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We discuss hadrons and multiquark states in holographic QCD. This approach is based on
an action which describes hadron structure with broken conformal and chiral invariance and
incorporates confinement through the presence of a background dilaton field. According
to the gauge/gravity duality the five-dimensional boson and fermion fields propagating in
AdS space are dual to four-dimensional fields leaving on the surface of AdS sphere, which
correspond to hadrons. In this picture hadronic wave functions — basics blocks of hadronic
properties — are dual to the profiles of AdS fields in the fifth (holographic) dimension,
which is identified with scale variable. As applications we consider properties of hadrons
and multiquark states from unified point of view: mass spectrum, form factors, parton,
transverse momentum, Wigner and Husimi distributions.

1 Introduction

Recent decades have been marked by significant progress in derivation and application of holo-
graphic QCD approaches based on the gauge/gravity duality [1]. The duality has several man-
ifistations. Two most important of them are: 1) matching between partion functions in two
approaches gives relation between parameters of string and SU(N) Yang-Mills (YM) theories;
2) conformal group acting in the boundary theory is isomorphic to SO(4, 2) group, which is
the isometry group of the AdS5 space. In particular, the string parameters gs - coupling, ls
- length, and R - the AdS radius are related to the YM theory parameters gYM - coupling,

’t Hooft coupling λ = g2
YMN as 2πgs = g2

Y M
and R4

l4s
= 2 g2

Y M
N . There are two imporant

limits in case of dual theories: 1) ’t Hooft limit (large N at λ fixed) gYM = λ
N � 1, which

corresponds to gs � 1 (tree-level perturbative string theory). In this case we say that the
“Conformal Field side” of duality works; 2) Strong coupling limit λ � 1, which means
ls � R. In this case we say that “String Theory side” of the duality works. AdS/QCD ap-
proaches are derived from AdS/CFT ones upon breaking of conformal invariance. According
to the dictionary, the AdS/QCD or holographic QCD (HQCD) is an approximation to QCD
attempting to model hadronic physics in terms of fields/strings living in extra dimensions -
AdS space. HQCD models reproduce main features of QCD at low and high energies: chiral
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symmetry, confinement, power scaling of hadron form factors. One should stress that the extra
5th dimension has clear physical interpretation as the scale. AdS/QCD approaches are divided
on two types: 1) top-down approaches – low-energy approximation of string theory trying to
find a gravitational background with features similar to QCD (e.g. Sakai-Sugimoto model); 2)
bottom-up approaches – more phenomenological ones, using the features of QCD to construct
5d dual theory including gravity on AdS space. In order to go towards to QCD one should: i)
break conformal invariance and generate mass gap, ii) via Kaluza-Klein decomposition of the
five-dimensional AdS fields introduce a tower of normalized bulk fields (Kaluza-Klein modes)
dual to hadronic wave functions. Bottom-up AdS/QCD approaches have two main realizations
of breaking of conformal invariance and introducing confinement — hard-wall and soft-wall ver-
sions. In the hard-wall approach the AdS geometry is cutted by two branes — ultraviolet (UV)
(z = ε→ 0) and infrared (IR) (z = zIR). Hard-wall model gives incorrect linear dependence of
hadron masses on angular momentum. This approach is analogue of the quark bag model [2]
and similar to the covariant constituent quark model with infrared confinement developed in
Ref. [3]. In the soft-wall model the soft cutoff of the AdS space is introduced via background
dilaton field [4]-[10]. The advantage of this approach is that it gives analytical solution of
equation of motion for the bulk profiles of AdS fields and produces Regge behavior of hadronic
masses: M2

H ∼ J(L).

In this paper we consider holographic approach based on soft-wall approach developed by
us in Refs. [5]-[10]. We report the applications of our approach to the properties of hadrons
and multiquark states. In particular, we present results for hadronic mass spectra, form factors
and parton, transverse momentum, Wigner and Husimi distributions [5]-[10].

