N-jettiness Subtractions

Frank Tackmann

Deutsches Elektronen-Synchrotron

Zurich Particle Theory Seminar January 31, 2017

[mostly based on

Jonathan Gaunt, Maximilian Stahlhofen, FT, Jonathan Walsh

(arXiv:1505.04794)

Ian Moult, Lorena Rothen, Iain Stewart, FT, Hua Xing Zhu

(arXiv:1612.00450)]

Outline

Subtractions

N-Jettiness

Subleading Power Corrections

Subtractions.

Starting Point.

$$\begin{split} \sigma(X) &\equiv \int \! \mathrm{d}\mathcal{T}_N \, \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N} \\ &= \underbrace{\int^{\mathcal{T}_{\mathrm{cut}}} \! \mathrm{d}\mathcal{T}_N \, \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N}}_{} + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_N \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N} \\ &= \sigma(X, \mathcal{T}_{\mathrm{cut}}) + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_N \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N} \end{split}$$

- $\sigma(X)$: generic N-jet cross section
 - X denotes all defining Born-level measurements/cuts (mostly irrelevant and suppressed in the following)
 - $lack \Phi_N$ is the N-parton Born phase space (including helicity and flavor labels and possible color-singlet final state)

$$egin{aligned} \sigma^{ ext{LO}}(X) &= \int \! \mathrm{d}\Phi_N \, B_N(\Phi_N) \, X(\Phi_N) \ B_N(\Phi_N) &= f_a \, f_b \, \sum_{ ext{color}} ig| \mathcal{A}_{ab o N}^{ ext{LO}}(\Phi_N) ig|^2 \end{aligned}$$

Starting Point.

$$\sigma(X) \equiv \int d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N} \\
= \underbrace{\int^{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N}}_{\mathbf{d}\mathcal{T}_N} + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N} \\
= \sigma(X, \mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N}$$

T_N: physical IR-safe N-jet resolution variable

$$\mathcal{T}_N(\Phi_N) = 0$$
 $\mathcal{T}_N(\Phi_{\geq N+1}) > 0$ $\mathcal{T}_N(\Phi_{\geq N+1} \to \Phi_N) \to 0$

- $\frac{\mathrm{d}\sigma(X)}{\mathrm{d}\tau}$: differential \mathcal{T}_N spectrum
 - ightharpoonup At LO $_N$ $\dfrac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_{s}}=\sigma^{\mathrm{LO}}(X)\,\delta(\mathcal{T}_N)+\mathcal{O}(lpha_s)$
 - For any $\mathcal{T}_N > 0$ given by an N+1-jet Nⁿ⁻¹LO calculation

Subtractions.

Add and subtract
$$\int_{\mathcal{T}_{\text{cut}}}^{\mathcal{T}_{\text{off}}} d\mathcal{T}_N \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_N} = \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})$$

$$\sigma = \sigma(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma}{d\mathcal{T}_N}$$

$$= \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma}{d\mathcal{T}_N} + \left[\sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) \right]$$

- Toff is a priori arbitrary and exactly cancels
 - lacktriangle Determines \mathcal{T}_N range over which subtraction acts differentially in \mathcal{T}_N
 - lacktriangledown Last line: setting $\mathcal{T}_{
 m off}=\mathcal{T}_{
 m cut}$ reduces it to a global subtraction (aka slicing)

Subtractions.

Add and subtract
$$\int_{\mathcal{T}_{\text{cut}}}^{\mathcal{T}_{\text{off}}} d\mathcal{T}_N \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_N} = \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})$$

$$\begin{split} \sigma &= \sigma(\mathcal{T}_{\mathrm{cut}}) &\quad + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_{N} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} \\ &= \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{off}}) \, + \int_{\mathcal{T}_{\mathrm{cut}}} \!\!\!\! \mathrm{d}\mathcal{T}_{N} \! \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} \! - \! \frac{\mathrm{d}\sigma^{\mathrm{sub}}}{\mathrm{d}\mathcal{T}_{N}} \theta(\mathcal{T} \! < \! \mathcal{T}_{\mathrm{off}}) \right] \! + \! \left[\sigma(\mathcal{T}_{\mathrm{cut}}) \! - \! \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{cut}}) \right] \\ &= \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{cut}}) + \int_{\mathcal{T}_{\mathrm{cut}}} \!\!\!\! \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} \\ &\quad + \left[\sigma(\mathcal{T}_{\mathrm{cut}}) \! - \! \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{cut}}) \right] \end{split}$$

