Search for Narrow Resonances in the Reaction
\(\gamma + \text{Be} \rightarrow e^+e^- + X \) at \(1.8 \leq M_{e^+e^-} \leq 2.6 \text{ GeV} \)

by

Deutsches Elektronen-Synchrotron DESY, Hamburg
and
II. Institut für Experimentalphysik der Universität Hamburg
Search for Narrow Resonances in the Reaction

\[\gamma + \text{Be} \rightarrow e^+e^- + X \text{ at } 1.8 \leq M_{e^+e^-} \leq 2.6 \text{ GeV} \]

P. Brauel, Th. Canzler, D. Cords, R. Felst, G. Grindhammer,
W.-D. Kollmann, H. Krehbiel and M. Schädlisch

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
and
II. Institut für Experimentalphysik der Universität, Hamburg, Germany

Abstract

The reaction \(\gamma + \text{Be} \rightarrow e^+e^- + X \) was studied with a bremsstrahlung beam of 7.2 GeV maximum energy. For invariant pair masses \(1.8 \leq M_{e^+e^-} \leq 2.6 \text{ GeV} \), no evidence for narrow resonances of width smaller than 40 MeV was found. For the mass interval \(2.1 \leq M_{e^+e^-} \leq 2.6 \text{ GeV} \), we obtained an upper limit of \(\sigma \cdot B_{e^+e^-} < 2 \cdot 10^{-35} \text{ cm}^2 \) (90\% confidence level), assuming a production mechanism similar to the \(\phi(1019) \) meson.
The results of a search for narrow resonances in the e^+e^- invariant mass spectrum of the reaction $\gamma + \text{Be} \rightarrow e^+e^- + X$ are presented. This investigation was stimulated by the discovery of the narrow resonances at 3.1 GeV$^1,2)$ and 3.7 GeV3 and by the observation that $3.7^2 - 3.1^2 \approx 3.1^2 - 2.4^2$.

The experimental layout is shown in Fig. 1. A 7.2 GeV electron beam hits a 0.04 radiation length thick copper radiator placed 2 m upstream from the 15 mm thick beryllium target. After passing through the target and a secondary emission chamber located 12 m behind the target, the beam is focused onto a Faraday-cup which acts as the primary intensity monitor and beam stop. Electrons and positrons produced in the target are detected by two almost identical magnetic spectrometers, designed for electroproduction experiments. Each spectrometer consists of three quadrupole magnets followed by a dipole magnet which bends the central trajectory vertically by 10°. Four multiwire proportional chambers, each having two planes of orthogonal readout wires, are located in front (1) and behind (3) the bending magnets. The chambers are followed by two scintillation-counter hodoscopes, a threshold Čerenkov counter, two further scintillation-counter hodoscopes, and a shower counter, which is seven radiation lengths thick, consisting of layers of lead and scintillator. One of the scintillation-counter hodoscopes is also used for time-of-flight information.

The momentum of a particle was measured by reconstructing its trajectory through the bending magnet, and the production angles were determined by tracing the trajectory back through the quadrupole magnets to the target position. The momentum resolution achieved was 1.2% (FWHM), and the accepted momentum band amounted to 45% (FWHM). The angular acceptance was 16 mrad in the horizontal direction and ±100 mrad in the vertical.
For a trigger an eightfold coincidence between the scintillation-counter hodoscopes of the two spectrometers was required. The information about an event satisfying this trigger requirement was collected by a small on-line computer and sent to a central computer for on-line analysis and for recording on magnetic type. Electrons and positrons were identified by means of the threshold Čerenkov counters and shower counters. The cuts applied in the pulse height spectra of these counters yielded a single arm detection efficiency $\geq 96\%$ for electrons in the accepted momentum band. This efficiency was determined by the detection of scattered electrons at small angles. These cuts implied a hadron detection efficiency of 0.1% for each spectrometer.

