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The decay B → K∗`+`− is regarded as one of the most important modes to search for
physics beyond the standard model as the angular distribution enables the independent
measurement of a plethora of observables. To disentangle new physics from the standard
model effect an “exact” test of standard model is needed. This drive us to derive a rela-
tion including all short-distance and long-distance effects, factorizable and non-factorizable
contributions, complete electromagnetic corrections to hadronic operators up to all orders,
resonance contributions and the finite lepton masses in a complete model independent ap-
proach. The violation of this relation will provide a smoking gun signal of new physics.
The model independent framework has also been implemented in the maximum q2 limit
to highlight strong evidence of right-handed currents, which are absent in the SM. The
conclusions derived are free from hadronic corrections. Our approach differs from other
approaches that probe new physics at low q2 as it does not require estimates of hadronic
parameters but relies instead on heavy quark symmetries that are reliable at the maximum
q2 kinematic endpoint.

The mode B → K∗`+`−

The Standard Model(SM) is a gauge theory capable of explaining interactions between the
observed particles. Most ingredients completed by 1974 and with the discovery of the Higgs,
the SM is complete. Though this gauge theory has been remarkably successful in explaining a
whole lot of physical phenomenons, it also fails to answer various others( e.g. the origin of its
parameters, Naturalness problem, dark matter, dark energy etc.). Hence a lot of attempts have
been made to extend this highly successful theory, which we call the Physics beyond SM or
New Physics(NP). However, no conclusive NP signal has been seen till now. Which brings us to
the question that how does one search for NP. It can be discovered either by direct production
of new particles which are not accommodated in SM or by indirect searches at high luminosity
facilities where NP can contribute virtually through loop processes.

A lot of effort has been put in observation of new particles through direct production. But
if we were to follow the later approach, then we should focus on modes that are potentially
sensitive to NP. One such mode is the mode B → K∗`+`−. The underlying process is a Flavor
Changing Neutral Current (FCNC) decay which happens through a penguin process. It has a
large number of related observables. In addition, this mode can get contribution from variety of
operators through the loop. Hence, this is very good candidate in probing NP. But this being a
hadronic decay mode, we have to be careful in dealing with the hadronic uncertainties. In this
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work we show that the hadronic uncertainties can be eliminated by carefully taking relation
between observables. Then we use these relations to probe for NP.

Model independent framework

The decays B → K∗`+`− occurs at the quark level via a b → s`+`− flavor changing neutral
current transition. The short-distance effective Hamiltonian for the inclusive process b→ s`+`−

is given in the SM by [1, 2, 3],

Heff =− 4
GF√

2

[
VtbV

∗
ts

(
C1Oc1 + C2Oc2 +

10∑

i=3

CiOi
)

+ VubV
∗
us

(
C1(Oc1 −Ou1 ) + C2(Oc2 −Ou2 )

)]
.

(1)

The local operators Oi are as given in Ref. [2], however, for completeness we present the
relevant operators that are dominant:

O7 =
e

g2

[
s̄σµν(mbPR +msPL)b

]
Fµν ,

O9 =
e2

g2
(s̄γµPLb) ¯̀γµ`,

O10 =
e2

g2
(s̄γµPLb) ¯̀γµγ5`,

where g (e) is the strong(electromagnetic) coupling constant, PL,R = (1 ∓ γ5)/2 are the left
and right chiral projection operators and mb (ms) are the running b (s) quark mass in the MS
scheme. The Wilson coefficients Ci encode all the short-distance effects and are calculated in
perturbation theory at a matching scale µ = MW up to desired order in the strong coupling
constant αs before being evolved down to the scale µ = mb ≈ 4.8GeV. All NP contributions to
B → K∗`+`− contribute exclusively to Ci; this includes new Wilson coefficients corresponding
to new operators that arise from NP.

The decay amplitude in terms of hadronic matrix elements must therefore include direct con-
tributions proportional to C7, C9 and C10 multiplied by B → K∗ form factors and contributions
from non local hadronic matrix elements Hi such that [4, 5],

A(B(p)→ K∗(k)`+`−) =
GFα√

2π
VtbV

∗
ts

[{
Ĉ9〈K∗|s̄γµPLb|B̄〉

− 2Ĉ7

q2
〈K∗|s̄iσµνqν(mbPR +msPL)b|B̄〉

− 16π2

q2

∑

i={1−6,8}
ĈiHµi

}
¯̀γµ`

+ Ĉ10〈K∗|s̄γµPLb|B̄〉 ¯̀γµγ5`

]
, (2)
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where, p = q + k with q being the dilepton invariant momentum and the non local hadron
matrix element Hµi is given by

Hµi = 〈K∗(k)|i
∫
d4x eiq·xT{jµem(x),Oi(0)}|B̄(p)〉.

