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We discuss an improved detection scheme for a light-shining-through-wall (LSW) exper-
iment for axion-like particle searches. We propose to use: gyrotrons or klystrons, which
can provide extremely intense photon fluxes at frequencies around 30 GHz; transition-edge-
sensors (TES) single photon detectors in this frequency domain, with efficiency ≈ 1; high
quality factor Fabry-Perot cavities in the microwave domain, both on the photon-axion
conversion and photon regeneration sides. We compute that present laboratory exclusion
limits on axion-like particles might be improved by at least four orders of magnitude for
axion masses . 0.02 meV.

1 Introduction

Axions [1] are between the most serious dark matter candidates. They are light neutral scalar
or pseudoscalar bosons, with mass ma ≈ µeV−meV, coupled to the electromagnetic field via

LI =
1
4
GaFµν F̃µν (1)

In QCD axion models (DFSZ [2] and KSVZ [3]), the axion-photon coupling constant G is
directly related to ma; thus, G is the only free parameter of the theory. In axion-like particle
(ALP) searches, the parameter space is extended: G and ma are the free parameters [4].

Axions and ALPs experimental searches can be divided into two main categories: 1) Axions
from astrophysical and cosmological sources; 2) Laboratory searches. In the former case, exclu-
sion limits on the axion-photon coupling constant are provided by estimates of stellar-energy
losses [4, 5], helioscopes [6, 7, 8] and haloscopes [6, 9]. In the latter case, limits on G are
given by photon polarization [10] and Light-Shining-Through-Wall (LSW) [6, 11, 12, 13, 14]
experiments.

In this contribution, we will focus on LSW experiments. After a brief description of the
standard LSW experimental apparatus, we will discuss how to improve present ALPs laboratory
limits onG by at least four orders of magnitude [15]. We are willing to do this by using extremely
intense photon fluxes from gyrotron sources at frequencies around 30 GHz, TES single photon
detectors with efficiency ≈ 1, and high quality factor Fabry-Perot cavities in the microwave
domain (Q ≈ 104 − 105), both on the photon-axion conversion and photon regeneration sides.
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Figure 1: Experimental configuration of the STAX LSW experiment. Fig. from Ref. [15];
Elsevier B.V. copyright.

2 LSW experiments

In a LSW experiment [6, 11, 12, 13, 14], a coherent photon beam traverses an intense magnetic
field, H. Here, some photons can convert into axions via the Primakoff effect. Photons exchange
3-momentum q with H, the energy is conserved. If the x̂ axis is chosen in the direction of the
propagating photon beam, then the external magnetic is assumed to be uniform in the volume
LxLyLz = LxS.

The photons which do not convert into axions are stopped by an optical barrier, “the wall”.
while axions can cross the wall, due to their negligible cross-section with ordinary matter. On
the other side of the wall there is a second magnetic field, which can convert axions back to
photons. Reconverted photons may be detected via a single-photon detector.

In the εγ � ma limit, the photon to axion (axion to photon) conversion probability is given
by [6]

Pγ→a = Pa→γ = G2H2 sin2(qxLx/2)
q2x

εγ√
ε2γ −m2

a

(2)

where εγ is the photon (axion) energy and ma the axion mass. In the limit εγ ≈ ma, which is
relevant for the STAX experiment, the previous expression for the conversion probability has
to be regulated [15]

Pγ→a = Pa→γ = G2H2 sin2(qxLx/2)
q2x

εγ
1
Lx

+
√
ε2γ −m2

a

(3)

The photon-axion-photon rate reads

dNγ
dt

= ΦγηP 2
γ→a (4)

where Φγ [s−1] is the initial photon flux and η the single-photon-detector efficiency. The rate
can be increased by introducing a Fabry-Perot cavity in the magnetic field area before the
wall by a factor of Q, which is the quality factor of the cavity. Moreover, as discussed in Ref.
[16], the rate can be further increased with the addition of a second Fabry-Perot cavity in the
magnetic field region beyond the wall. See Fig. 1.
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3 STAX experimental configuration and calculated exclu-
sion limits

The best laboratory limits for the axion-photon coupling constant have been provided by the
ALPS Collaboration [11]. The second stage of ALPS, ALPS-II [13], will improve the previous
limits mainly by increasing the magnetic field length as well as introducing a second cavity in
the magnetic field region behind the wall. ALPS-II configuration is very similar to that of Fig.
1, but in this case the photon flux is provided by an optical laser.
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Figure 2: 90% CL exclusion limits that STAX and STAX 2 may achieve in case of a null
result for axions with ma . 0.02 meV. An exposure time of one month and zero dark counts
are considered. “STAX” and “STAX 2” configurations correspond to a 100 kW and 1 MW
gyrotron sources, respectively. Picture from Ref. [15]; Elsevier B.V. copyright.

Our goal is to develop a new generation LSW experiment and improve the limits on G by
using sub-THz photon sources. Sub-THz sources, like gyrotrons and klystrons, can provide very
high powers (up to 1 MW) at small photon frequencies, resulting in photon fluxes up to 1010

more intense than those from optical lasers, used in previous LSW experiments. We will also
use high Q-factor Fabry-Perot cavities for microwave photons and single-photon detectors for
light at these frequencies, with almost zero dark count, based on the (Transition-Edge-Sensor)
TES technology. The TES detector will be coupled to an antenna and operated at temperatures
≈ 10 mK.

In this way, we computed that present laboratory exclusion limits on axion-like particles
might be improved by at least four orders of magnitude for axion masses . 0.02 meV [15]. The
limits that STAX experiment may achieve are compared to previous experimental results in
Fig. 2.
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