Electrons and positrons were detected at angles of 24.2° and of 19.5° (the maximum possible angle of one spectrometer) with respect to the incident beam and with central spectrometer momenta of 2.92 GeV and of 3.55 GeV respectively, yielding the maximum acceptance at $M_{e^+e^-} \approx 2.4$ GeV. Part of the data were taken with interchanged magnet polarities. In total 25 e^+e^- pair candidates were detected, collecting a flux of $1.5 \cdot 10^{16}$ equivalent photons, of which 24% were very low q^2 virtual photons, 58% came from electron bremsstrahlung in the copper radiator, and 18% from bremsstrahlung in the beryllium target. The time-of-flight differences between the two detected particles are plotted in Fig. 2. The measured time resolution was 1.2 nsec (FWHM). We conclude from Fig. 2 that 21 ± 2 candidates are real coincidences. The invariant mass distribution of these events is shown in Fig. 3. The mass resolution was $\Delta M/M \approx 1.5\%$ (FWHM). There is no evidence for a resonance structure. We expect 3 pairs to be due to the Bethe-Heitler-process 4, and we estimate that 8 ± 3 events are due to $\pi^+ -$ electroproduction with the π^+ misidentified as a positron.
In order to obtain an upper limit for the production cross section of a narrow resonance, we assumed it to be diffractively produced, but we only took the production off the individual target nucleons into account, i.e.

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}\bigg|_{t=0} e^{bt}. \quad (1)$$

Due to the large value of t_{min} the coherent production is estimated to contribute less than 10% for $M_{ee} > 2.0$ GeV. Using eq. (1) we calculated the expected number of events for each 40 MeV mass bin with the help of a Monte-Carlo simulation of the experiment. This calculation took into account the bremsstrahlung spectrum of the incident beam, the Fermi motion of the nucleons, an isotropic decay in the restframe with a branching ratio B_{ee}, and the acceptance of the spectrometers. Corrections for losses due to reconstruction inefficiency ($\approx 30\%$) and due to radiative effects ($\approx 25\%$) were applied. The results are shown in Fig. 3. The 90% confidence upper limits obtained for $\frac{d\sigma}{dt}\big|_{t=0} B_{ee}$ and $\sigma \cdot B_{ee}$ are listed in table 1 for two values of b.

An experimental check of the calculations was performed by reducing the central momenta of the two spectrometers by a factor of 2.4, to look for e^+e^- pairs in the mass region of the $\psi(1019)$ meson. The number of events observed for $1.000 < M_{ee} < 1.030$ was consistent with the number calculated from the known production and decay cross sections of the ψ meson.
Summarizing the results we conclude: No evidence for a resonance of a width < 40 MeV was found in the mass range $1.8 < M_{e^+e^-} < 2.6$ GeV. A 90% confidence upper limit of $\sigma \cdot B_{e^+e^-} < 2.5 \times 10^{-35} \text{ cm}^2$ was obtained for $2.1 < M_{e^+e^-} < 2.6$ GeV. This limit is consistent with the one quoted in ref. 5) of $\sigma \cdot B_{e^+e^-} < 1.6 \times 10^{-34} \text{ cm}^2$.

We want to thank Prof. G. Weber for his encouragement and helpful discussions and to acknowledge the work of the floor service, synchrotron and computer groups. During all phases of the experiment we enjoyed the wholehearted support of Mr. K. Fesefeldt, Mr. H. Grote, Mr. G. Guzielski and Mr. M. Helm. We also want to thank our technicians Mr. J. Bech, Mr. P. Lüthke, Mr. V. Masbender, and Ms. B. Nack for their assistance during the setup and running of the experiment.
References

| b | $\sigma \cdot B_{e^+ e^-}$ | $\frac{d\sigma}{dt}\bigg|_{t=0} \cdot B_{e^+ e^-}$ |
|-------|-----------------------------|--|
| 3 GeV$^{-2}$ | 2.5×10^{-35} cm2 | 2.5×10^{-34} cm2/GeV2 |
| 6 GeV$^{-2}$ | 2.0×10^{-35} """" | 9.0×10^{-34} """" |

Table 1

90% confidence upper limits for the production and decay of a resonance of a width < 40 MeV obtained from the data assuming eq. (1).
Figure Captions

Fig. 1 Perspective view of the apparatus

Fig. 2 Time of flight difference of the e^+e^- pair candidates.
 The events between -1 and +3 nsec were accepted for further analysis.

Fig. 3 The mass distribution of the 21 observed e^+e^- pairs. The curves shown indicate the number of events expected from a narrow resonance produced and decaying according to
 $$\frac{d\sigma}{dt} = 2.5 \cdot 10^{-34} \text{ cm}^2/\text{GeV}^2 \cdot e^{bt}$$
 with $b = 3 \text{ GeV}^{-2}$ and $b = 6 \text{ GeV}^{-2}$ respectively.
Fig. 1
Fig. 2

$e^+ e^- \text{ time of flight difference}$
number of events/0.04 GeV

\[b = 3 \text{ GeV}^{-2} \]
\[b = 6 \text{ GeV}^{-2} \]

\[M_{e^+e^-} \]

Fig. 3