- Conditions on σ^{sub}
 - $lackbox{Need to be able to explicitly calculate } \sigma^{\mathrm{sub}}(\mathcal{T}) \ (\mathrm{and} \ \mathrm{d}\sigma^{\mathrm{sub}}/\mathrm{d}\mathcal{T}_N) \ \mathrm{to} \ \mathsf{N}^n\mathsf{LO}$
 - ► Has to reproduce singular limit of $\sigma(\mathcal{T}_{\mathrm{cut}})$ (and $\mathrm{d}\sigma/\mathrm{d}\mathcal{T}_N$), such that for $\mathcal{T}_{\mathrm{cut}} \to 0$ we can neglect

$$\Delta\sigma(\mathcal{T}_{
m cut}) \equiv \sigma(\mathcal{T}_{
m cut}) - \sigma^{
m sub}(\mathcal{T}_{
m cut})
ightarrow 0$$

Power Expansion.

Expand cross section in powers of
$$au_N \equiv rac{\mathcal{T}_N}{Q}$$
 and $au_{ ext{cut}} \equiv rac{\mathcal{T}_{ ext{cut}}}{Q}$

(where Q is a typical hard scale whose precise choice is irrelevant for now)

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau_N} &= \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau_N} + \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}\tau_N} + \frac{\mathrm{d}\sigma^{(4)}}{\mathrm{d}\tau_N} + \cdots \\ \sigma(\tau_{\mathrm{cut}}) &= \sigma^{(0)}(\tau_{\mathrm{cut}}) + \sigma^{(2)}(\tau_{\mathrm{cut}}) + \sigma^{(4)}(\tau_{\mathrm{cut}}) + \cdots \end{split}$$

Singular (leading-power) terms

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d} au_N} \equiv rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d} au_N} \sim \delta(au_N) + \left[rac{\mathcal{O}(1)}{ au_N}
ight]_+ \ \sigma^{\mathrm{sing}}(au_{\mathrm{cut}}) \equiv \sigma^{(0)}(au_{\mathrm{cut}}) \sim \mathcal{O}(1)$$

Nonsingular (subleading-power) terms

$$au_N \, rac{\mathrm{d} \sigma^{(2k)}}{\mathrm{d} au_N} \sim \mathcal{O}(au_N^k) \qquad \sigma^{(2k)}(au_{\mathrm{cut}}) \sim \mathcal{O}(au_{\mathrm{cut}}^k)$$

Putting Everything Together.

$$\sigma = \underbrace{\sigma^{\mathrm{sub}}(au_{\mathrm{cut}})}_{\mathsf{NNLO}_N} + \underbrace{\int_{ au_{\mathrm{cut}}} \mathrm{d} au_N}_{\mathsf{NLO}_{N+1}} + \underbrace{\Delta\sigma(au_{\mathrm{cut}})}_{\mathsf{neglect}}$$

where we have to choose

$$\sigma^{\mathrm{sub}}(au_{\mathrm{cut}}) = \sigma^{\mathrm{sing}}(au_{\mathrm{cut}}) \left[1 + \mathcal{O}(au_{\mathrm{cut}}) \right]$$

So neglecting $\Delta\sigma(au_{
m cut})$ we only miss $\mathcal{O}(au_{
m cut})$ power-suppressed terms

$$\Delta \sigma(au_{
m cut}) = \sigma(au_{
m cut}) - \sigma^{
m sub}(au_{
m cut}) = \sigma^{(2)}(au_{
m cut}) + \cdots \sim \mathcal{O}(au_{
m cut})$$

The tradeoff: Lowering au_{cut} ...

