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Subtractions

Starting Point.

σ(X) ≡

∫
dTN

dσ(X)

dTN

=

∫ Tcut

dTN

dσ(X)

dTN︸ ︷︷ ︸
+

∫

Tcut

dTN

dσ(X)

dTN

= σ(X,Tcut) +

∫

Tcut

dTN

dσ(X)

dTN

σ(X): generic N-jet cross section

◮ X denotes all defining Born-level measurements/cuts

(mostly irrelevant and suppressed in the following)

◮ ΦN is the N-parton Born phase space

(including helicity and flavor labels and possible color-singlet final state)

σLO(X) =

∫
dΦN BN(ΦN)X(ΦN)

BN(ΦN) = fa fb

∑

color

∣∣ALO
ab→N(ΦN)

∣∣2
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Subtractions

Starting Point.

σ(X) ≡

∫
dTN

dσ(X)

dTN

=

∫ Tcut

dTN

dσ(X)

dTN︸ ︷︷ ︸
+

∫

Tcut

dTN

dσ(X)

dTN

= σ(X,Tcut) +

∫

Tcut

dTN

dσ(X)

dTN

TN : physical IR-safe N-jet resolution variable

TN(ΦN) = 0 TN(Φ≥N+1) > 0 TN(Φ≥N+1 → ΦN) → 0

dσ(X)

dTN

: differential TN spectrum

◮ At LON

dσ(X)

dTN

= σLO(X) δ(TN) + O(αs)

◮ For any TN > 0 given by an N+1-jet Nn−1LO calculation
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Subtractions

Subtractions.

Add and subtract

∫ Toff

Tcut

dTN

dσsub

dTN

= σsub(Toff ) − σsub(Tcut)

σ = σ(Tcut) +

∫

Tcut

dTN

dσ

dTN

= σsub(Toff ) +

∫

Tcut

dTN

[
dσ

dTN

−
dσsub

dTN

θ(T<Toff )

]
+
[
σ(Tcut)−σsub(Tcut)

]

= σsub(Tcut) +

∫

Tcut

dTN

dσ

dTN

+
[
σ(Tcut)−σsub(Tcut)

]

Toff is a priori arbitrary and exactly cancels

◮ Determines TN range over which subtraction acts differentially in TN

◮ Last line: setting Toff = Tcut reduces it to a global subtraction (aka slicing)
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Subtractions

Subtractions.

Add and subtract

∫ Toff

Tcut

dTN

dσsub

dTN

= σsub(Toff ) − σsub(Tcut)

σ = σ(Tcut) +

∫

Tcut

dTN

dσ

dTN

= σsub(Toff ) +

∫

Tcut

dTN

[
dσ

dTN

−
dσsub

dTN

θ(T<Toff )

]
+
[
σ(Tcut)−σsub(Tcut)

]

= σsub(Tcut) +

∫

Tcut

dTN

dσ

dTN

+
[
σ(Tcut)−σsub(Tcut)

]

Conditions on σsub

◮ Need to be able to explicitly calculate σsub(T ) (and dσsub/dTN ) to NnLO

◮ Has to reproduce singular limit of σ(Tcut) (and dσ/dTN ), such that for

Tcut → 0 we can neglect

∆σ(Tcut) ≡ σ(Tcut) − σsub(Tcut) → 0
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Subtractions

Power Expansion.

Expand cross section in powers of τN ≡
TN

Q
and τcut ≡

Tcut

Q
(where Q is a typical hard scale whose precise choice is irrelevant for now)

dσ

dτN
=

dσ(0)

dτN
+

dσ(2)

dτN
+

dσ(4)

dτN
+ · · ·

σ(τcut) = σ(0)(τcut) + σ(2)(τcut) + σ(4)(τcut) + · · ·

Singular (leading-power) terms

dσsing

dτN
≡

dσ(0)

dτN
∼ δ(τN) +

[
O(1)

τN

]

+

σsing(τcut) ≡ σ(0)(τcut) ∼ O(1)

Nonsingular (subleading-power) terms

τN
dσ(2k)

dτN
∼ O(τk

N) σ(2k)(τcut) ∼ O(τk
cut)
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Subtractions

Putting Everything Together.

