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Abstract
An approach which unifies the Double Logarithmic Approximation at small z and the leading or-
der DGLAP evolution of fragmentation functions at large x is presented. This approach reproduces
exactly the Modified Leading Logarithm Approximation, but is more complete due to the degrees
of freedom given to the quark sector and the inclusion of the fixed order terms. We find that data

from the largest x values to the peak region can be better fitted than with other approaches.
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The perturbative approach to Quantum Chromodynamics (QCD) is believed to solve all
problems within its own limitations provided the correct choices of the expansion variable
and the variable(s) to be fixed are used. However, perturbative QCD (pQCD) currently has
the status of being a large collection of seemingly independent approaches, since a single
unified approach valid for all processes is not known. This is problematic when one wants to
use a range, qualitatively speaking, of different processes to constrain the same parameters,
for example in global fits. What is needed is a single formalism valid over the union of all
ranges that the various pQCD approaches allow. This unification must be consistent, i.e. it
must agree with each approach in the set, when the expansion of that approach is used, up
to the order being considered.

The evolution in the factorization scale Q? of fragmentation functions (FFs) D(z, Q?)
(D is a vector containing all quark FFs D,, all antiquark FFs Dz and the gluon FF D) at
large and intermediate momentum fraction z is well described [1] by the leading order (LO)
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [2]
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where P(©)(z) are the LO splitting functions calculated from fixed order (FO) pQCD.
We define a, = a,/(2m), which at LO obeys a,(Q*) = 1/(8In(Q*/Agcp)), where fy =
(11/6)C4 — (2/3)Trny is the first coefficient of the beta function and Aqgep is the asymp-
totic scale parameter of QCD. For the color gauge group SU(3), the color factors appearing
in this Letter are Cp = 3/4, C4 = 3, and T = 1/2; ny is the number of active quark flavors.
On the other hand, at small x the Double Logarithmic Approximation (DLA) [3, 4]
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is required, where A = 0 when D is a valence quark or non-singlet FF, while
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when D = (Dy, D,), where Dy, = n—lf Efi 1(Dy+ D) is the singlet FF. The Modified Leading
Logarithm Approximation (MLLA) [4,15, 6] improves the description here by including a part
of the FO contribution that is known to be important at small x. With certain qualifications

[7], the MLLA leads to a good description of all data down to the smallest x values. However,
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what is still lacking is a single approach which can describe data from the largest to smallest
values of . We now construct such an approach, but leave the more detailed arguments to
a future publication.

As z — 0, the LO splitting function a,P(z) diverges due to terms of the form a,/z.
These double logarithms (DLs) occur at all orders in the FO splitting function, being gen-
erally of the form (1/2)(asIn 2)?(asIn®2)" for r = —1,...,00. As z decreases, Eq. () will
therefore become a poor approximation once In(1/x) = O(as Y ?). The reason why Eq. ()
is valid at low x is that it accounts for all double logarithms (DLs), by essentially sum-
ming them up. What we want, rather, is an evolution of the form of Eq. ([Il), but with the

modification to the splitting function
a,PO(z) = PPH(z,0,) + a,P” (2), (4)

where PPL(z, a,) contains the complete contribution to the splitting function to all orders
from the DLs, while asﬁ(o)(z) is the remaining FO contribution at LO. It is obtained by
subtracting the LO DLs, already accounted for in PPY, from a,P®(2) to prevent double
counting. We will now use Eq. () to gain some understanding of PPY. For this we need to

work in Mellin space, where the Mellin transform is defined by

fw) = / dra® f (). (5)

Upon Mellin transformation, Eq. () becomes

d d
(w2510 ) g Dl @) = 2000 @) AD (0. @) ®

Making the replacement in Eq. (@) in Eq. () and neglecting the FO term asP(O)(z) for now,

taking its Mellin transform

d

dTQ?D(w,QQ) = PP (w, a5(Q%)) D(w, Q%). (7)

and then substituting this into Eq. (@) gives an equation for PPL| viz.
2(PPY)? + wPPt — 2Ca,A = 0. (8)
We choose the solution

PP (w, a,) =

|

(—w + /o + IGCAa8> , 9)
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since its expansion in a4 yields at LO the result
a, PP (w, a,) = Rl (10)

which agrees with the LO DLs from the literature [§]. Equation ({) contains all terms in the
splitting function of the form (a,/w)(as/w?)" ™, being the DLs in Mellin space, and agrees
with the results of Refs. |4, [5]. We now return to x space, where Eq. ([{) reads

PDL(z,a)—Am (4\/@1n ) (11)

zln

with J; being the Bessel function of the first kind.