- ... reduces size of missing power corrections
- ... increases numerical cancellations between first two terms
 - ▶ Requires numerically more precise calculation of $d\sigma/d\tau_N$ in a region where the N+1-jet NLO calculation quickly becomes much less stable
 - Computational cost increases substantially

Estimating Size of Missing Power Corrections.

There is one more important caveat

ullet Power suppression gets weaker at higher orders in $lpha_s$ due to stronger log enhancement

$$\sigma^{(2)}(au_{
m cut}) = \sum_{n=0} \sigma^{(2,n)}(au_{
m cut}) \Big(rac{lpha_s}{4\pi}\Big)^n$$

$$\sigma^{(2,n)}(au_{
m cut}) = au_{
m cut} \sum_{m=0}^{2n-1} A_m^{(2,n)} \ln^m au_{
m cut}$$

 \Rightarrow Dominant missing $\mathcal{O}(\alpha_s^n)$ terms actually scale as

$$\Delta \sigma(\tau_{\rm cut}) \sim \alpha_s^n \, \tau_{\rm cut} \, \ln^{2n-1} \tau_{\rm cut}$$

- ▶ Can use this to get a rough order of magnitude estimate of their size by taking $A^{(2,n)} = \sigma^{(0,n)} \times [1/3,3]$
- Works quite well for the cases we have checked

Estimating Size of Missing Power Corrections.

Estimate $\Delta \sigma(\tau_{\rm cut})$ at NⁿLO

relative to full NⁿLO coefficient

Typical values in current implementations are in $au_{\mathrm{cut}} \simeq 10^{-4} \dots 10^{-3}$ range

Frank Tackmann (DESY) N-jettiness Subtractions 2017-01-31

Estimating Size of Missing Power Corrections.

Estimate $\Delta \sigma(au_{ m cut})$ at NⁿLO

ullet relative to σ_{LO} , assuming a 10% correction at each α_s order

Typical values in current implementations are in $au_{
m cut} \simeq 10^{-4} \dots 10^{-3}$ range

The Upshot (or an early summary).

All IR-singular contributions are projected onto the physical observable \mathcal{T}_N

The drawback

- Subtractions are nonlocal, i.e. not point-by-point in the real emission phase-space
 - ▶ Phase-space slicing in T_N = global (maximally nonlocal) subtraction
- In practice, it is a question of numerical stability whether this is a disadvantage or not
 - Naively expect larger numerical cancellations (since they happen later)
 - On the other hand, simpler structure and fewer subtration terms

The advantage

- Subtractions are given by singular limit of a physical cross section
 - By choosing the "right" observable they can be computed using a factorization theorem
 - ► Also allows computing power corrections, giving significant improvements
- All nonsingular contributions are immediately given in terms of existing lower-order Born+1-jet calculations

Resolution Variables for Physical Subtractions.

In principle, any IR-sensitive resummable variable could be used

In fact, in the context of resummation, the singular terms are routinely obtained as a "by-product" of the resummation and used as subtraction to get the nonsingular terms.

Other variables used as subtractions for NNLO calculations

- ullet Color-singlet production: q_T subtractions utilize q_T of color-singlet system [Catani, Grazzini '07]
 - Very sucessfully applied to Higgs, Drell-Yan, and essentially any combination of diboson production
 - [Catani et al. '07, '09, '11; Ferrera, Grazzini, Tramontano '11, '14; Cascioli et al. '14; Gehrmann et al. '14; Grazzini, Kallweit, Rathlev, Torre '13, '15; several more implementations]
 - Primarily used as global subtraction (as far as I know)
- Top-quark decay rate: inclusive jet mass (global) [Gao, Li, Zhu '12]
- ullet $e^+e^- o tar t$: Total radiation energy (global) [Gao, Zhu '14]

Resolution Variables for Physical Subtractions.

