± 0.06 | -0.01 ± 0.06 |
| Re r_{10}^2 | 0.09 ± 0.09 | 0.01 ± 0.10 |
| Im r_{10}^2 | -0.03 ± 0.07 | 0.02 ± 0.07 |
| Im r_{10}^2 | 0.07 ± 0.10 | 0.01 ± 0.09 |
| Im r_{10}^2 | 0.08 ± 0.06 | 0.04 ± 0.05 |
| Im r_{10}^2 | -0.01 ± 0.04 | 0.00 ± 0.03 |
| Im r_{10}^2 | 0.01 ± 0.03 | 0.02 ± 0.03 |
| Im r_{10}^2 | 0.01 ± 0.03 | 0.02 ± 0.03 |
| Im r_{10}^2 | 0.01 ± 0.03 | 0.02 ± 0.03 |
| Im r_{10}^2 | 0.01 ± 0.03 | 0.02 ± 0.03 |

- **Table 3**

- **Table 4**
Figure Captions

Fig. 1 Distribution of the effective mass $M_{P+\gamma}$ from the reaction $ep \rightarrow e'P'\gamma$ for $0.3 < Q^2 < 1.4 \text{ GeV}^2$ and three W intervals. The shaded plots are for $|t| < 0.5 \text{ GeV}^2$ where $|t|$ is the four-momentum transfer squared from γ to p.

Fig. 2 Reaction $ep \rightarrow e'P'\gamma$. Distribution of the effective mass $M_{P+\gamma}$ for two W and three Q^2 intervals.

Fig. 3 $\sigma(y_{\gamma},p \rightarrow up)$ for $0.3 < Q^2 < 1.4 \text{ GeV}^2$ as a function of W
(a) for all t
(b) for $|t| < 0.5 \text{ GeV}^2$.
The open points are from the photoproduction data of Ref. 6 (open squares) and Ref. 7 (open circles). The curves are from the model discussed in section 5. The full and dash-dotted lines give the total contribution of the model; the dashed line gives the OPE part alone.

Fig. 4 $\sigma(y_{\gamma},p \rightarrow up)$ as a function of Q^2 for different W intervals.
(a) for all t
(b) for $|t| < 0.5 \text{ GeV}^2$.
The open circles at $Q^2 = 0$ are from references 6 and 7. The open squares are data from Ref. 12. The curves are from the model discussed in section 5.

Fig. 5 $d\sigma/dt(y_{\gamma},p \rightarrow up)$ for $0.3 < Q^2 < 1.4 \text{ GeV}^2$ and $1.7 < W < 2.0 \text{ GeV}$.
θ_{cm} is the γ-production angle in the y_{γ} center of mass system.
The open points are from the photoproduction data of Ref. 7.
The curve is from the model discussed in section 5 (computed at $Q^2 = 0$).

Fig. 6 $d\sigma/dt(y_{\gamma},p \rightarrow up)$ for $0.3 < Q^2 < 1.4 \text{ GeV}^2$ and $2.0 < W < 2.8 \text{ GeV}$.
The curves are from the model discussed in section 5. The points labelled SHT and ABRHM are from the photoproduction data of Refs. 6 and 7, respectively.

Fig. 7 Differential cross sections $d\sigma/dt$ in the hadronic cms for reactions $y_{\gamma},p \rightarrow up$ (full points) and $y_{\gamma},p \rightarrow p^0p$ (open triangles from Ref. 5) for $1.7 < W < 2.0 \text{ GeV}$ and $0.3 < Q^2 < 1.4 \text{ GeV}^2$.

Fig. 8 Differential cross sections $d\sigma/dt$ for reactions $y_{\gamma},p \rightarrow up$ (full points) and $y_{\gamma},p \rightarrow p^0p$ (open triangles from Ref. 5) for $2.0 < W < 2.8 \text{ GeV}$ and $0.3 < Q^2 < 1.4 \text{ GeV}^2$.

