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There is presented a unified analysis of all available data on the decays Υ(mS)→ Υ(nS)ππ
(m > n, m = 2, 3, 4, 5, n = 1, 2, 3), J/ψ → φ(ππ,KK), and ψ(2S) → J/ψππ and the
data on isoscalar S-wave processes ππ → ππ,KK, ηη. The multi-channel ππ scattering is
described in our model-independent approach based on analyticity and unitarity and using
an uniformization procedure. It is shown that the basic shape of dipion mass distributions
in the two-pion transitions of both charmonia and bottomonia states are explained by an
unified mechanism based on the contribution of the ππ, KK and ηη coupled channels
including their interference.

1 Introduction

The extensive study of the properties of scalar mesons is important for the most profound topics
concerning the QCD vacuum, because both sectors affect each other due to possible “direct”
transitions between them. Obviously, those transitions influence the f0-meson parameters,
enlarging, in first turn, a total width of the f0(500) in comparison with its decay widths, i.e.
the former contains some information on the QCD vacuum. The problem of a unique structure
interpretation of the scalar mesons is far away from being solved completely [1].

In the 3-channel analysis of data on the isoscalar S-wave multi-channel ππ scattering (ππ →
ππ,KK, ηη), which was performed in our model-independent approach based on analyticity,
unitarity and on the use of the uniformization procedure [2], we obtained two solutions for
resonance parameters, which distinguish themselves mainly in the f0(500) width. Expansion of
the analysis via the inclusion of the decays J/ψ → φ(ππ,KK) with data from the Mark III and
DM2 Collaborations has changed a little the parameters of some resonances but two solutions
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remained [3]. The further expansion of the above combined analysis with adding the data on
J/ψ → φππ from the BES II Collaboration, which are given in the wider region of the ππ mass
spectrum, helped to narrow down the f0(500) solution to the one with the larger width; other
resonance parameters were practically not changed [4]. In Ref.[4] the data on J/ψ → φππ from
the BES II are described to about 1.2 GeV. For expanding the description to higher energies,
the amplitude for ππ → ηη should be taken into account. From experiment only the modulus
of this amplitude is known. It is needed to know the phase shift of ηη scattering amplitude. We
hope to obtain this description under reasonable assumptions. This is worth to pursue because
this will give additional information on the f0(1370) (there are doubts whether it exists or not)
and on the interesting 1500-MeV region.

Generally, a possibility of combined analysis of the isoscalar S-wave multi-channel ππ scat-
tering and the decays J/ψ → φ(ππ,KK) and also the two-pion transitions among bottomonia
is related to the expected fact that the is related to the expected fact that pairs of pseudo-scalar
mesons are produced in S wave and only they undergo final state interactions, whereas the final
quarkonium remains a spectator [4, 5, 6].

The above expansion of the combined analysis, in first turn, aimed at the further study of
properties of scalar mesons. On the other hand, it was interesting to explain the unexpected
(and even enigmatic) behavior of the dipion spectra in the decays Υ(mS) → Υ(nS)ππ (m >
n,m = 3, 4, 5, n = 1, 2, 3) — a bell-shaped form in the near-ππ-threshold region [especially
for the Υ(3S) → Υ(1S)π+π− and Υ(4S) → Υ(2S)π+π−], smooth dips near a dipion mass
of 0.7 GeV in Υ(3S) → Υ(1S)(π+π−, π0π0), of 0.6 GeV in Υ(4S, 5S) → Υ(1S)π+π− and
of about 0.44 GeV in Υ(4S) → Υ(2S)π+π−, and also sharp dips of about 1 GeV in the
Υ(4S, 5S)→ Υ(1S)π+π− transitions.