In Eq. (2), we have introduced new notional theoretical parameters Ĉ7, Ĉ9 and Ĉ10 to indicate
the true values of Wilson coefficients, which are by definition not dependent on the order of
the perturbative calculation to which they are evaluated. Our definition is explicit and should
not be confused with those defined earlier in literature. The amplitude expressed in Eq. (2)
is notionally complete and free from any approximations. In this paper we do not attempt
to estimate the hadronic matrix element involved in Eq. (2), instead we use Lorentz invari-
ance to write out the most general form of the hadron matrix elements 〈K∗|s̄γµPLb|B̄(p)〉 and
〈K∗|s̄iσµνqνPR,Lb|B̄(p)〉 which may be defined as

〈K∗(ε∗, k))|s̄γµPLb|B(p)〉 = ε∗ν
(
X0 q

µqν +X1 (gµν−q
µqν

q2
) +X2 (kµ−k.q

q2
qµ)qν + iX3 ε

µνρσ kρqσ

)
,

(3)

〈K∗(ε∗, k))|is̄σµνqνPR,Lb|B(p)〉 = ε∗ν
(
± Y1 (gµν− q

µqν

q2
)± Y2 (kµ− k.q

q2
qµ)qν + iY3 ε

µνρσ kρqσ

)
.

(4)
We have written Eq. (3) such that the vector part of the current in 〈K∗(ε∗, k))|s̄γµPLb|B(p)〉
is conserved and only the X0 term in the divergence of the axial part survives. Equation (4)
is also written so as to ensure that 〈K∗|is̄σµνqνPR,Lb|B〉qµ = 0. The relations between X0,1,2,3

and Y1,2,3 and the form factors conventionally defined for on-shell K∗ are discussed in [6].
It should be noted that form factors X0,1,2,3 and Y1,2,3 are functions of q2 and k2, but we
suppress the explicit dependence for simplicity of notation. The subsequent decay of the K∗,
i.e., K∗(k)→ K(k1)π(k2) can be easily taken into account [7, 2] resulting in the hadronic matrix
element 〈[K(k1)π(k2)]K∗ |s̄γµPLb|B(p)〉 being written as

〈[K(k1)π(k2)]K∗ |s̄γµPLb|B(p)〉 = DK∗(k
2)Wν

(
X0 q

µqν + X1(g
µν− q

µqν

q2
)

+ X2 (kµ− k.q
q2
qµ)qν + iX3 ε

µνρσ kρqσ

)
, (5)

〈[K(k1)π(k2)]K∗ |is̄σµνqνPR,Lb|B(p)〉 = DK∗(k
2)Wν

(
± Y1 (gµν− q

µqν

q2
)

± Y2 (kµ− k.q
q2
qµ)qν + iY3 ε

µνρσ kρqσ

)
,

(6)

where, the subscript K∗ in [K(k1)π(k2)]K∗ indicates that the final sate is produced by the
decay of a K∗. DK∗(k2) is the K∗ propagator, so that

|DK∗(k2)|2 =
g2
K∗Kπ

(k2 −m2
K∗)

2 + (mK∗ΓK∗)2
, (7)

HQ 2016 3

IMPLICATIONS FROM B → K∗`+`− OBSERVABLES USING LHCB DATA.

HQ 2016 341



with gK∗Kπ being the K∗Kπ coupling and the other parameters introduced are

Wν = Kν − ξkν , K =k1 − k2, k =k1 + k2, ξ =
k2

1 − k2
2

k2
.