N-jettiness event shape is explicitly designed as N-jet resolution variable with simplest possible factorization/resummation properties

- Differential 0-jettiness subtractions are implemented in GENEVA
 Monte-Carlo (as basis of its NNLO+NNLL'+PS matching) [Alioli et al. '13, '15]
- Global 0-jettiness (beam thrust)
 - ► Drell-Yan and Higgs [Gaunt, Stahlhofen, FT, Walsh '15]
 - ▶ VH, diphoton [Campbell, Ellis, Li, Williams '16]
 - NNLO Color-singlet in MCFM 8 [Boughezal et al. '16]
- Global 1-jettiness
 - ho pp
 ightarrow V/H+j [Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele '15, '16]
 - $ightharpoonup pp
 ightarrow \gamma + j$ [Campbell, Ellis, Williams '16]

N-Jettiness.

N-Jettiness Event Shape.

[Stewart, FT, Waalewijn, '10]

$$egin{aligned} \mathcal{T}_N &= \sum_k \min iggl\{ rac{2q_a \cdot p_k}{Q_a}, rac{2q_b \cdot p_k}{Q_b}, rac{2q_1 \cdot p_k}{Q_1}, rac{2q_2 \cdot p_k}{Q_2}, \ldots, rac{2q_N \cdot p_k}{Q_N} iggr\} \ &\equiv \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \cdots + \mathcal{T}_N^N \end{aligned}$$

- Partitions phase space into
 N jet regions and 2 beam regions
- ullet $Q_{a,b}, Q_j$ determine distance measure
 - ▶ Geometric measures: $Q_i = 2\rho_i E_i$
- Born reference momenta q_i

$$q_{a,b} = x_{a,b} rac{E_{
m cm}}{2} (1,\pm\hat{z})$$
 $q_i = E_i(1,ec{n}_i)$

Specifying them corresponds to choosing an (IR-safe) Born projection

 Specific choice is part of N-jettiness definition but only affects the power-suppressed terms and is therefore not needed for singular terms

All-order Singular Structure.

$$\begin{split} \frac{\mathrm{d}\sigma^{\mathrm{sing}}(X)}{\mathrm{d}\tau_N} &= \int \! \mathrm{d}\Phi_N \, \frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\tau_N} \, X(\Phi_N) \\ \frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\tau_N} &= \qquad \mathcal{C}_{-1}(\Phi_N) \, \delta(\tau_N) \, + \, \sum_{m \geq 0} \, \mathcal{C}_m(\Phi_N) \, \mathcal{L}_m(\tau_N) \\ &= \sum_{n \geq 0} \! \left[\mathcal{C}_{-1}^{(n)}(\Phi_N) \, \delta(\tau_N) \, + \, \sum_{m = 0}^{2n - 1} \, \mathcal{C}_m^{(n)}(\Phi_N) \, \mathcal{L}_m(\tau_N) \right] \! \left(\frac{\alpha_s}{4\pi} \right)^n \end{split}$$

- Singular only depend on Born phase space $\Phi_N \equiv \{q_i, \lambda_i, \kappa_i\}$
 - Subtractions are FKS-like in this respect
- Plus distributions encode cancellation of real and virtual IR divergences

All-order Singular Structure.

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}(X)}{\mathrm{d} au_N} = \int\!\mathrm{d}\Phi_N\,rac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d} au_N}\,X(\Phi_N)$$

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\tau_N} = \mathcal{C}_{-1}(\Phi_N)\,\delta(\tau_N) + \sum_{m\geq 0} \mathcal{C}_m(\Phi_N)\,\mathcal{L}_m(\tau_N)$$

$$= \sum_{n\geq 0} \left[\mathcal{C}_{-1}^{(n)}(\Phi_N)\,\delta(\tau_N) + \sum_{m=0}^{2n-1} \mathcal{C}_m^{(n)}(\Phi_N)\,\mathcal{L}_m(\tau_N) \right] \left(\frac{\alpha_s}{4\pi}\right)^n$$