We considered practically all available data on the two-pion transitions of Υ mesons from the
ARGUS, CLEO, CUSB, Crystal Ball, Belle, and BaBar Collaborations – Υ(mS) → Υ(nS)ππ
(m > n, m = 2, 3, 4, 5, n = 1, 2, 3) – and also the data on decays J/ψ → φ(ππ,KK) and
ψ(2S) → J/ψππ from the Mark III, DM2 and BES II Collaborations to analyze contribu-
tions of multi-channel ππ scattering in the final-state interactions. We have shown that all
peculiarities of the ππ mass spectra are explained by the unified way via the interference of
contributions of the ππ-scattering amplitude and the analytically-continued ππ → KK and
ππ → ηη amplitudes.

These results are based on our previous conclusions on wide resonances [4, 7, 8]: If a wide
resonance cannot decay into a channel which opens above its mass, but the resonance is strongly
coupled to this channel, then one should consider this resonance as a multi-channel state.

2 The amplitudes for multi-channel ππ scattering

When analysing the 3-channel ππ scattering, we considered the reactions ππ → ππ,KK, ηη,
because it was shown [7] that namely these coupled channels needed for obtaining correct values
of f0-resonance parameters.

The 3-channel S-matrix is determined on the 8-sheeted Riemann surface. The matrix el-
ements Sij , where i, j = 1, 2, 3 denote channels, have the right-hand cuts along the real axis
of the s complex plane (s is the invariant total energy squared), starting with the channel
thresholds si (i = 1, 2, 3), and the left-hand cuts related to the crossed channels.

Resonances are described on the Riemann surface using the formulas of analytic continua-
tions of the S-matrix elements to all sheets. The formulas allow to express the matrix elements
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on the unphysical sheets by means of the matrix elements on the physical sheet that have only
the resonance zeros (aside the real axis), at least, around the physical region [2]. Using these
formulas and assuming the resonance zeros on sheet I, we can obtain an arrangement of poles
and zeros of the resonance on the whole Riemann surface ( pole cluster of resonance).

Let us explain in the 2-channel example how pole cluster describing resonance arises. In
the 1-channel consideration of the scattering 1 → 1 the main model-independent contribution
of resonance is given by a pair of conjugate poles on sheet II and by a pair of conjugate zeros
on sheet I at the same points of complex energy in S11. (Conjugate poles and zeros are needed
for real analyticity.) In the 2-channel consideration of the processes 1 → 1, 1 → 2 and 2 → 2,
we have
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1

SI
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, SIII
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SI
22
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12)2
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In S11 a resonance is represented by a pair of conjugate poles on sheet II and by a pair of
conjugate zeros on sheet I and also by a pair of conjugate poles on sheet III and by a pair of
conjugate zeros on sheet IV at the same points of complex energy if a coupling of channels is
absent (S12 = 0). If the resonance decays into both channels and/or takes part in exchanges
in crossing channels, the coupling of channels arises (S12 6= 0). Then positions of the poles
on sheet III (and of corresponding zeros on sheet IV) turn out to be shifted with respect to
positions of zeros on sheet I. Thus we obtain the pole cluster in the 2-channel case.

In the 3-channel case, there are 7 types of resonances corresponding to 7 possible situations
when there are resonance zeros on sheet I only in S11 – (a); S22 – (b); S33 – (c); S11 and
S22 – (d); S22 and S33 – (e); S11 and S33 – (f); S11, S22 and S33 – (g).
The resonance of every type which is related to its nature is represented by the pair of complex-
conjugate pole clusters.

In order to allow for the Riemann surface structure and the representation of resonances by
the pole clusters, we make a conformal map of the 8-sheeted Riemann surface, on which the
three-channel S matrix is determined, onto the plane of uniformization of the ππ-scattering
S-matrix element S11. This is made using the uniformizing variable [8]: w = (

√
(s− s2)s3 +√

(s− s3)s2)/
√
s(s3 − s2) (s2 = 4m2

K and s3 = 4m2
η), in which we have neglected the ππ-

threshold branch point and allowed for the KK- and ηη-threshold branch points and left-hand
branch point at s = 0 related to the crossed channels.

The S-matrix elements are taken as the products S = SBSres where Sres represents the main
(model-independent) contribution of resonances, given by the pole clusters; SB is the background
part which contains possible remaining small (model-dependent) contributions of resonances and
allows for influence of channels not taken explicitly into account in the uniformizing variable.