To summarize our approach, we evolve the fragmentation functions according to Eq. (),
but with the replacement of Eq. (#]), where PPY(z, a,) is given by Eq. (), and as?(o)(z) is
given by a, P (z) after the terms proportional to as/z have been subtracted.

Before we outline the phenomenological investigation of our approach, we note that it is

more complete than the MLLA, which can be shown as follows. With asﬁ(o)(z) accounted
for, Eq. (@) is modified to

d d
(2415 ) g D @) = 2Ca0. (@) AD(, @)

(o =
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up to terms which are being neglected in this Letter and which are neglected in the MLLA. If
we approximate asﬁ(o) (w) by its single logarithms (SLs), defined at LO to be the coefficients
of w°, equal to those in a,P© (w),

PSLO () = 0 —3Cr : (13)
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then if we apply the approximate result that follows from the DLA at large @,

Cr
Dyg = =Dy (14)
(e.g. this can be derived from Eq. (), the gluon component of Eq. (I2) becomes precisely
the MLLA differential equation. Therefore we conclude that, since we do not use these two

approximations, our approach is more complete and accurate than the MLLA.



We now test our approach by comparing its effects on fits of quark and gluon FF's to data
to the standard FO DGLAP evolution. We use normalized differential cross section data
for light charged hadron production in the process ete™ — (v, Z) — h + X, where h is the
observed hadron and X is anything else, from TASSO at /s = 14, 35, 44 GeV [9] and 22
GeV [10], MARK II [11] and TPC [12] at 29 GeV, TOPAZ at 58 GeV [13], ALEPH [14],
DELPHI [15], L3 [16], OPAL [17] and MARK II [18] at 91 GeV, ALEPH [19] and OPAL
[20] at 133 GeV, DELPHI at 161 GeV [21] and OPAL at 172, 183, 189 GeV [22] and 202
GeV [23]. We place a small x cut 1] on our data of

Vs
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(15)
where M is a mass scale of O(1) GeV. We fit the gluon g(z, Q%), as well as the quark FFs

fue(, Q%) =
fdsb($7 Qg) =

(u(z, Q5) + c(w, Q7))
(d(, Q)) + sz, Q0) + b(z, Q5)) ,

(16)
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where )y = 14 GeV. Since the hadron charge is summed over, we set Dy = D,. For each of

these three FFs, we choose the parameterization
f(z,Q3) = Nexp(—cln®2)z*(1 — z)°, (17)

which at small x is a Gaussian in £ for ¢ > 0 with centre positive in ¢ for a < 0 as is
found to be the case, while it reproduces the standard parameterization (i.e. that without
the exp(—cIn? ) factor) used in global fits at intermediate and large z. We use Eq. (Id) to
motivate the simplification

Cue = Cdsb = Cgy,

(18)
Qe = Qgsp = Qg
to our parameterization. We also fit Aqcp, giving 9 free parameters. Since we only use data
for which /s > my, where m;, ~ 5 GeV is the mass of the bottom quark, and since Qg > my,
we will take ny = 5 in all our calculations. While the precise choice for ny does not matter
in the DLA, calculations in the FO approach depend strongly on it.
If the (1 — )Y factors were absent, Eq. ([[d]) would dictate that

Cr

Nuc:Ns = =
dsb CA

N,. (19)



TABLE I: Parameter values for the FFs at Qp = 14 GeV parameterized as in Eq. () from a
fit to all data listed in the text using DGLAP evolution in the FO approach to LO. Agcp = 388

MeV.