The most general expression for the hadronic matrix element Hµi can also be written using
Lorentz invariance. Since this hadronic matrix element arises from non local contributions
at the quark level, it involves introducing “new” form factors Zi1, Zi2 and Zi3 corresponding
to nonfactorizable contribution from each Hµi in analogy with those introduced in Eq. (3) as
follows:

Hµi = 〈K∗(ε∗, k)|i
∫
d4x eiq·xT{jµem(x),Oi(0)}|B̄(p)〉

= ε∗ν
(
Zi1 (gµν − qµqν

q2
) + Zi2 (kµ − k.q

q2
qµ)qν + iZi3 εµνρσ kρqσ

)
. (8)

Our definition follows Ref. [8] of “nonfactorizable ” and includes those corrections that are
not contained in the definition of form factors introduced in Eqs. (3) and (4). Here the most
general form of Hµi is written to ensure the conservation of EM current i.e, qµHµi = 0.

The non local effects represented byHµi can be taken into account by absorbing the contribu-

tions into redefined Ĉ9 and modifying the contribution from the electromagnetic dipole operator
O7. The electromagnetic corrections to operators O1−6,8 can also contribute to B → K∗γ at

q2 = 0. Since only the Wilson coefficient Ĉ7 contributes to B → K∗γ, the charm loops at q2 = 0
must contribute to Ĉ7 in order for the Wilson coefficient to be process independent. It is easily
seen that the effect of this is to modify the Ĉ7〈Kπ|s̄iσµνqν(mbPR+msPL)b|B̄〉 terms such that
the form factors and Wilson coefficients mix in an essentially inseparable fashion. This holds
true even for the leading logarithmic contributions [8, 9]. Both factorizable and nonfactorizable
contributions arising from electromagnetic corrections to hadronic operators up to all orders can
in principle be included in this approach. The remaining contributions can easily be absorbed
into a redefined “effective” Wilson coefficient Ĉ9 defined such that

Ĉ9 → C̃
(j)
9 = Ĉ9 + ∆C

(fac)
9 (q2) + ∆C

(j),(non-fac)
9 (q2) (9)

where, j = 1, 2, 3 and ∆C
(fac)
9 (q2), ∆C

(non-fac)
9 (q2) correspond to factorizable and soft gluon

nonfactorizable contributions respectively. Note that the nonfactorizable contributions necessi-
tates the introduction of new form factors Zj and the explicit dependence on Zj/Xj is absorbed
in defining

∆C
(fac)
9 + ∆C

(j),(non-fac)
9 = −16π2

q2

∑

i={1−6,8}
Ĉi
Zij
Xj
, (10)

resulting in the j dependence of the term as indicated. We also mention that there is no nonfac-
torizable correction term in Eq. (8) analogous to X0 (in Eq. (3)) due EM current conservation
as discussed above.

The corresponding corrections to Ĉ7 are taken into by the replacement,

2(mb+ms)

q2
Ĉ7 Yj → Ỹj =

2(mb +ms)

q2
Ĉ7 Yj + · · · , (11)
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where the dots indicate other factorizable and nonfactorizable contributions and the factor
2(mb + ms)/q

2 has been absorbed in the form factors Ỹj . Note that the Ỹj ’s are in general

complex because of the nonfactorizable contributions to the Wilson coefficient Ĉ7, but on-

shell quarks and resonances do not contribute to them. It should be noted that C̃
(j)
9 includes

contributions from both factorizable and nonfactorizable effects, whereas Ĉ10 is unaffected by
strong interaction effects coming from electromagnetic corrections to hadronic operators. The
use of a ‘widetilde’ versus ‘widehat’ throughout the paper is also meant as a notation to indicate

this fact. It should be noted that Ĉ10 is real in the SM, whereas, C̃
(j)
9 and Ỹj are in general

complex within the SM. The amplitude in Eq. (2) can therefore be written as

AL,Rλ = Cλ

L,R Fλ − G̃λ =
(
C̃λ

9 ∓ Ĉ10)Fλ − G̃λ = (∓Ĉ10 − rλ)Fλ + iελ, (12)

rλ and ελ are defined as,

rλ =
Re(G̃λ)

Fλ
− Re(C̃λ

9 ), ελ ≡ Im(C̃λ

9 )Fλ − Im(G̃λ). (13)

Observables and relations

With these amplitudes we can construct several observables. For us the relevant observables
are the three helicity fractions and six asymmetries. The helicity fractions are defined as

FL =
|AL0 |2 + |AR0 |2

Γf
, (14a)

F‖ =
|AL‖ |2 + |AR‖ |2

Γf
, (14b)

F⊥ =
|AL⊥|2 + |AR⊥|2

Γf
, (14c)

where Γf ≡
∑
λ(|ALλ |2 + |ARλ |2) such that FL + F‖ + F⊥ = 1. The rest six asymmetries are

defined below.