To obtain the pole clusters describing resonances, it is convenient to use the Le Couteur –
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Newton relations [9] which have the following form on the w-plane:

S11 =
d∗(−w∗)
d(w)

, S22 =
d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
, (1)

S11S22 − S2
12 =

d∗(w∗−1)

d(w)
, S11S33 − S2

13 =
d∗(−w∗−1)

d(w)
, S22S33 − S2

23 =
d(−w)

d(w)
.

The d(w) function for the resonance part in these relations is dres(w) = w−
M
2

∏M
r=1(w + w∗r)

with M a number of resonance zeros. For the background part SB , the d-function has the form

dB = exp[−i
3∑

n=1

√
s− sn
2mn

(αn + iβnθ(s− sn))] (2)

αn = an1 + anσ
s− sσ
sσ

θ(s− sσ) + anv
s− sv
sv

θ(s− sv),

βn = bn1 + bnσ
s− sσ
sσ

θ(s− sσ) + bnv
s− sv
sv

θ(s− sv)

with sσ the σσ threshold and sv the effective threshold of three cannels ηη′, ρρ, ωω. These
thresholds are determined in the analysis.

When performing our combined analysis, data for the multi-channel ππ scattering were
taken from many papers (see Refs. in our paper [4]). Satisfactory description of the multi-
channel ππ scattering is obtained with the total χ2/ndf ≈ 1.16. The preferred scenario found
is when the f0(500) is described by the cluster of type (a); the f0(1370), f0(1500) and f0(1710)
with type (c); and f ′0(1500) by type (g); the f0(980) is represented only by the pole on sheet II
and a shifted pole on sheet III. The obtained pole-clusters for the resonances are shown in
Table 1. Generally, the wide multi-channel states are most adequately represented by poles,

Table 1: The pole clusters for resonances on the
√
s-plane.

√
sr=Er−iΓr/2.

Sheet f0(500) f0(980) f0(1370) f0(1500) f ′
0(1500) f0(1710)

II Er 521.6±12.4 1008.4±3.1 1512.4±4.9
Γr/2 467.3±5.9 33.5±1.5 287.2±12.9

III Er 552.5±17.7 976.7±5.8 1387.2±24.4 1506.1±9.0
Γr/2 467.3±5.9 53.2±2.6 167.2±41.8 127.8±10.6

IV Er 1387.2±24.4 1512.4±4.9
Γr/2 178.2±37.2 215.0±17.6

V Er 1387.2±24.4 1493.9±3.1 1498.8±7.2 1732.8±43.2
Γr/2 261.0±73.7 72.8±3.9 142.3±6.0 114.8±61.5

VI Er 573.4±29.1 1387.2±24.4 1493.9±5.6 1511.5±4.3 1732.8±43.2
Γr/2 467.3±5.9 250.0±83.1 58.4±2.8 179.3±4.0 111.2±8.8

VII Er 542.5±25.5 1493.9±5.0 1500.4±9.3 1732.8±43.2
Γr/2 467.3±5.9 47.8±9.3 99.9±18.0 55.2±38.0

VIII Er 1493.9±3.2 1512.4±4.9 1732.8±43.2
Γr/2 62.2±9.2 298.4±14.5 58.8±16.4

because the poles give the main model-independent effect of resonances and are rather stable
characteristics for various models, whereas masses and total widths are very model-dependent
for wide resonances [10]. The masses, widths, and the coupling constants of resonances should
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be calculated using the poles on sheets II, IV and VIII, because only on these sheets the analytic
continuations have the forms [2]: ∝ 1/SI

11, ∝ 1/SI
22 and ∝ 1/SI

33, respectively, i.e., the pole
positions of resonances are at the same points of the complex-energy plane, as the resonance
zeros on the physical sheet, and are not shifted due to the coupling of channels.