σ =

∫
σsub(τcut)

︸ ︷︷ ︸
+

∫

τcut

dτN
dσ

dτN︸ ︷︷ ︸
+

∫
∆σ(τcut)

︸ ︷︷ ︸
NNLON NLON+1 neglect

where we have to choose

σsub(τcut) = σsing(τcut) [1 + O(τcut)]

So neglecting ∆σ(τcut) we only miss O(τcut) power-suppressed terms

∆σ(τcut) = σ(τcut) − σsub(τcut) = σ(2)(τcut) + · · · ∼ O(τcut)

The tradeoff: Lowering τcut ...

... reduces size of missing power corrections

... increases numerical cancellations between first two terms
◮ Requires numerically more precise calculation of dσ/dτN in a region where

the N+1-jet NLO calculation quickly becomes much less stable

◮ Computational cost increases substantially
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Subtractions

Estimating Size of Missing Power Corrections.

There is one more important caveat

Power suppression gets weaker at higher orders in αs due to stronger log

enhancement

σ(2)(τcut) =
∑

n=0

σ(2,n)(τcut)
(αs

4π

)n

σ(2,n)(τcut) = τcut

2n−1∑

m=0

A(2,n)
m lnmτcut

⇒ Dominant missing O(αn
s ) terms actually scale as

∆σ(τcut) ∼ αn
s τcut ln2n−1 τcut

◮ Can use this to get a rough order of magnitude estimate of their size by

taking A(2,n) = σ(0,n)
× [1/3, 3]

◮ Works quite well for the cases we have checked
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Subtractions

The Upshot (or an early summary).

All IR-singular contributions are projected onto the physical observable TN

The drawback

Subtractions are nonlocal, i.e. not point-by-point in the real emission
phase-space

◮ Phase-space slicing in TN = global (maximally nonlocal) subtraction

In practice, it is a question of numerical stability whether this is a
disadvantage or not

◮ Naively expect larger numerical cancellations (since they happen later)
◮ On the other hand, simpler structure and fewer subtration terms

The advantage

Subtractions are given by singular limit of a physical cross section
◮ By choosing the “right” observable they can be computed using a

factorization theorem
◮ Also allows computing power corrections, giving significant improvements

All nonsingular contributions are immediately given in terms of existing

lower-order Born+1-jet calculations
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Subtractions

Resolution Variables for Physical Subtractions.

In principle, any IR-sensitive resummable variable could be used

In fact, in the context of resummation, the singular terms are routinely obtained as a

“by-product” of the resummation and used as subtraction to get the nonsingular terms.

Other variables used as subtractions for NNLO calculations

Color-singlet production: qT subtractions utilize qT of color-singlet
system [Catani, Grazzini ’07]

◮ Very sucessfully applied to Higgs, Drell-Yan, and essentially any

combination of diboson production

[Catani et al. ’07, ’09, ’11; Ferrera, Grazzini, Tramontano ’11, ’14; Cascioli et al. ’14; Gehrmann et

al. ’14; Grazzini, Kallweit, Rathlev, Torre ’13, ’15; several more implementations]

◮ Primarily used as global subtraction (as far as I know)

Top-quark decay rate: inclusive jet mass (global) [Gao, Li, Zhu ’12]

e+e− → tt̄: Total radiation energy (global) [Gao, Zhu ’14]
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Subtractions

Resolution Variables for Physical Subtractions.

N-jettiness event shape is explicitly designed as N-jet resolution variable with

simplest possible factorization/resummation properties

Differential 0-jettiness subtractions are implemented in GENEVA

Monte-Carlo (as basis of its NNLO+NNLL′+PS matching) [Alioli et al. ’13, ’15]

Global 0-jettiness (beam thrust)

◮ Drell-Yan and Higgs [Gaunt, Stahlhofen, FT, Walsh ’15]

◮ V H, diphoton [Campbell, Ellis, Li, Williams ’16]

◮ NNLO Color-singlet in MCFM 8 [Boughezal et al. ’16]

Global 1-jettiness

◮ pp → V/H+j [Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele ’15, ’16]

◮ pp → γ+j [Campbell, Ellis, Williams ’16]
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N-Jettiness

N-Jettiness.
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N-Jettiness

N-Jettiness Event Shape.