Integrated subtractions

$$\sigma^{
m sing}(\Phi_N, au_{
m cut}) = \mathcal{C}_{-1}(\Phi_N) + \sum_{m\geq 0} \mathcal{C}_m(\Phi_N) \, rac{\ln^{m+1}(au^{
m cut})}{m+1}$$

- $\mathcal{C}_{-1}(\Phi_N)$ contains finite remainder of N-parton virtuals
 - ightharpoonup At LO: $\mathcal{C}_{-1}^{(0)}(\Phi_N)=B_N(\Phi_N)$
 - Most nontrivial piece, corresponds to virtual plus integrated subtraction in other subtraction schemes

Factorization Theorem.

[Stewart, FT, Waalewijn, '09, '10]

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\mathcal{T}_N} = \int \mathrm{d}t_a \, \mathbf{B}_a(t_a, x_a, \mu) \int \mathrm{d}t_b \, \mathbf{B}_b(t_b, x_b, \mu) \left[\prod_{i=1}^N \int \mathrm{d}s_i \, J_i(s_i, \mu) \right]$$

$$imes ec{C}^{\dagger}(oldsymbol{\Phi}_{N},\mu)\,\widehat{S}_{\kappa}igg(\mathcal{T}_{N}-rac{t_{a}}{Q_{a}}-rac{t_{b}}{Q_{b}}-\sum_{i=1}^{N}rac{s_{i}}{Q_{i}},\{\widehat{q}_{i}\},\muigg)ec{C}(oldsymbol{\Phi}_{N},\mu)$$

- All functions are IR finite and have an operator definition in SCET
- Simplifying features of N-jettiness
 - No dependence on jet algorithm (jet clustering, jet radius, etc.)
 - No recoil effects from soft radiation
 - ightharpoonup No additional $ec{p}_T$ dependence or convolutions, no rapidity divergences
- To obtain subtraction coefficients simply expand and collect terms, e.g.,

$$egin{aligned} \mathcal{C}_{-1}^{(2)} &= f_a f_b ig[ec{C}^{\dagger(0)} ec{C}^{(2)} + ec{C}^{\dagger(2)} ec{C}^{(0)} ig] \ &+ ec{C}^{\dagger(0)} ig[B_a^{(2)} f_b + f_a B_b^{(2)} + f_a f_b \, \hat{S}^{(2)} ig] ec{C}^{(0)} \ &+ \text{1-loop cross terms} \end{aligned}$$

Hard Matching Coefficients.

Encode the process-dependent N-parton virtual QCD corrections

Arise from matching QCD onto SCET

- In pure dimensionless regularization with MS given in terms of IR-finite (MS-subtracted) N-parton QCD amplitudes
- General formalism using SCET helicity operator basis [Moult, Stewart, FT, Waalewijn '15]
 - ▶ Using same color basis $\bar{T}^{a_1\cdots a_n}$ as in QCD calculation, directly given by corresponding color-ordered helicity amplitudes

$$ar{T}^{a_1\cdots a_n} \mathbf{i} ec{C}_{\pm\cdots\pm} = \mathcal{A}_{\mathrm{fin}}(g_1^\pm\cdots q_n^\pm) \equiv rac{ar{T}^{a_1\cdots a_n} \widehat{Z}_C^{-1} ec{\mathcal{A}}_{\mathrm{ren}}(g_1^\pm\cdots q_n^\pm)}{Z_{\xi}^{n_q/2} Z_A^{n_g/2}}$$

- \hat{Z} , Z_{ξ} , Z_A are SCET $\overline{\text{MS}}$ renormalization constants (in pure dimensional regularization equivalent to QCD $1/\epsilon_{\text{IR}}$ divergences)
- ▶ QCD helicity amplitudes should be UV-renormalized in CDR or HV

Beam and Jet Functions.