AFB =
3

2

Re(AL‖AL
∗
⊥ −AR‖ AR

∗
⊥ )

Γf
, (15)

A4 =

√
2

π

Re(AL0AL
∗
‖ +AR0 AR

∗
‖ )

Γf
, (16)

A5 =
3

2
√

2

Re(AL0AL
∗
⊥ −AR0 AR

∗
⊥ )

Γf
, (17)

A7 =
3

2
√

2

Im(AL0 AL‖
∗ −AR0 AR‖

∗
)

Γf
, (18)

A8 =

√
2

π

Im(AL0 AL⊥
∗

+AR0 AR⊥
∗
)

Γf
, (19)

A9 =
3

2π

Im(AL‖
∗AL⊥ +AR‖

∗AR⊥)

Γf
. (20)
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Using Eq. (12) and (13) we express the observables in terms of Ĉ10, rλ, Fλ and ελ as follows:

FLΓf = 2F2
0

(
r2
0 + Ĉ2

10

)
+ 2ε2

0, (21)

F‖Γf = 2F2
‖
(
r2
‖ + Ĉ2

10

)
+ 2ε2

‖, (22)

F⊥Γf = 2F2
⊥
(
r2
⊥ + Ĉ2

10

)
+ 2ε2

⊥, (23)
√

2πA4Γf = 4F0F‖
(
r0r‖+ Ĉ2

10

)
+4ε0ε‖, (24)

√
2A5Γf = 3F0F⊥Ĉ10

(
r0 + r⊥

)
, (25)

AFBΓf = 3F‖F⊥Ĉ10

(
r‖ + r⊥

)
, (26)

√
2A7Γf = 3Ĉ10

(
F0ε‖ −F‖ε0

)
, (27)

πA8Γf = 2
√

2
(
F0r0ε⊥ −F⊥r⊥ε0

)
, (28)

πA9Γf = 3
(
F⊥r⊥ε‖ −F‖r‖ε⊥

)
. (29)

The ελ’s can be solved using A7, A8 and A9 from Eqs. (27)–(29) to give

ε⊥ =

√
2πΓf

(r0−r‖)F⊥

[
A9P1

3
√

2
+
A8P2

4
− A7P1P2r⊥

3πĈ10

]
, (30)

ε‖ =

√
2πΓf

(r0−r‖)F⊥

[
A9r0

3
√

2r⊥
+
A8P2r‖
4P1r⊥

− A7P2r‖

3πĈ10

]
, (31)

ε0 =

√
2πΓf

(r0−r‖)F⊥

[
A9P1r0

3
√

2P2r⊥
+
A8r‖
4r⊥

− A7P1r0

3πĈ10

]
. (32)

Where,

P1 =
F⊥
F‖

, P2 =
F⊥
F0

. (33)

As expected, we also get some relations between observables as there are only 6 amplitudes
but several observables. Implying, all the observables are not independent. These relations
are obtained by interplaying with the Eqs. (21)-(26). One such relation, with the imaginary
contribution to the amplitudes, is given below

A4 =
2
√

2ε‖ε0

πΓf
+

8A5AFB

9π
(
F⊥ −

2ε2
⊥

Γf

)

+
√

2

√(
FL −

2ε2
0

Γf

)(
F⊥ −

2ε2
⊥

Γf

)
− 8

9
A2

5

√(
F‖ −

2ε2
‖

Γf

)(
F⊥ −

2ε2
⊥

Γf

)
− 4

9
A2

FB

π
(
F⊥ −

2ε2
⊥

Γf

) . (34)

In real limit(i.e. ελ → 0 ), the asymmetries A7,8,9 → 0 from Eq.(27)-(29). Whereas the rest of
the asymmetries are related to other observables through the following relations,
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A4 =
8A5AFB

9πF⊥
+

√
4F‖F⊥− 16

9 A
2
FB

√
4FLF⊥− 32

9 A
2
5

2
√

2πF⊥
, (35)

A5 =
πA4AFB

2F‖
±

3
√

4F‖F⊥− 16
9 A

2
FB

√
2F‖FL−π2A2

4

8F‖
, (36)

