Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

The cross sections for the production of $t\bar{b}b$ and $t\bar{t}j$ events and their ratio $\sigma_{t\bar{b}b}/\sigma_{t\bar{t}j}$ are measured using data corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected in pp collisions at $\sqrt{s} = 13$ TeV with the CMS detector at the LHC. Events with two leptons (e or μ) and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. In the full phase space, the measured ratio is 0.022 ± 0.003 (stat) ± 0.006 (syst), the cross section $\sigma_{t\bar{b}b}$ is 4.0 ± 0.6 (stat) ± 1.3 (syst) pb and $\sigma_{t\bar{t}j}$ is 184 ± 6 (stat) ± 33 (syst) pb. The measurements are compared with the standard model expectations obtained from a POWHEG simulation at next-to-leading-order interfaced with PYTHIA.

Submitted to Physics Letters B
1 Introduction

Since the discovery of the Higgs boson \cite{1-3}, its properties have been measured and compared to the standard model (SM) prediction \cite{4-9}. However, the coupling of the top quark to the Higgs boson remains to be determined. Although it appears indirectly through loops in the gluon–gluon fusion production process and in the $H \rightarrow \gamma \gamma$ decay channel, a direct measurement has yet to be completed. One of the most promising channels for a direct measurement of the top quark Yukawa coupling in the SM is the production of the Higgs boson in association with a $t\bar{t}$ pair ($t\bar{t}H$), where the Higgs boson decays to $b\bar{b}$, thus leading to a $t\bar{b}b\bar{b}$ final state. This final state, which has not been observed yet \cite{10}, has an irreducible nonresonant background from the production of a top quark pair in association with a b quark pair produced via gluon splitting ($g \rightarrow b\bar{b}$).

Calculations of the inclusive production cross section for $t\bar{t}$ events with additional jets have been performed to next-to-leading-order (NLO) precision for proton–proton centre-of-mass energies of 7, 8, and 13 TeV \cite{11}. The dominant uncertainties in these calculations are from the choice of the factorization (μ_F) and renormalization (μ_R) scales \cite{12,13}, and are complicated by the presence of two very different scales in this process: the top quark mass and the jet transverse momentum (p_T). Therefore, experimental measurements of production cross sections $pp \rightarrow t\bar{t}jj (\sigma_{t\bar{t}jj})$ and $pp \rightarrow t\bar{b}b\bar{b} (\sigma_{t\bar{b}b\bar{b}})$ can provide an important test of NLO quantum chromodynamics (QCD) theory calculations and important input for describing the main background in the search for the $t\bar{t}H$ process. Previous cross section and ratio measurements at $\sqrt{s} = 7$ and 8 TeV have been reported by the CMS \cite{14,15} and ATLAS Collaborations \cite{16}.

In this Letter, the measurements of the cross sections $\sigma_{t\bar{t}jj}$ and $\sigma_{t\bar{b}b\bar{b}}$ and their ratio are presented using a data sample of pp collisions collected at a centre-of-mass energy of 13 TeV at the CERN LHC by the CMS experiment, and corresponding to an integrated luminosity of 2.3 fb^{-1} \cite{17}. Events are selected with the final state consisting of two leptons (e or μ) and at least four reconstructed jets, of which at least two are identified as b quark jets. The cross section ratio is measured with a smaller systematic uncertainty exploiting the partial cancellation of uncertainties.

2 The CMS detector and event simulation

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. \cite{18}.