Encode cancellation of IR singularities between collinear real and virtual radiation and corresponding IR-finite remainder

- Inclusive virtuality-dependent (SCET-I) beam and jet functions
 - ► Universal for any N, only depend on parton type (quark vs. gluon)
 - Important: Overlap with soft contributions (known as zero bins in SCET) is scale-less and vanishes in pure dimensionless regularization

Jet functions

 (Straight)forward IR-finite vacuum matrix element of collinear quark or gluon operator

[NLO: Bauer, Manohar '03, Fleming, Leibovich, Mehen '03, Becher, Schwartz '06;

NNLO: Becher, Neubert '06, Becher, Bell '10]

Beam functions

 Require matching onto PDFs in terms of IR-finite matching coefficients [NLO: Stewart, FT, Waalewijn '09, '10: NNLO: Gaunt, Stahlhofen, FT '14]

$$B_i(t,x) = \sum_i \int \frac{\mathrm{d}z}{z} \mathcal{I}_{ij}(t,z) f_j\left(\frac{x}{z}\right)$$

NNLO beam functions are key ingredient for color-singlet production

Soft Function.

Encodes cancellation of IR singularities between soft real and virtual radiation and corresponding IR-finite remainder

- Matrix element of N+2 lightlike soft Wilson lines along collinear directions
 - Matrix acting on external color space, accounts for all color correlations in soft IR divergences
- Explicitly depends on N-jettiness measurement and partitioning
 - with respect to fixed collinear directions (no soft recoil effects)
- ullet NLO: Known for any number of Wilson lines (and any Q_i) using on hemisphere decomposition [Jouttenus, Stewart, FT, Waalewijn '11]
- NNLO
 - 2 partons: Hemisphere soft function [Kelley, Schwartz, Schabinger, Zhu '11; Monni, Gehrmann, Luisoni '11; Hornig, Lee, Stewart, Walsh, Zuberi '11; Kang, Labun, Lee '15]
 - ightharpoonup 3 partons: Numerically for pp o L + 1j [Boughezal, Liu, Petriello '15] recently for massive 3rd parton [Li, Wang '16]
 - Not yet known for general N

Subleading Power Corrections.

Basic Idea.

$$egin{aligned} \sigma^{
m sub}(au_{
m cut}) &= \sigma^{
m sing}(au_{
m cut}) \left[1 + \mathcal{O}(au_{
m cut})
ight] \ \Delta \sigma(au_{
m cut}) &= \sigma(au_{
m cut}) - \sigma^{
m sub}(au_{
m cut}) \ &\sim au_{
m cut} \ln^n au_{
m cut} \end{aligned}$$

Calculating the dominant power corrections they can be included in the subtraction to reduce the size of the missing terms

- Each factor of log can potentially give an order of magnitude numerical improvement
 - Even the LL next-to-leading power (NLP) terms are very interesting
- Many things that could be ignored at leading power start to matter at subleading power.
 - ► Choice of N-jettiness definition can strongly impact size of power corrections

SCET at Subleading Power.

SCET is explicitly constructed to maintain manifest power counting at all stages of a calculation

Provides natural organization of different sources of power corrections

- Insertions of subleading SCET Lagrangian
 - Corrects dynamics of propagating soft and collinear particles
- Subleading hard-scattering operators
 - Helicity operator basis extended to subleading power
- Subleading corrections to the measurement

Since we don't care about resummation, we don't actually need a full factorization theorem at subleading power

Instead, we can perform the calculation at fixed order with SCET as organizational principle, focusing on the highest logarithmic terms

2017-01-31

Example: Thrust at NLO.

- Result gives directly (no additional expansions) the NLP contribution
- Total NLP result reproduces known thrust result
- $1/\epsilon$ poles must cancel between collinear and soft contributions
 - In SCET these are UV poles arising from the scale separation between different sectors
 - ► From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

Example: Thrust at NLO.

$$\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma^{(2,1)}}{\mathrm{d}\tau} = 4C_F\bigg[-\bigg(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau}\bigg) + \bigg(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau^2}\bigg)\bigg] = -4C_F\ln\tau$$

- Result gives directly (no additional expansions) the NLP contribution
- Total NLP result reproduces known thrust result
- ullet 1/ ϵ poles must cancel between collinear and soft contributions
 - In SCET these are UV poles arising from the scale separation between different sectors
 - ► From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

Going to NNLO.