The obtained background parameters are: a11 = 0.0, a1σ = 0.0199, a1v = 0.0, b11 = b1σ =
0.0, b1v = 0.0338, a21 = −2.4649, a2σ = −2.3222, a2v = −6.611, b21 = b2σ = 0.0, b2v = 7.073;
b31 = 0.6421, b3σ = 0.4851; b3v = 0; sσ = 1.6338 GeV2, sv = 2.0857 GeV2.

The small (zero for the elastic region) values of the ππ scattering background parameters
(obtained after allowing for the left-hand branch-point at s = 0) confirms our assumption
S = SBSres and also that the representation of multi-channel resonances by the pole clusters on
the uniformization plane is good and quite sufficient. This also shows that the consideration of
the left-hand branch-point at s = 0 in the uniformizing variable partly solves a problem of some
approaches (see, e.g., Ref. [11]) where the wide-resonance parameters are strongly controlled
by the non-resonant background. Another important conclusion related to a practically zero
background in ππ scattering and to the fact that the contribution to the ππ scattering amplitude
from the crossed channels is given by allowing for the left-hand branch-point at s = 0 in the
uniformizing variable and the meson-exchange contributions in the left-hand cuts: The zero
background in the elastic-scattering region is obtained only when taking into account the left-
hand branch-point in the uniformizing variables (both in the 2-channel analysis of processes
ππ → ππ,KK [10] and in the 3-channel analysis of processes ππ→ππ,KK, ηη). This indicates
that the ρ- and f0(500)-meson exchange contributions in the left-hand cut practically cancel
each other due to gauge invariance.

Let us explain how this is related to the gauge invariance. The propagator of vector particle
is Dµν = −(gµν − kµkν/m2

v)/(k
2 − m2

v), of scalar particle D = 1/(k2 − m2
s). In the particle

exchange processes k2 < 0. Therefore, the scalar-particle exchange leads to an attraction. In
the case of the vector exchanged particle one can choose that gauge when in the numerator
of propagator ”works” only g00. This leads to an repulsion of the scattering particles in the
given gauge. Due to gauge invariance this effect extends to arbitrary gauges. To the point,
the fact, that the mass terms in the corresponding Hamiltonians are − 1

2m
2
vV

2 for the vector
meson and 1

2m
2
sS

2 for the scalar one, is a reflection of opposite nature of interactions due to
the vector- and scalar-meson exchanges. One can show allowing for gauge invariance that the
vector- and scalar-meson exchanges contribute with opposite signs. Therefore, the practically
zero background in ππ scattering is an additional confirmation that the f0(500), observed in
the analysis as the pole cluster of type (a), is indeed a particle (though very wide), not some
dynamically formed resonance. Therefore, one must consider at least in the background the
coupled σσ channel which is not taken into account explicitly in the uniformizing variable w. In
this connection it is reasonable to interpret the effective threshold at sσ = 1.6338 GeV2 in the
background phase-shift of the ππ scattering amplitude as related to the σσ channel. Only in this
channel we have obtained a non-zero background phase-shift in ππ scattering (a1σ = 0.0199).

Further, since studying the decays of charmonia and bottomonia, we investigated the role
of the individual f0 resonances in contributing to the shape of the di-pion mass distributions in
these decays, firstly we studied their role in forming the energy dependence of amplitudes of re-
actions ππ → ππ,KK, ηη. In this case we switched off only those resonances [f0(500), f0(1370),
f0(1500) and f0(1710)], removal of which can be somehow compensated by correcting the back-
ground (maybe, with elements of the pseudo-background) to have the more-or-less acceptable
description of the multi-channel ππ scattering. Below we therefore considered description of
the multi-channel ππ scattering for two more cases: 1) first, when leaving out a minimal set of
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the f0 mesons consisting of the f0(500), f0(980), and f ′0(1500), which is sufficient to achieve a
description of the processes ππ → ππ,KK, ηη with a total χ2/ndf ≈ 1.20. 2) Second, from the
above-indicated three mesons only the f0(500) can be omitted while still obtaining a reasonable
description of multi-channel ππ scattering (though with appearance of a pseudo-background)
with the total χ2/ndf ≈ 1.43. In Fig. 1 the obtained description of processes ππ→ππ,KK, ηη
is shown. The solid lines correspond to contribution of all relevant f0-resonances; the dotted,
of the f0(500), f0(980), and f ′0(1500); the dashed, of the f0(980) and f ′0(1500). One can see
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Figure 1: The phase shifts and moduli of the S-matrix element in the S-wave ππ-scattering
(upper panel), in ππ → KK (middle panel), and the squared modulus of the ππ → ηη S-matrix
element (lower figure).

that the curves are quite similar in all three cases.