AFB =
πA4A5

FL
±

3
√

4FLF⊥− 32
9 A

2
5

√
2F‖FL−π2A2

4

4
√

2FL
. (37)

The detailed derivations of the above relations are given in [6, 10]. We note that these
relations do not depend on any hadronic parameters except the observables. Hence these
relations should hold true unless some new operators, or New Physics operators to be precise,
end up altering the whole angular distribution such that the above mentioned relations will
no longer hold. So we emphasize that these relations can be used as a very clean and indirect
probe for New Physics. However in the presence of right-handed currents and any extra vector
current such as Z ′ which does not change the angular distributions, the relations will remain
valid. At this point we’d also like to mention that the kind of New Physics contributing to
this mode are not that arbitrary as there will be several constraints, on several kinds of New
Physics, coming from several other hadronic as well as non-hadronic decay modes.

In Fig.1, we test the validity of Eq.(35)-(37). We get the values of the observable on LHS
by putting experimentally observed observable values on the RHS in each q2 bin. Then we plot
this result against the experimentally observed values of the corresponding observables. The
mean values and ±1σ uncertainty bands for asymmetries AFB, A4, A5 and P ′5 calculated using
Eqs. (35)-(37), are shown in yellow, gray, green and brown bands, respectively. The error bars in
red (dark) correspond to the LHCb measured [11] central values and errors for each observable
for the respective q2 bins. Sizable discrepancies are found for AFB in 11.0 ≤ q2 ≤ 12.5 GeV2

and 15 ≤ q2 ≤ 17 GeV2 bins and for A4 in the range 0.1 ≤ q2 ≤ 0.98 GeV2.

Looking for New Physics

The rare decay B → K∗`+`−, which involves a b → s flavor changing loop induced quark
transition at the quark level, provides an indirect but very sensitive probe of new physics (NP)
beyond the standard model (SM). The angular distribution of the decay products provides a
large number of observables [7] and thus can be used to reduce hadronic uncertainties making
the mode a very special tool to probe for NP. We have already indicated some irregularities
between the SM and the data in the previous discussion. While it implies the presence of
NP, it says very little about the exact nature of the possible New Physics. In the following
work we discover a specific kind of NP(i.e. Right-Handed Currents) at the kinematic endpoint
of B → K∗`+`−. We emphasize that even with these RH-currents, which does not alter the
angular distribution, the relations in Eq. (35)-(37) would still hold and some other kind of NP
would be required to explain the discrepancies found in Fig.1.

Significant work has been done to probe NP in this mode. Most previous attempts have
focused [12] on the low dilepton invariant mass squared region q2 = 1− 6 GeV2. An alternative
approach that probes the maximum q2 limit has also been studied in literature [5, 13]. We show
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Figure 1: (color online) The mean values and ±1σ uncertainty bands for asymmetries AFB, A4,
A5 and P ′5 calculated using Eqs. (35) – (37) are shown in yellow, gray, green and brown bands,
respectively. The error bars in red (dark) correspond to the LHCb measured [11] central values
and errors for each observable for the respective q2 bins. The predictions for the asymmetries
are obtained using the relations among observables which are independent of any hadronic
parameters and depend on experimental measurements of the other observables remaining in
the corresponding relations. Sizable discrepancies are shown for AFB in 11.0 ≤ q2 ≤ 12.5 GeV2

and 15 ≤ q2 ≤ 17 GeV2 bins and for A4 in the range 0.1 ≤ q2 ≤ 0.98 GeV2. We note that
the relations (Eqs. (35) – (37)) remain valid except in the presence of NP operators that result
in modified angular distribution. Hence the presence of right-handed currents and any extra
vector current such as Z ′ the relations will remain valid.

that this limit holds significant promise for clean probes of NP. A previous study suggested a
possible signal of NP in the large q2 region [10]. In this work we show that LHCb data implies
a 5σ signal for the existence of NP. While the evidence for right handed currents is clear, other
NP contributions are also possible. Our conclusions are derived in the maximum q2 limit (q2

max)
and are free from hadronic corrections. Our approach differs from other approaches that probe
NP at low q2 by not requiring estimates of hadronic parameters but relying instead on heavy
quark symmetries that are completely reliable at the kinematic endpoint q2

max [5, 14]. While
the observables themselves remain unaltered from their SM values, their derivatives and second
derivatives at the endpoint are sensitive to NP effects.