Same cancellation of $1/\epsilon$ poles must happen at NNLO

- Yields nontrivial constraints (consistency relations) on the different contributions from hard, collinear, and soft sectors
 - Significantly reduces number of NNLO coefficients that must be calculated
 - Equivalently provides for nontrivial cross checks
- The LL NNLO result is determined by a single coefficient
 - hard-collinear (easiest) or collinear-soft or soft-softor

New color structure compared to leading power from guark channel

0-Jettiness for Drell-Yan at NLP.

Crossing the thrust calculation and taking into account differences in measurement, phase space, and PDFs

Coefficients of the partonic cross section

with
$$\delta_a \equiv \delta(\xi_a-x_a)$$
 and $\delta_a' \equiv x_a\,\delta'(\xi_a-x_a)$ and $au \equiv \mathcal{T}_0/Q$

NLO

$$egin{aligned} C_{qar{q}}^{(2,1)}(\xi_a,\xi_b) &= 8C_F \left(\delta_a\delta_b + rac{\delta_a'\delta_b}{2} + rac{\delta_a\delta_b'}{2}
ight) \ln au + \cdots \ C_{qq}^{(2,1)}(\xi_a,\xi_b) &= -2T_F\,\delta_a\delta_b\,\ln au + \cdots \end{aligned}$$

NNLO

$$egin{aligned} C_{qar{q}}^{(2,2)}(\xi_a,\xi_b) &= -32C_F^2\left(\delta_a\delta_b + rac{\delta_a'\delta_b}{2} + rac{\delta_a\delta_b'}{2}
ight)\ln^3 au + \cdots \ C_{aa}^{(2,2)}(\xi_a,\xi_b) &= 4T_F(C_F+C_A)\,\delta_a\delta_b\,\ln^3 au + \cdots \end{aligned}$$

qg channel already contributes at leading-log, in contrast to leading power

Numerical Results for Drell-Yan.

We can obtain the full nonsingular numerically

$$\frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma^{\rm nons}}{\mathrm{d}\ln\mathcal{T}_0} = \frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma}{\mathrm{d}\ln\mathcal{T}_0} - \frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma^{\rm sing}}{\mathrm{d}\ln\mathcal{T}_0}$$

- Use Z+j NLO calculation from MCFM 8 for ${
 m d}\sigma/{
 m d}\ln\mathcal{T}_0$
- ullet Perform a χ^2 fit to (with $au \equiv \mathcal{T}_0/m_Z$)

$$F_{\text{NLO}}(\tau) = \frac{\mathrm{d}}{\mathrm{d} \ln \tau} \Big\{ \tau \big[(a_1 + b_1 \tau + c_1 \tau^2) \ln \tau + a_0 + b_0 \tau + c_0 \tau^2 \big] \Big\}$$

$$F_{\text{NNLO}}(\tau) = \frac{\mathrm{d}}{\mathrm{d} \ln \tau} \Big\{ \tau \big[(a_3 + b_3 \tau) \ln^3 \tau + (a_2 + b_2 \tau) \ln^2 \tau + a_1 \ln \tau + a_0 \big] \Big\}$$

- Requires high MC statistics to get precise enough nonsingular data to be able to distinguish different terms of similar shape
- ▶ Important to include b_i , c_i coefficients in the fit to avoid biasing the fit result for the NLP a_i coefficients we are interested in
- ▶ Important to carefully select fit range in \mathcal{T}_0 and validate fit stability

Frank Tackmann (DESY) N-jettiness Subtractions 2017-01-31

Numerical Results at NLO.

channel and coefficient		fitted	calculated
$qar{q}$ NLO	a_1	$+0.25366\pm0.00131$	+0.25509
qg NLO	a_1	-0.27697 ± 0.00113	-0.27720
$qar{q}$ NLO	a_0	$+0.13738\pm0.00057$	
qg NLO	a_0	-0.40062 ± 0.00052	