[Stewart, FT, Waalewijn, ’10]

TN =
∑

k

min

{
2qa ·pk

Qa

,
2qb ·pk

Qb

,
2q1 ·pk

Q1

,
2q2 ·pk

Q2

, . . . ,
2qN ·pk

QN

}

≡ T a
N + T b

N + T 1
N + · · · + T N

N

Partitions phase space into

N jet regions and 2 beam regions

Qa,b, Qj determine distance measure
◮ Geometric measures: Qi = 2ρiEi

Born reference momenta qi

qa,b = xa,b

Ecm

2
(1,±ẑ)

qj = Ej(1, ~nj)

W/Z

qbqa

q1

q2

T 1
N

T 2
N

T a
N

T b
N

Specifying them corresponds to choosing an (IR-safe) Born projection
◮ Specific choice is part of N-jettiness definition but only affects the

power-suppressed terms and is therefore not needed for singular terms
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N-Jettiness

All-order Singular Structure.

dσsing(X)

dτN
=

∫
dΦN

dσsing(ΦN)

dτN
X(ΦN)

dσsing(ΦN)

dτN
= C−1(ΦN) δ(τN) +

∑

m≥0

Cm(ΦN)Lm(τN)

=
∑

n≥0

[
C
(n)
−1 (ΦN) δ(τN) +

2n−1∑

m=0

C(n)
m (ΦN)Lm(τN)

](αs

4π

)n

Singular only depend on Born phase space ΦN ≡ {qi, λi, κi}
◮ Subtractions are FKS-like in this respect

Plus distributions encode cancellation of real and virtual IR divergences

Lm(τN) =

[
θ(τN) lnm(τN)

τN

]

+

∫ τcut

dτN Lm(τN) =
lnm+1(τ cut)

m + 1
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N-Jettiness

All-order Singular Structure.

dσsing(X)

dτN
=

∫
dΦN

dσsing(ΦN)

dτN
X(ΦN)

dσsing(ΦN)

dτN
= C−1(ΦN) δ(τN) +

∑

m≥0

Cm(ΦN)Lm(τN)

=
∑

n≥0

[
C
(n)
−1 (ΦN) δ(τN) +

2n−1∑

m=0

C(n)
m (ΦN)Lm(τN)

](αs

4π

)n

Integrated subtractions

σsing(ΦN , τcut) = C−1(ΦN) +
∑

m≥0

Cm(ΦN)
lnm+1(τ cut)

m + 1

C−1(ΦN) contains finite remainder of N-parton virtuals

◮ At LO: C
(0)
−1(ΦN) = BN(ΦN)

◮ Most nontrivial piece, corresponds to virtual plus integrated subtraction in

other subtraction schemes
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N-Jettiness

Factorization Theorem.

[Stewart, FT, Waalewijn, ’09, ’10]

dσsing(ΦN)

dTN

=

∫
dta Ba(ta, xa, µ)

∫
dtb Bb(tb, xb, µ)

[ N∏

i=1

∫
dsi Ji(si, µ)

]

× ~C†(ΦN , µ) Ŝκ

(
TN −

ta

Qa

−
tb

Qb

−

N∑

i=1

si

Qi

, {q̂i}, µ

)
~C(ΦN , µ)

All functions are IR finite and have an operator definition in SCET

Simplifying features of N-jettiness
◮ No dependence on jet algorithm (jet clustering, jet radius, etc.)
◮ No recoil effects from soft radiation
◮ No additional ~pT dependence or convolutions, no rapidity divergences

To obtain subtraction coefficients simply expand and collect terms, e.g.,

C
(2)
−1 = fafb

[
~C†(0) ~C(2) + ~C†(2) ~C(0)

]

+ ~C†(0)
[
B(2)

a fb + faB
(2)
b + fafb Ŝ

(2)
]
~C(0)

+ 1-loop cross terms
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N-Jettiness

Hard Matching Coefficients.