Right-Handed currents

As mentioned previously the Right-Handed currents do not alter the angular distributions.
However, they introduce two new operators namely O′9 and O′10. These operators O′9 and O′10,
with respective couplings C ′9 and C ′10, modify the amplitudes in Eq. (12) as follows

AL,R⊥ =
(
(C̃⊥9 + C ′9)∓ (C10 + C ′10)

)
F⊥ − G̃⊥,

AL,R‖,0 =
(
(C̃‖,09 − C ′9)∓ (C10 − C ′10)

)
F‖,0 − G̃‖,0 (38)
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We define two new variables

ξ =
C ′10

C10
and ξ′ =

C ′9
C10

. (39)

Ignoring the imaginary contributions for the time being, the observables in Eq.(21)-(26) can be
rewritten as,

F⊥ = 2ζ (1 + ξ)2(1 +R2
⊥) (40)

F‖P
2
1 = 2ζ (1− ξ)2(1 +R2

‖) (41)

FLP
2
2 = 2ζ (1− ξ)2(1 +R2

0) (42)

AFBP1 = 3ζ (1− ξ2)
(
R‖ +R⊥

)
(43)

√
2A5P2 = 3ζ (1− ξ2)

(
R0 +R⊥

)
(44)

where P1 =
F⊥
F‖

, P2 =
F⊥
F0

, ζ =
F2
⊥C

2
10

Γf
,

R⊥ =

r⊥
C10
− ξ′

1 + ξ
, R‖ =

r‖
C10

+ ξ′

1− ξ , R0 =

r0

C10
+ ξ′

1− ξ . (45)

We consider the observables FL, F‖, F⊥, AFB and A5, with the constraint FL+F‖+F⊥ = 1.
Using Eq. (40)–(44), we obtain expressions for R⊥, R‖, R0 and P2 in terms of the observables
and P1:

R⊥ = ±3

2

(
1−ξ
1+ξ

)
F⊥ + 1

2P1Z1

P1AFB
(46)

R‖ = ±3

2

(
1+ξ
1−ξ

)
P1F‖ + 1

2Z1

AFB
(47)

R0 = ± 3

2
√

2

(
1+ξ
1−ξ

)
P2FL + 1

2Z2

A5
(48)

P2 =

(
1−ξ
1+ξ

)
2P1AFBF⊥

√
2A5

((
1−ξ
1+ξ

)
2F⊥ + Z1P1

)
− Z2P1AFB

(49)

where Z1 = (4F‖F⊥− 16
9 A

2
FB)

1
2 and Z2 = (4FLF⊥− 32

9 A
2
5)

1
2 . Since we have one extra parameter

compared to observables, all of the above expressions depend on P1. Fortunately in the large
q2 limit, the relations between form factors enable us to eliminate one parameter.

At the kinematic limit q2 = q2
max = (mB − mK∗)

2 the K∗ meson is at rest and the two
leptons travel back to back in the B meson rest frame. There is no preferred direction in the
decay kinematics. Hence, the differential decay distribution in this kinematic limit must be
independent of the angles θ` and φ, which can be integrated out. This imposes constraints on
the amplitude AL,Rλ and hence the observables. The entire decay, including the decay K∗ → Kπ
takes place in a single plane, resulting in a vanishing contribution to the ‘⊥’ helicity, or F⊥ = 0.
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Since the K∗ decays at rest, the distribution of Kπ is isotropic and cannot depend on θK . It
can easily be seen that this is only possible if F‖ = 2FL [14].

At q2 =q2
max, Γf → 0 as all the transversity amplitudes vanish in this limit. The constraints

on the amplitudes described above result in unique values of the helicity fractions and the
asymmetries at this kinematical endpoint. The values of the helicity fractions and asymmetries
were derived in Ref. [14, 6] where it is explicitly shown that

FL(q2
max) =

1

3
, F‖(q2

max) =
2

3
, A4(q2

max) =
2

3π
,

F⊥(q2
max) = 0, AFB(q2

max) = 0, A5,7,8,9(q2
max) = 0. (50)