3 The contribution of multi-channel ππ scattering in the
final states of decays of Ψ- and Υ-meson families

In the combined analysis, for the decay J/ψ → φπ+π− the data were taken from Mark III,
DM2 and BES II Collaborations; for ψ(2S) → J/ψ(π+π− and π0π0) — from Mark II and
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Crystal Ball(80) (see Refs. in [4]). For Υ(2S)→ Υ(1S)(π+π− and π0π0) data were used from
ARGUS, CLEO, CUSB and Crystal Ball Collaborations; for Υ(3S)→ Υ(1S)(π+π−, π0π0) and
Υ(3S)→ Υ(2S)(π+π−, π0π0) — from CLEO; for Υ(4S)→ Υ(1S, 2S)π+π− — from BaBar and
Belle; for Υ(5S)→ Υ(1S, 2S, 3S)π+π− — from Belle Collaboration [12].

The di-meson mass distributions in the quarkonia decays are calculated using a formalism
analogous to that proposed in Ref. [5] for the decays J/ψ → φ(ππ,KK) and V ′ → V ππ
(V = ψ,Υ) which is extended with allowing for amplitudes of transitions between the ππ,
KK and ηη channels in decay formulas. The decay amplitudes are related with the scattering
amplitudes Tij (i, j = 1− ππ, 2−KK, 3− ηη) as follows

F
(
J/ψ → φππ

)
= c1(s)T11 +

( α2

s− β2
+ c2(s)

)
T21 + c3(s)T31, (3)

F
(
ψ(2S)→ ψ(1S)ππ

)
= d1(s)T11 + d2(s)T21 + d3(s)T31, (4)

F
(
Υ(mS)→ Υ(nS)ππ

)
= e

(mn)
1 T11 + e

(mn)
2 T21 + e

(mn)
3 T31, (5)

m > n, m = 2, 3, 4, 5, n = 1, 2, 3

where ci = γi0 + γi1s, di = δi0 + δi1s and e
(mn)
i = ρ

(mn)
i0 + ρ

(mn)
i1 s; indices m and n correspond

to Υ(mS) and Υ(nS), respectively. The free parameters α2, β2, γi0, γi1, δi0, δi1, ρ
(mn)
i0 and

ρ
(mn)
i1 depend on the couplings of J/ψ, ψ(2S), and Υ(mS) to the channels ππ, KK and ηη.

The pole term in the first equation in front of T21 is an approximation of possible φK states,
not forbidden by OZI rules. The amplitudes Tij are expressed through the S-matrix elements

Sij = δij + 2i
√
ρiρjTij where ρi =

√
1− si/s and si is the reaction threshold.

The di-meson mass distributions in the decay analysis were calculated using the relation

N |F |2
√

(s− s1)[m2
ψ − (

√
s−mφ)2][m2

ψ − (
√
s+mφ)2] for the decay J/ψ → φππ and with

analogous relations for ψ(2S) → ψ(1S)ππ and Υ(mS) → Υ(nS)ππ. The normalization to
the experiment, N , is determined in the analysis.

A satisfactory description of all considered processes (including ππ → ππ,KK, ηη) was
obtained with the total χ2/ndf ≈ 1.24; for the ππ scattering, χ2/ndf ≈ 1.15.

Results for the distributions are shown in Figs. 2-4 with the same notation as in Fig. 1.
Here the effects of omitting some resonance are more apparent than in Fig. 1.