Numerical Results at NLO.

channel and coefficient		fitted	calculated
$qar{q}$ NLO	a_1	$+0.25366\pm0.00131$	+0.25509
qg NLO	a_1	-0.27697 ± 0.00113	-0.27720
$qar{q}$ NLO	a_0	$+0.13738\pm0.00057$	
qg NLO	a_0	-0.40062 ± 0.00052	

Numerical Results at NNLO.

channel and coefficient		fitted	calculated
$qar{q}$ NNLO	a_3	-0.01112 ± 0.00150	-0.01277
qg NNLO	a_3	$+0.02373\pm0.00247$	+0.02256
$qar{q}$ NNLO	a_2	-0.04662 ± 0.00180	
qg NNLO	a_2	$+0.04234 \pm 0.00242$	

Numerical Results at NNLO.

channel and coefficient		fitted	calculated
$qar{q}$ NNLO	a_3	-0.01112 ± 0.00150	-0.01277
qg NNLO	a_3	$+0.02373\pm0.00247$	+0.02256
$qar{q}$ NNLO	a_2	-0.04662 ± 0.00180	
qg NNLO	a_2	$+0.04234 \pm 0.00242$	

Impact On $\Delta\sigma$.

Impact On $\Delta\sigma$.

$\overline{\mathsf{Imp}}$ act On $\Delta \sigma$.

Impact On $\Delta \sigma$.

Dependence on Definition.

$$\mathcal{T}_0^x = \sum_k \min\{\lambda_x \, p_k^+, \lambda_x^{-1} \, p_k^-\}$$

- ullet leptonic: $\lambda = \sqrt{q^-/q^+} = e^Y$
 - Accounts for boost between leptonic (Born) and hadronic cm frame
 - Most natural (original) definition, power expansion in \mathcal{T}_0/Q
- ullet hadronic: $\lambda_{
 m had\ cm}=1$ (currently used in MCFM [Boughezal et. al '16])
 - ▶ Defines $\mathcal{T}_0^{\text{had cm}}$ in hadronic cm frame
 - lacktriangle Power expansion effectively in $\mathcal{T}_0^{\mathrm{had\ cm}}/(Qe^{\pm Y})$ deteriorates for large Y

26 / 28

Rapidity Dependence of Power Corrections.

• Exponential enhancement of power corrections

$$\widetilde{C}_{q\bar{q}}^{(2,2)}(\xi_a, \xi_b) = -16C_F^2 \Big[e^Y \delta_a(\delta_b + \delta_b') + e^{-Y} (\delta_a + \delta_a') \delta_b \Big] \ln^3 \tau + \cdots
\widetilde{C}_{qg}^{(2,2)}(\xi_a, \xi_b) = 4T_F (C_F + C_A) e^Y \delta_a \delta_b \ln^3 \tau + \cdots$$

- Explains rapidity cuts needed in MCFM 8 to obtain stable predictions
- Same arguments hold for beam contributions for any N
 - Need to choose $ho_{a,b}=1$ in Born frame or $ho_{a,b}=e^{\pm Y}$ in hadronic frame

Summary and Outlook.

Features of physical subtractions

- All IR singularities are projected onto physical observable
 - Also possible to make it more differential, e.g., separating into N-jettiness contributions from individual regions, going double-differential, ...
- Subtraction terms are given by singular contributions of a physical cross section
 - N-jettiness observable and factorization theorem available for any N
 - Extension to massive quarks is also possible
- The other key ingredient is a Born+jet NLO calculation that remains stable deep into the IR-singular region
- Can analyze and compute power corrections in SCET
 - Significant improvements in numerical implementations possible
 - Currently looking at other (gluon-initiated) color-singlet channels
 - ▶ TODO: Universality of NLP terms, extension to more final-state jets
 - Similar recent work (without SCET, also for gg) in [Boughezal, Liu, Petriello '16]
- Planning to make subtractions publicly available in C++ library SCETlib [http://scetlib.desy.de]