At low recoil energy of K∗ meson, only three independent form factors describe the whole
B → K∗`+`− decay and there exist a relation among the form factors at leading order in 1/mB

expansion given by [5, 15],

G̃‖
F‖

=
G̃⊥
F⊥

=
G̃0

F0
= −κ2mbmBC7

q2
, (51)

where κ ≈ 1. The helicity independence of the ratios G̃λ/Fλ at q2
max is easy to understand,

since both the B and K∗ mesons are at rest, resulting in a complete overlap of the wave
functions of these two mesons and the absence of any preferred direction in the Kπ distribution.
Hence at the maximum point in q2, i.e. the kinematic endpoint q2

max, one gets from Eq.(13)
r0 = r‖ = r⊥ ≡ r. Therefore Eq. (45) implies that in the presence of RH currents one should
expect R0 = R‖ 6= R⊥ at q2 = q2

max without any approximation. Interestingly, this relation is
unaltered by non-factorizable and resonance contributions [14] at this kinematic endpoint.

To test the relation among Rλ’s in light of LHCb data, first defining δ ≡ q2
max − q2, we

expand the observables FL, F⊥, AFB and A5 around q2
max as follows:

FL =
1

3
+ F

(1)
L δ + F

(2)
L δ2 + F

(3)
L δ3, (52)

F⊥ = F
(1)
⊥ δ + F

(2)
⊥ δ2 + F

(3)
⊥ δ3, (53)

AFB = A
(1)
FBδ

1
2 +A

(2)
FBδ

3
2 +A

(3)
FBδ

5
2 , (54)

A5 = A
(1)
5 δ

1
2 +A

(2)
5 δ

3
2 +A

(3)
5 δ

5
2 . (55)

where for each observable O, O(n) is the coefficient of the nth term in the expansion. The
polynomial fit to data is not based on Heavy Quark Effective Theory (HQET) or any other
theoretical assumption. A parametric fit to data is performed, so as to obtain the limiting
values of the coefficients to determine the slope and second derivative of the observables at
q2
max. It should be noted that the polynomial parameterizations are inadequate to describe the
q2 dependent behavior of resonances. However, a very thorough discussion on the systematics
of the resonance effects can be found in [16].

The relation in Eq. (51) between form factors is expected to be satisfied in the large q2

region. Eq. (51) is naturally satisfied if it is valid at each order in the Taylor expansion of the
form factors:

q2 G̃λ
Fλ

= q2
max

G̃(1)
λ + δ (G̃(2)

λ −
G̃(1)
λ

q2
max

) +O(δ2)

F (1)
λ + δF (2)

λ +O(δ2)
. (56)
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We require only that the relation be valid up to order δ. In order for Eq. (56) to have

a constant value in the neighborhood of q2
max up to O(δ), we must have F (2)

λ = cF (1)
λ and

(q2
max G̃(2)

λ −G̃
(1)
λ ) = c q2

max G̃(1)
λ where c is any constant. As discussed earlier, P2 =

√
2P1 at q2

max,

hence, we must have P
(1)
2 =

√
2P

(1)
1 , where P

(1)
1,2 are the coefficients of the leading O(

√
δ) term

in the expansion. However, the above argument implies that at the next order, we must also

have P
(2)
2 =

√
2P

(2)
1 , since F (2)

λ = cF (1)
λ . This provides the needed input that together with

Eq. (49) determines P
(1)
1 purely in terms of observables.

The zeroth order coefficients of the observable expansions are assumed from the constraints
arising from Lorentz invariance and decay kinematics derived in Ref. [14], whereas all the higher
order coefficients are extracted by fitting the polynomials with 14 bin LHCb data as shown in
Fig. 2.

Figure 2: An analytic fit to 14-bin LHCb data using Taylor expansion at q2
max for the observables

FL, F⊥, AFB and A5 are shown as the brown curves. The ±1σ error bands are indicated by the
light brown shaded regions, derived including correlation among all observables. The points
with the black error bars are LHCb 14-bin measurements [11].