Fig. 9 The ratio $\sigma(y_{\gamma},p \rightarrow up)/\sigma(y_{\gamma},p \rightarrow pp)$ as a function of Q^2 for different W intervals. The open circles and the dashed lines indicate the photoproduction values, which were taken from Refs. 6 and 7. The open triangles are data from Ref. 14 for $2.0 < W < 5 \text{ GeV}$ with an average $<W> = 2.65 \text{ GeV}$.

Fig. 10 Q^2 dependence of the diffractive (full curve), the transverse OPE (dashed curve) and the longitudinal OPE (dash-dotted curve) γ cross section as predicted by the model of section 5 for $2.0 < W < 2.8 \text{ GeV}$.
$\gamma p \rightarrow p \pi^+ \pi^- \pi^0$

$0.3 < Q^2 < 1.4 \text{ GeV}^2$

$|t| < 0.5 \text{ GeV}^2$

Fig. 1

- **W: 1.7 - 2.0 GeV**
 - 723 events

- **W: 2.0 - 2.2 GeV**
 - 603 events

- **W: 2.2 - 2.8 GeV**
 - 1420 events

Fig. 2

- **W: 1.7 - 2.0 GeV**
 - $0.3 < Q^2 < 0.5 \text{ GeV}^2$

- **W: 2.0 - 2.8 GeV**
 - $0.5 < Q^2 < 0.8 \text{ GeV}^2$

- **W: 2.8 - 14 \text{ GeV}^2**
 - $0.8 < Q^2 < 1.4 \text{ GeV}^2$
\(\gamma_{VP} \rightarrow \omega P \) for \(0.3 < Q^2 < 1.4 \text{ GeV}^2 \)

(a) all t

\[\sigma_w (\text{µb}) \]

- \(Q^2 = 0 \)
- OPE + DIFFRACTION
- \(|t| < 0.5 \text{ GeV}^2 \)
- OPE

(b) \(|t| < 0.5 \text{ GeV}^2 \)

W: 1.7 - 2.0 GeV

W: 2.0 - 2.2 GeV

W: 2.2 - 2.8 GeV

Fig. 3

\[\sigma_w (\text{µb}) \]

Fig. 4a
\(\gamma_Vp \rightarrow \omega p \)

For \(W: 1.7-2.0 \) GeV

\(0.3 < Q^2 < 1.4 \) GeV2

\(\sigma_3 \) (\(\mu b \))

\(Q^2 (\text{GeV}^2) \)

\(\cos \theta_{cm} \)

Fig. 4b

\(\gamma_Vp \rightarrow \omega p \)

\(1.7 < W < 2.0 \) GeV

\(0.3 < Q^2 < 1.4 \) GeV2

• This experiment

○ Photoproduction

ABBHHM

Fig. 5
\[\gamma v p \rightarrow \omega p \]

\[2.0 < W < 2.8 \text{ GeV} \]
\[0.3 < Q^2 < 1.4 \text{ GeV}^2 \]

- This exp. \(\langle W \rangle = 2.3 \text{ GeV} \)
- SBT \(\langle W \rangle = 2.48 \text{ GeV} \)
- ABBHMM \(\langle W \rangle = 2.2 \text{ GeV} \)

\[\gamma v p \rightarrow \rho p \]

\[1.7 < W < 2.0 \text{ GeV} \]
\[0.3 < Q^2 < 1.4 \text{ GeV}^2 \]

Fig. 6

Fig. 7
Fig. 8

Fig. 9

$2.0 < W < 2.8$ GeV

$0.3 < Q^2 < 1.4$ GeV2

$\Delta \gamma V p \rightarrow \rho^0 p$

$\bullet \gamma V p \rightarrow \omega p$

$W: 1.7 - 2.0$ GeV

$W: 2.0 - 2.2$ GeV

$W: 2.2 - 2.8$ GeV