Encode the process-dependent N-parton virtual QCD corrections

Arise from matching QCD onto SCET

In pure dimensionless regularization with MS given in terms of IR-finite

(MS-subtracted) N-parton QCD amplitudes

General formalism using SCET helicity operator basis
[Moult, Stewart, FT, Waalewijn ’15]

◮ Using same color basis T̄ a1···αn as in QCD calculation, directly given by

corresponding color-ordered helicity amplitudes

T̄ a1···αn i ~C±···±= Afin(g
±
1 · · · q±

n ) ≡
T̄ a1···αnẐ−1

C
~Aren(g

±
1 · · · q±

n )

Z
nq/2
ξ Z

ng/2
A

◮ Ẑ, Zξ, ZA are SCET MS renormalization constants

(in pure dimensional regularization equivalent to QCD 1/ǫIR divergences)

◮ QCD helicity amplitudes should be UV-renormalized in CDR or HV
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N-Jettiness

Beam and Jet Functions.

Encode cancellation of IR singularities between collinear real and virtual

radiation and corresponding IR-finite remainder

Inclusive virtuality-dependent (SCET-I) beam and jet functions
◮ Universal for any N, only depend on parton type (quark vs. gluon)
◮ Important: Overlap with soft contributions (known as zero bins in SCET) is

scale-less and vanishes in pure dimensionless regularization

Jet functions

(Straight)forward IR-finite vacuum matrix element of collinear quark or

gluon operator

[NLO: Bauer, Manohar ’03, Fleming, Leibovich, Mehen ’03, Becher, Schwartz ’06;

NNLO: Becher, Neubert ’06, Becher, Bell ’10]

Beam functions

Require matching onto PDFs in terms of IR-finite matching coefficients

[NLO: Stewart, FT, Waalewijn ’09, ’10; NNLO: Gaunt, Stahlhofen, FT ’14]

Bi(t, x) =
∑

j

∫
dz

z
Iij(t, z) fj

(x
z

)

◮ NNLO beam functions are key ingredient for color-singlet production
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N-Jettiness

Soft Function.

Encodes cancellation of IR singularities between soft real and virtual radiation

and corresponding IR-finite remainder

Matrix element of N+2 lightlike soft Wilson lines along collinear directions
◮ Matrix acting on external color space, accounts for all color correlations in

soft IR divergences

Explicitly depends on N-jettiness measurement and partitioning
◮ with respect to fixed collinear directions (no soft recoil effects)

NLO: Known for any number of Wilson lines (and any Qi) using on

hemisphere decomposition [Jouttenus, Stewart, FT, Waalewijn ’11]

NNLO

◮ 2 partons: Hemisphere soft function [Kelley, Schwartz, Schabinger, Zhu ’11; Monni,

Gehrmann, Luisoni ’11; Hornig, Lee, Stewart, Walsh, Zuberi ’11; Kang, Labun, Lee ’15]

◮ 3 partons: Numerically for pp → L + 1j [Boughezal, Liu, Petriello ’15]

recently for massive 3rd parton [Li, Wang ’16]

◮ Not yet known for general N
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Subleading Power Corrections

Subleading Power Corrections.
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Subleading Power Corrections

SCET at Subleading Power.

SCET is explicitly constructed to maintain manifest power counting at all

stages of a calculation

Provides natural organization of different sources of power corrections

Insertions of subleading SCET Lagrangian
◮ Corrects dynamics of propagating soft and collinear particles

Subleading hard-scattering operators
◮ Helicity operator basis extended to subleading power

Subleading corrections to the measurement

Since we don’t care about resummation, we don’t actually need a full

factorization theorem at subleading power

Instead, we can perform the calculation at fixed order with SCET as

organizational principle, focusing on the highest logarithmic terms
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Subleading Power Corrections

Example: Thrust at NLO.

Collinear Gluon Soft Gluon

1

σ0

dσ(2,1)

dτ
= 8CF

[(
1

ǫ
+ ln

µ2

Q2τ

)
−

(
1

ǫ
+ ln

µ2

Q2τ2

)]
= 8CF ln τ ,

Result gives directly (no additional expansions) the NLP contribution

Total NLP result reproduces known thrust result

1/ǫ poles must cancel between collinear and soft contributions
◮ In SCET these are UV poles arising from the scale separation between

different sectors

◮ From full-theory point of view these are IR poles and must cancel because

there are no nontrivial IR divergences at subleading power

Frank Tackmann (DESY) N-jettiness Subtractions 2017-01-31 18 / 28



Subleading Power Corrections

Example: Thrust at NLO.