2 Approach

Here we briefly review our approach. First, we specify the five-dimensional AdS metric:

ds2 = gMNdx
MdxN = ηab e

2A(z) dxadxb = e2A(z) (ηµνdx
µdxν − dz2) ,

ηµν = diag(1,−1,−1,−1,−1) , (1)

where M and N = 0, 1, · · · , 4 are the space-time (base manifold) indices, a = (µ, z) and
b = (ν, z) are the local Lorentz (tangent) indices, and gMN and ηab are curved and flat metric
tensors, respectively, which are related by the vielbein εaM (z) = eA(z) δaM as gMN = εaM ε

b
Nηab.

Here z is the holographic coordinate, R is the AdS radius, and g = |detgMN |. In the following
we restrict ourselves to a conformal-invariant metric with A(z) = log(R/z).

The relevant AdS/QCD actions for the boson and fermion field of spin J are [5]-[7]

SB =

∫
d4xdz

√
g e−ϕ(z)

[
DMΦM1···MJ

(x, z)DMΦM1···MJ (x, z)

−
(

(µBJ )2 + UBJ (z)
)

ΦM1···MJ
(x, z)ΦM1···MJ (x, z)

]
, (2)

SF = S+
F + S−F , S±F =

∫
d4xdz

√
g e−ϕ(z)

∑

i=+,−

[
Ψ̄±M1···MJ

(x, z)iD±MΨ±M1···MJ (x, z)

∓ Ψ̄±M1···MJ
(x, z)

(
(µFJ )2 + UFJ (z)

)
Ψ±M1···MJ (x, z) (3)
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where DM and D±M are the covariant derivative (including external vector and axial fields)
acting on boson ΦM1···MJ

and fermion Ψ±M1···MJ
fields, respectively. Ψ±M1···MJ

is the pair of
bulk fermion fields, which are the holographic analogues of the left- and right-chirality fermion
operators in the 4D theory. ϕ(z) = κ2z2 is the dilaton field with κ being a free scale parameter.
The quantities µBJ and µFJ are the bulk boson and fermion masses related to the conformal
dimensions (∆B

J , ∆F
J ) of the spin-J AdS boson and fermion fields, respectively

(µBJ R)2 = ∆B
J (∆B

J − 4) , µFJR = ∆F
J − 2 (4)

As was shown in Refs. [11] and [6] the field dimensions ∆B
J and ∆F

J are related to twist-dimension
τB/F of hadronic operators as

∆B
J = τB = 2 + L , ∆F

J = τF +
1

2
=

7

2
+ L . (5)

where L = max |Lz| is the maximal value of the z component of the quark orbital angular mo-
mentum in hadron [11]: UBJ (z) = 4ϕ(z)(J−1)/R2 and UFJ (z) = ϕ(z)/R are the effective dilaton
potentials. Note the choice of quadratic dilaton profile and potentials UBJ (z) and UFJ (z) is nec-
essary in order to guarantee correct Regge behavior of hadronic mass spectra and asymptotic
power scaling of hadronic factors at large momenta transfer in agreement with quark counting
rules [5]-[10].

Notice that the fermion masses and the effective potentials corresponding to the fields Ψ+

and Ψ− have opposite signs according to the P -parity transformation. The absolute sign of the
fermion mass is related to the chirality of the boundary operator. According to our conventions
the QCD operators OR and OL have positive and negative chirality, and therefore the mass
terms of the bulk fields Ψ+ and Ψ− have absolute signs “plus” and “minus”, respectively.

