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We discuss an improved detection scheme for a light-shining-through-wall (LSW) exper-
iment for axion-like particle searches. We propose to use: gyrotrons or klystrons, which
can provide extremely intense photon fluxes at frequencies around 30 GHz; transition-edge-
sensors (TES) single photon detectors in this frequency domain, with efficiency & 1; high
quality factor Fabry-Perot cavities in the microwave domain, both on the photon-axion
conversion and photon regeneration sides. We compute that present laboratory exclusion
limits on axion-like particles might be improved by at least four orders of magnitude for
axion masses < 0.02 meV.

1 Introduction

Axions [1] are between the most serious dark matter candidates. They are light neutral scalar
or pseudoscalar bosons, with mass m, ~ peV—meV, coupled to the electromagnetic field via

L= iGaF‘“’F’W (1)
In QCD axion models (DFSZ [2] and KSVZ [3]), the axion-photon coupling constant G is
directly related to mg; thus, G is the only free parameter of the theory. In axion-like particle
(ALP) searches, the parameter space is extended: G and m, are the free parameters [4].

Axions and ALPs experimental searches can be divided into two main categories: 1) Axions
from astrophysical and cosmological sources; 2) Laboratory searches. In the former case, exclu-
sion limits on the axion-photon coupling constant are provided by estimates of stellar-energy
losses [4, 5], helioscopes [6, 7, 8] and haloscopes [6, 9]. In the latter case, limits on G are
given by photon polarization [10] and Light-Shining-Through-Wall (LSW) [6, 11, 12, 13, 14]
experiments.

In this contribution, we will focus on LSW experiments. After a brief description of the
standard LSW experimental apparatus, we will discuss how to improve present ALPs laboratory
limits on G by at least four orders of magnitude [15]. We are willing to do this by using extremely
intense photon fluxes from gyrotron sources at frequencies around 30 GHz, TES single photon
detectors with efficiency ~ 1, and high quality factor Fabry-Perot cavities in the microwave
domain (@ = 10* — 10°), both on the photon-axion conversion and photon regeneration sides.
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Figure 1: Experimental configuration of the STAX LSW experiment. Fig. from Ref. [15];
Elsevier B.V. copyright.

2 LSW experiments

In a LSW experiment [6, 11, 12, 13, 14], a coherent photon beam traverses an intense magnetic
field, H. Here, some photons can convert into axions via the Primakoff effect. Photons exchange
3-momentum q with H, the energy is conserved. If the & axis is chosen in the direction of the
propagating photon beam, then the external magnetic is assumed to be uniform in the volume
LyLyL,=L,S.

The photons which do not convert into axions are stopped by an optical barrier, “the wall”.
while axions can cross the wall, due to their negligible cross-section with ordinary matter. On
the other side of the wall there is a second magnetic field, which can convert axions back to
photons. Reconverted photons may be detected via a single-photon detector.

In the e, > m, limit, the photon to axion (axion to photon) conversion probability is given
by (6]

5 sin®(gzLs/2) €y

2
[e2 _ 2
9 €5 —mg

where €, is the photon (axion) energy and m, the axion mass. In the limit e, ~ m,, which is
relevant for the STAX experiment, the previous expression for the conversion probability has
to be regulated [15]

P,y=P,.,=G*H (2)
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The photon-axion-photon rate reads

AN, _ 2
5 =P (4)

y—a
where @, [s71] is the initial photon flux and 7 the single-photon-detector efficiency. The rate
can be increased by introducing a Fabry-Perot cavity in the magnetic field area before the
wall by a factor of ), which is the quality factor of the cavity. Moreover, as discussed in Ref.
[16], the rate can be further increased with the addition of a second Fabry-Perot cavity in the
magnetic field region beyond the wall. See Fig. 1.
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3 STAX experimental configuration and calculated exclu-
sion limits

The best laboratory limits for the axion-photon coupling constant have been provided by the
ALPS Collaboration [11]. The second stage of ALPS, ALPS-II [13], will improve the previous
limits mainly by increasing the magnetic field length as well as introducing a second cavity in
the magnetic field region behind the wall. ALPS-II configuration is very similar to that of Fig.
1, but in this case the photon flux is provided by an optical laser.
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Figure 2: 90% CL exclusion limits that STAX and STAX 2 may achieve in case of a null
result for axions with m, < 0.02 meV. An exposure time of one month and zero dark counts

are considered. “STAX” and “STAX 2” configurations correspond to a 100 kW and 1 MW
gyrotron sources, respectively. Picture from Ref. [15]; Elsevier B.V. copyright.

Our goal is to develop a new generation LSW experiment and improve the limits on G by
using sub-THz photon sources. Sub-THz sources, like gyrotrons and klystrons, can provide very
high powers (up to 1 MW) at small photon frequencies, resulting in photon fluxes up to 1019
more intense than those from optical lasers, used in previous LSW experiments. We will also
use high Q-factor Fabry-Perot cavities for microwave photons and single-photon detectors for
light at these frequencies, with almost zero dark count, based on the (Transition-Edge-Sensor)
TES technology. The TES detector will be coupled to an antenna and operated at temperatures
=~ 10 mK.

In this way, we computed that present laboratory exclusion limits on axion-like particles
might be improved by at least four orders of magnitude for axion masses < 0.02 meV [15]. The
limits that STAX experiment may achieve are compared to previous experimental results in
Fig. 2.
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