Collinear Quarks Soft Quark

1

σ0

dσ(2,1)

dτ
= 4CF

[
−

(
1

ǫ
+ ln

µ2

Q2τ

)
+

(
1

ǫ
+ ln

µ2

Q2τ2

)]
= −4CF ln τ

Result gives directly (no additional expansions) the NLP contribution

Total NLP result reproduces known thrust result

1/ǫ poles must cancel between collinear and soft contributions
◮ In SCET these are UV poles arising from the scale separation between

different sectors

◮ From full-theory point of view these are IR poles and must cancel because

there are no nontrivial IR divergences at subleading power
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Subleading Power Corrections

Going to NNLO.

Same cancellation of 1/ǫ poles must happen at NNLO

Yields nontrivial constraints (consistency relations) on the different
contributions from hard, collinear, and soft sectors

◮ Significantly reduces number of NNLO coefficients that must be calculated

◮ Equivalently provides for nontrivial cross checks

The LL NNLO result is determined by a single coefficient
◮ hard-collinear (easiest) or collinear-soft or soft-softor

1

σ0

dσ(2,2)

dτ
=

[
−32C2

F + 8CF (CF + CA)
]
ln3 τ + · · ·

◮ New color structure compared to leading power from quark channel
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Subleading Power Corrections

0-Jettiness for Drell-Yan at NLP.

Crossing the thrust calculation and taking into account differences in

measurement, phase space, and PDFs

Coefficients of the partonic cross section

with δa ≡ δ(ξa − xa) and δ′

a ≡ xa δ′(ξa − xa) and τ ≡ T0/Q

NLO

C
(2,1)
qq̄ (ξa, ξb) = 8CF

(
δaδb +

δ′aδb

2
+

δaδ
′
b

2

)
ln τ + · · ·

C(2,1)
qg (ξa, ξb) = −2TF δaδb ln τ + · · ·

NNLO

C
(2,2)
qq̄ (ξa, ξb) = −32C2

F

(
δaδb +

δ′aδb

2
+

δaδ
′
b

2

)
ln3 τ + · · ·

C(2,2)
qg (ξa, ξb) = 4TF (CF + CA) δaδb ln3 τ + · · ·

◮ qg channel already contributes at leading-log, in contrast to leading power
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Subleading Power Corrections

Numerical Results for Drell-Yan.

We can obtain the full nonsingular numerically

1

σLO

dσnons

d lnT0

=
1

σLO

dσ

d lnT0

−
1

σLO

dσsing

d lnT0

Use Z + j NLO calculation from MCFM 8 for dσ/d lnT0

Perform a χ2 fit to (with τ ≡ T0/mZ )

FNLO(τ ) =
d

d ln τ

{
τ
[
(a1 + b1τ + c1τ

2) ln τ + a0 + b0τ + c0τ
2
]}

FNNLO(τ ) =
d

d ln τ

{
τ
[
(a3 + b3τ ) ln

3 τ + (a2 + b2τ ) ln
2 τ + a1 ln τ + a0

]}

◮ Requires high MC statistics to get precise enough nonsingular data to be

able to distinguish different terms of similar shape

◮ Important to include bi, ci coefficients in the fit to avoid biasing the fit result

for the NLP ai coefficients we are interested in

◮ Important to carefully select fit range in T0 and validate fit stability
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Subleading Power Corrections

Summary and Outlook.

Features of physical subtractions

All IR singularities are projected onto physical observable

◮ Also possible to make it more differential, e.g., separating into N-jettiness

contributions from individual regions, going double-differential, ...

Subtraction terms are given by singular contributions of a physical cross
section

◮ N-jettiness observable and factorization theorem available for any N

◮ Extension to massive quarks is also possible

The other key ingredient is a Born+jet NLO calculation that remains

stable deep into the IR-singular region

Can analyze and compute power corrections in SCET

◮ Significant improvements in numerical implementations possible

◮ Currently looking at other (gluon-initiated) color-singlet channels

◮ TODO: Universality of NLP terms, extension to more final-state jets

◮ Similar recent work (without SCET, also for gg) in [Boughezal, Liu, Petriello ’16]

Planning to make subtractions publicly available in C++ library SCETlib
[http://scetlib.desy.de]
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