One of the main advantages of the soft-wall AdS/QCD model is that the most of the
calculations can be done analytically. In a first step, we show how in this approach the hadron
wave functions and spectrum are generated. We follow the procedure pursued in Refs. [5]-[7].
We drop the external vector and axial fields in covariant derivatives, turn to the tangent space
with Lorentz signature, where the AdS fields are rescaled as

Φµ1···µJ
= eϕ(z)/2+A(z)Jφµ1···µJ

, Ψ±µ1···µJ
= eϕ(z)/2+A(z)(J−1/2)ψ±µ1···µJ

. (6)

Next we split the fermion field into left- and right-chirality components

ψ±µ1···µJ
(x, z) = ψ±Lµ1···µJ

(x, z) + ψ±Rµ1···µJ
(x, z) (7)

and perform Kaluza-Klein (KK) expansion for φµ1···µJ
(x, z) and ψ

±L/R
µ1···µJ (x, z)

φµ1···µJ
(x, z) =

∑

n

φnµ1···µJ
(x)Fnτ (z) ,

ψ
±L/R
µ1···µJ (x, z) =

1√
2

∑

n

ψ
L/R
nµ1···µJ (x)G±L/Rnτ (z) , (8)

where the tower of the KK fields φnµ1···µJ
(x) is dual to four-dimensional fields describing mesons

with spin J , while KK fields ψ
L/R
nµ1···µJ (x) are dual left/right-chirality fermion fields describing

baryons with spin J . The number n corresponds to the radial quantum number. The set of
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functions Fnτ (z) are the profiles of boson AdS fields in holographic direction, which are dual to
the mesonic wave functions with twist τ and radial quantum number n. In case of baryon we
have four sets of such profiles dual to baryonic wave functions, which satisfy to the following
relation (due P - and C-invariance) G±Rnτ (z) = ∓G∓Lnτ (z). Then it is convenient to rescale the
boson and fermion profiles as

Fnτ (z) = e−3/2A(z) fnτ (z) , G±R/Lnτ (z) = e−2A(z) g±R/Lnτ (z) (9)

in order derive the Schrödinger-type equation of motions (EOMs) for the wave functions fnτ
and g

±L/R
nτ (z)

[
− ∂2

z +
4L2 − 1

4z2
+ κ4z2 + 2κ2(J − 1)

]
fnτ (z) = M2

B,nτJ fnτ (z) (10)

and
[
−∂2

z + κ4z2 + 2κ2
(
m∓ 1

2

)
+
m(m± 1)

z2

]
gL/Rnτ (z) = M2

F,nτ g
L/R
nτ (z) , (11)

where m = τ − 3/2; MB,nτJ and MF,nτ are the masses of bosons and fermions dual to corre-
sponding hadrons (mesons and baryons) with specific values of quantum numbers.

Above EOMs have analytical solutions for both wave functions

fnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ

2z2/2 Lτ−2
n (κ2z2) ,

gLnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ)
κτ zτ−1/2 e−κ

2z2/2 Lτ−1
n (κ2z2) , (12)

gRnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ

2z2/2 Lτ−2
n (κ2z2)

and mass spectrum M2
B,nτJ = 4κ2

(
n + τ+J

2 − 1
)

and M2
F,nτ = 4κ2

(
n + τ − 1

)
. Therefore,

our main idea is to find the solutions for the bulk profiles of the AdS field in the z–direction,
and then calculate the physical properties of hadrons in terms of the bulk profiles of AdS fields
dual to hadronic wave functions. In this way both mass spectrum and dynamical hadronic
properties like form factors and parton distributions will be calculated from a unified point
of view based on the solutions of the Schrödinger-type EOMs (12). One can see that the
bulk profiles of AdS fields have the correct scaling behavior for small z, which leads to correct
power behavior of calculated hadronic form factors at large Q2. Another important property
of the bulk profiles is that they vanish at large z (confinement). Up to now we discussed
the solutions of EOMs for the bulk profiles on its mass shell p2 = M2. In case when we
go beyond mass shell, we can calculate so-called bulk-to-boundary propagators describing the
behavior of bulk profiles at arbitrary p2, which are necessary for calculation of momentum
dependence of matrix elements in our approach. In particular, the bulk-to-boundary propagator
for the vector AdS field dual to electromagnetic field is given in analytical form in terms of the