The limiting analytic expressions for Rλ at q2 = q2
max are

R⊥(q2
max) =

8A
(1)
FB(−2A

(2)
5 +A

(2)
FB) + 9(3F

(1)
L + F

(1)
⊥ )F

(1)
⊥

8 (2A
(2)
5 −A

(2)
FB)

√
3
2F

(1)
⊥ −A

(1) 2
FB

=
ω2 − ω1

ω2

√
ω1 − 1

, (57)

R‖(q
2
max) =

3(3F
(1)
L + F

(1)
⊥ )

√
3
2F

(1)
⊥ −A

(1) 2
FB

−8A
(2)
5 + 4A

(1)
FB + 3A

(1)
FB(3F

(1)
L + F

(1)
⊥ )

=

√
ω1 − 1

ω2 − 1
= R0(q2

max) (58)

where

ω1 =
3

2

F
(1)
⊥

A
(1) 2
FB

and ω2 =
4 (2A

(2)
5 −A

(2)
FB)

3A
(1)
FB(3F

(1)
L + F

(1)
⊥ )

. (59)

It should be noted that Eqs. (57)–(59) are derived only at q2
max. However, even at the endpoint,

the expressions depend on polynomial coefficients: F
(1)
L and F

(1)
⊥ as well as A

(2)
FB and A

(2)
5 which
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are not related by HQET. Hence, in our approach, corrections beyond HQET are automatically
incorporated through fits to data.

In the absence of RH currents or other NP that treats the “⊥” amplitude differently one
would expect R⊥(q2

max) = R‖(q2
max) = R0(q2

max). It is easily seen that the LHS of Eq. (43)
is positive around q2

max and since ζ > 0, we must have R⊥ = R‖ = R0 > 0. Since very
large contributions from RH currents are not possible, as they would have been seen elsewhere,
Rλ(q2

max) > 0 still holds and restricts ξ and ξ′ to reasonably small values.

It can be seen that ω1, ω2 contain coefficients which are extracted completely from data
and their estimates using LHCb measurements are: ω1 = 1.10 ± 0.30 (1.03 ± 0.34) and ω2 =

−4.19± 10.48 (−4.04± 10.12), where the first values are determined using A
(1)
FB and the values

in the round brackets use 2A
(1)
5 . The variables Rλ’s can be estimated using data only and

the allowed region is shown in gray bands in Fig. 3 left panel. A significant deviation is seen
from a slope of 45o line (red line) which denotes R⊥ = R‖ = R0 and thus hints toward the
presence of RH currents without using any estimate of hadronic contributions. To quantify the
RH couplings, we use Eq. (45) and the results are shown in the last two panels of Fig. 3. The
middle panel uses the SM estimate of parameter r/C10 [15] and the SM prediction for C ′10/C10

and C ′9/C10 (the origin) is at more than 5σ confidence level. We have performed another
analysis where the input r/C10 is considered as nuisance parameter and the result is shown
in the right most panel of Fig. 3. It can be seen that the uncertainties in fitted parameters
C ′10/C10 and C ′9/C10 have increased due to the variation of r/C10 and the SM prediction still
remains on a 3σ level contour providing evidence of RH currents.

Figure 3: (left panel) Allowed regions in R⊥ – R‖,0 plane are shown in light and dark gray
bands at 1σ and 5σ confidence level, respectively. The red straight line corresponds to the
case R⊥ = R‖,0 i.e. the absence of RH couplings. (middle panel) In C ′10/C10 – C ′9/C10 plane,
the yellow, orange and red regions correspond to 1σ, 3σ and 5σ significance level, respectively,
where SM input for r/C10 [15] is used. The best fit values of C ′10/C10 and C ′9/C10, with ±1σ
errors are −0.63 ± 0.43 and −0.92 ± 0.10, respectively. (right panel) Same color code as the
middle panel figure. The input r/C10 is varied as a nuisance parameter and hence the obtained
uncertainties in C ′10/C10 and C ′9/C10 are increased. The SM predictions for all the three plots
are indicated by the stars. Strong evidence of RH current is pronounced from the plots.

12 HQ 2016

ABINASH KUMAR NAYAK, RUSA MANDAL, RAHUL SINHA

350 HQ 2016



Conclusions

• The B → K∗`+`− mode is an excellent mode to study. It is sensitive to NP and indirect
evidences have been found.

• Theoretical issues are well understood. However, the resonance effects are very important
to be studied thoroughly.

• Non-local contributions are difficult to estimate but can be handled by eliminating them
in terms of observables.

• More efforts should be put to estimate them. One should look for experimental hints to
estimate how large they are.

• Observable relations, which are free from hadronic uncertainties, can be used as a probe
for New Physics. Discrepancies are found with SM.

• A strong evidence of Right-Handed currents is also found.

• The possibility of some other kinds of NP are also suggested.
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