Parameter

FF

g 0.22 —-0.43 —2.38 0.25

(utc)/2 0.49 2.30 [—2.38] [0.25]

(d4s+b)/3 0.37 1.49 [—2.38] [0.25]
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FIG. 1: Fit to data as described in Table [l Some of the data sets used for the fit are shown,
together with their theoretical predictions from the results of the fit. Data to the right of the

horizontal dotted lines were not used. Each curve is shifted up by 0.8 for clarity.

However, the (1—z)? factors are important at large z, and Eq. () is only an approximation
at small z. Thus it will be interesting to see the deviations from Eq. ([[J) after fitting.
We first perform a fit to all data sets listed above using standard LO DGLAP evolution,



i.e. Eq. () without the replacement in Eq. (#l). We fit to those data for which Eq. ([[H) is
obeyed with M = 0.5 GeV. This gives a total of 425 data points out of the available 492.
We obtain x$p = 3.0, and the results are shown in Fig.[land Table[l The result for Aqcp is
quite consistent with that of other analyses, at least within the theoretical error of a factor
of O(1). It is clear that FO DGLAP evolution fails in the description of the peak region and
shows a different trend outside the fit range. The exp(—cIn®z) factor does at least allow
for the fit range to be extended to x values below that of x = 0.1, the lower limit of most
global fits, to around = = 0.05 (£ = 3) for data at the larger /s values. Note that [, is
negative, while kinematics require it to be positive. However, this clearly does not make any

noticeable difference to the cross section.

TABLE II: Parameter values for the FFs at Qg = 14 GeV parameterized as in Eq. () from a fit

to all data listed in the text using DGLAP evolution in our approach. Aqcp = 801 MeV.

Parameter
N I5) « c
FF
g 1.60 5.01 —2.63 0.35
(u+c)/2 0.39 1.46 [—2.63] [0.35]
(d+s+b)/3 0.34 1.49 [—2.63] [0.35]

Now we perform the same fit again, but using our approach, i.e. Eq. ([Il) with the replace-
ment in Eq. @), for the evolution. The results are shown in Table [l and Fig. Bl We obtain
X5p = 2.1, a significant improvement to the fit above with FO DGLAP evolution. This
should also be compared to the fit to the same data in Ref. [24], where DL resummation
was used within the MLLA but with neither FO terms nor quark freedom (i.e. Eq. () was
imposed over the whole x range) and y3p = 4.0 was obtained. The data around the peak
is now much better described. The energy dependence is well reproduced up to the largest
Vs value, /s = 202 GeV. We conclude that, relative to the MLLA, the FO contributions
in the evolution, together with freedom from the constraint of Eq. (I4l), make a significant
improvement to the description of the data for £ from zero to just beyond the peak. How-
ever, Aqcp is rather large, even within the theoretical errors. N, is too large by a factor
of about 2 relative to its prediction provided by Eq. ([dl). However, note that NN, is weakly

constrained since the gluon FF couples to the data only through the evolution, requiring
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FIG. 2: Fit to data as described in Table [

e.g. gluon data to be properly constrained. These problems are related to the worsening
description of the data on moving beyond the peak, since fits in which the cuts were moved
to larger ¢ values gave an increase in Aqep and Ny, as well as x3p. Figure B is repeated
in Fig. B to show more clearly the good quality of the fit at intermediate and large z. A
couple of points at x = 0.9 are not well described, although the data here are scarce and
have larger errors.

In conclusion, we have proposed a single unified scheme which can describe a larger range
in x than either FO DGLAP evolution or the DLA. Further improvement in the small z
region can be expected from the inclusion of resummed SLs. Alternatively, improvement
may be achieved by suppressing the higher moments’s evolutions, since these are unstable
yet formally of higher order [7], and the suppression of these effects provided by the FO
contribution is unlikely to be sufficient. Our scheme allows a determination of quark and
gluon FFs over a wider range of data than previously achieved, and should be incorporated
into global fits of FFs such as that in Ref. [25] since the current range of 0.1 < z < 1 is very

limited.
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FIG. 3: Asin Fig. Pl but with the cross section on a logarithmic scale versus z. Each curve, apart
from the lowest one, has been rescaled relative to the one immediately below it by a factor of 5 for

clarity.
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