Gamma Γ(n) and Tricomi U(a, b, z) functions: V (Q, z) = Γ

(
1 + Q2

4κ2

)
U

(
Q2

4κ2 , 0, κ
2z2

)
. The
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bulk-to-boundary propagator V (Q, z) obeys the normalization condition V (0, z) = 1 consistent
with gauge invariance and fulfils the following ultraviolet (UV) and infrared (IR) boundary
conditions: V (Q, 0) = 1 , V (Q,∞) = 0. The UV boundary condition corresponds to the local
(structureless) coupling of the electromagnetic field to matter fields, while the IR boundary
condition implies that the vector field vanishes at z = ∞. E.g. a generic expression for the
meson form factor is given in the form integral over z variable of the product of V (Q, z) and
bulk profiles corresponding to the wave functions of initial (in) and final (fin) meson

FM (Q2) =

∞∫

0

dzV (Q, z)fin(z)ffin(z) . (13)

Another advantage of our approach is a possibility to constraint the form of light-front wave
functions (see detailed discussion in Refs. [5]-[10]) from matching of matrix elements of physical
processes in AdS/QCD and Light-Front QCD. The idea of such matching was proposed in
Ref. [11]. Next step is inclusion of effects of quark masses in agreement with constraints imposed
by chiral symmetry and heavy quark effective theory.

3 Applications

One of the nice features of our approach is that we can derive effective light-front wave functions
(LFWFs) using matrix elements for physical processes calculated in AdS/QCD. In particular,
the nucleon LFWFs are set up as

ψ+
+q(x,k⊥) = ϕ(1)

q (x,k⊥) , ψ+
−q(x,k⊥) = −k

1 + ik2

xMN
ϕ(2)
q (x,k⊥) ,

ψ−+q(x,k⊥) =
k1 − ik2

xMN
ϕ(2)
q (x,k⊥) , ψ−−q(x,k⊥) = ϕ(1)

q (x,k⊥) ,

ϕ(1)
q (x,k⊥) =

4π

MN

√
qv(x) + δqv(x)

2

√
D

(1)
q (x) exp

[
− k2

⊥
2M2

N

D(1)
q (x)

]
,

ϕ(2)
q (x,k⊥) =

4π

MN

√
qv(x)− δqv(x)

2
D(2)
q (x) exp

[
− k2

⊥
2M2

N

D(2)
q (x)

]
. (14)

Here MN is the nucleon mass.
Our functions ϕ

(1)
q and ϕ

(2)
q are normalized as
∫
d2k⊥
16π3

[
ϕ(1)
q (x,k⊥)

]2
=

qv(x) + δqv(x)

2
,

∫
d2k⊥
16π3

k2
⊥

M2
N

[
ϕ(2)
q (x,k⊥)

]2
=

qv(x)− δqv(x)

2
,

1∫

0

dx

∫
d2k⊥
16π3

[
ϕ(1)
q (x,k⊥)

]2
=

nq + gqA
2

,

1∫

0

dx

∫
d2k⊥
16π3

k2
⊥

M2
N

[
ϕ(2)
q (x,k⊥)

]2
=

nq − gqA
2

, (15)

HQ 2016 5

VALERY E. LYUBOVITSKIJ, THOMAS GUTSCHE, IVAN SCHMIDT

260 HQ 2016



where nq is the number of u or d valence quarks in the proton and gqA is the axial charge of a
quark with flavor q = u or d.

Using these LFWFs one can calculate electromagnetic form factors, transverse momentum,
Wigner and Husimi distributions, etc. Analytic experessions for these quantities can be found in
Ref. [10]. In Figs. 1-4 we plot the results for the x-dependence of the unpolarized and polarized
PDFs, TMDs, Wigner and Husimi distributions, and indicate selected results for the quark and
nucleon electromagnetic form factors. We use the results for the NLO helicity-independent and
helicity-dependent parton distributions at µ2

NLO = 0.40 GeV2 from Refs. [12] as input. Next
in Figs. 5-7 we show our prediction for the deuteron electromagnetic form factors and structure
functions.
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Figure 3: Wigner distributions.

Figure 4: Husimi distributions.
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