4 Conclusions and Discussion

The combined analysis was performed for the data on isoscalar S-wave processes ππ → ππ,KK, ηη
and on the decays of the charmonia — J/ψ → φππ, ψ(2S)→ J/ψ ππ — and of the bottomonia
— Υ(mS) → Υ(nS)ππ (m > n, m = 2, 3, 4, 5, n = 1, 2, 3) from the ARGUS, Crystal Ball,
CLEO, CUSB, DM2, Mark II, Mark III, BES II, BaBar, and Belle Collaborations.

It is shown that the di-pion mass spectra in the above-indicated decays of charmonia and
bottomonia are explained by the unified mechanism which is based on our previous conclusions
on wide resonances [4, 7] and is related to contributions of the ππ, KK and ηη coupled channels
including their interference. It is shown that in the final states of these decays (except ππ
scattering) the contribution of coupled processes, e.g., KK, ηη → ππ, is important even if these
processes are energetically forbidden.

It was also very useful to consider the role of individual f0 resonances in contributions to the
di-pion mass distributions in the indicated decays. For example, it is seen that the sharp dips

HQ 2016 7
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Figure 2: The decays J/ψ → φππ and ψ(2S) → J/ψππ. The solid lines correspond to con-
tribution of all relevant f0-resonances; the dotted, of the f0(500), f0(980), and f ′0(1500); the
dashed, of the f0(980) and f ′0(1500).

near 1 GeV in the Υ(4S, 5S)→ Υ(1S)π+π− decays are related with the f0(500) contribution to
the interfering amplitudes of ππ scattering and KK, ηη → ππ processes. Namely consideration
of this role of the f0(500) allows us to make a conclusion on existence of the sharp dip at
about 1 GeV in the di-pion mass spectrum of the Υ(4S) → Υ(1S)π+π− decay where, unlike
Υ(5S)→ Υ(1S)π+π−, the scarce data do not permit to draw such conclusions yet.

Also, a manifestation of the f0(1370) turned out to be interesting and unexpected. First,
in the satisfactory description of the ππ spectrum of decay J/ψ → φππ, the second large peak
in the 1.4-GeV region can be naively explained as the contribution of the f0(1370). We have
shown that this is not right – the constructive interference between the contributions of the ηη
and ππ and KK channels plays the main role in formation of the 1.4-GeV peak. This is quite
in agreement with our earlier conclusion that the f0(1370) has a dominant ss̄ component [7].

On the other hand, it turned out that the f0(1370) contributes considerably in the near-ππ-
threshold region of many di-pion mass distributions, especially making the threshold bell-shaped
form of the di-pion spectra in the decays Υ(mS) → Υ(nS)ππ (m > n,m = 3, 4, 5, n = 1, 2, 3).
This fact confirms, first, the existence of the f0(1370) (up to now there is no firm conviction if it
exists or not). Second, that the exciting role of this meson in making the threshold bell-shaped
form of the di-pion spectra can be explained as follows: the f0(1370), being predominantly the ss̄
state [4] and practically not contributing to the ππ-scattering amplitude, influences noticeably
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Figure 3: The decays Υ(2S)→ Υ(1S)ππ (two upper panels), Υ(3S)→ Υ(1S)ππ (middle panel)
and Υ(3S)→ Υ(2S)ππ (lower panel).
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Figure 4: The decays Υ(4S) → Υ(1S, 2S)π+π− (left-hand) and Υ(5S) → Υ(ns)π+π− (n =
1, 2, 3) (right-hand).

the KK scattering; e.g., it was shown that the KK-scattering length is very sensitive to whether
this state does exist or not [10]. The interference of contributions of the ππ-scattering amplitude
and the analytically-continued ππ → KK and ππ → ηη amplitudes lead to the observed results.

It is important that we have performed a combined analysis of available data on the processes
ππ → ππ,KK, ηη, on decays of charmonia and of bottomonia. The convincing description of
practically all available data on two-pion transitions of the Ψ and the Υ mesons confirmed all
our previous conclusions on the scalar mesons [4].
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