The Monte Carlo (MC) simulated samples for the $t\bar{t}$ signal are generated by the POWHEG (v2) event generator \cite{19-21} at NLO, interfaced with PYTHIA (v8.205) \cite{22,23} using the tune CUETP8M1 \cite{24} to provide the showering of the partons and to match soft radiation with the contributions from the matrix elements (MEs). The NNPDF3.0 \cite{25} set of the parton distribution functions (PDFs) is used. The MADGRAPH (v5.1.5.11) event generator \cite{26} with MEs at leading order (LO), allowing up to three additional partons, including b quarks, and the MADGRAPH5_aMC@NLO (v2.2.2) event generator \cite{27} are used for cross-checks and studies of systematic uncertainties.
The $t\bar{t}$ samples are normalized to the next-to-next-to-leading-order (NNLO) cross section calculation [28]. The W+jets and Z/γ^*+jets processes are simulated in MadGraph5_aMC@NLO and are normalized to their NNLO cross sections [29]. The single top quark associated production with a W boson ($pp \to tW$ and $pp \to \bar{t}W$) is simulated in the five-flavour scheme in POWHEG (v1) at NLO and normalized to an approximate NNLO cross section calculation [30], while the t-channel single top quark events are simulated in the four-flavour scheme in MadGraph5_aMC@NLO. The multijet production is modelled in PYTHIA with LO MEs. The CMS detector response is simulated using GEANT4 (v9.4) [31]. The events in simulation include the effects of additional interactions in the same or nearby bunch crossings (pileup) and are weighted according to the vertex distribution observed in data. The number of pileup interactions in data is estimated from the measured bunch-to-bunch instantaneous luminosity and the total inelastic cross section [32].

3 Definition of signal events

Measurements are reported for two different regions of the phase space: the visible and the full phase space. The result in the visible phase space is measured at the particle level, using the stable particles after the hadronization, to reduce the possible theoretical and modelling uncertainties, while the purpose of performing the result in the full phase space is to facilitate comparisons to NLO calculations or measurements in other decay modes.

To define the visible phase space, all $t\bar{t}b\bar{b}$ final-state particles except the neutrinos, i.e. the charged leptons and jets originating from the decays of the top quarks, as well as the two additional b quark jets (“b jets”), are required to be within the experimentally accessible kinematic region. The leptons must have $p_T > 20$ GeV, and $|\eta| < 2.4$. Electrons or muons originating from the leptonic decays of τ leptons produced in $W \to \tau\nu$ decays are included. Jets that are within $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.5$ units of an identified electron or muon are removed, where $\Delta \phi$ and $\Delta \eta$ are the differences in azimuthal angle and pseudorapidity between the directions of the jet and the lepton. The particle-level jets are obtained by combining all final-state particles, excluding neutrinos, at the generator level with an anti-k_T clustering algorithm [33] with a distance parameter of 0.4 and are required to satisfy $|\eta| < 2.5$ and $p_T > 20$ GeV, which is lower than the reconstructed minimum jet p_T due to jet resolution – to have all events that pass the reconstructed jet p_T in the visible phase space. To identify the b and c quark jets (“c jets”) unambiguously, the b and c hadron momenta are scaled down to a negligible value and included in the jet clustering (so called “ghost matching”) [34]. The b and c jets are then identified by the presence of the corresponding “ghost” hadrons among the jet constituents.

Simulated events are categorized as coming from the $t\bar{t}jj$ process if they contain at least four particle-level jets, including at least two jets originating from b quarks, and two leptons ($t\bar{t}jj \to bW^+bW^−jj \to b\ell^+\nu\bar{b}\ell^−\nu jj$). The $t\bar{t}jj$ sample contains four components according to the number of b and c jets in addition to the two b jets required from the top quark decays. The four components are the $t\bar{t}b\bar{b}$ final state with two b jets, the $t\bar{t}bj$ final state with one b jet and one lighter-flavour jet, the $t\bar{t}c\bar{c}$ final state with two c jets, and the $t\bar{t}LF$ final state with two light-flavour jets (from a gluon or u, d, or s quark) or one light-flavour jet and one c jet. The $t\bar{t}bj$ final state mainly originates from the merging of two b jets or the loss of one of the b jets caused by the acceptance requirements.
4 Event selection

The events are recorded at $\sqrt{s} = 13$ TeV using a dilepton trigger that requires the presence of two isolated leptons (e or μ) both with p_T larger than 17 GeV.

The particle-flow (PF) event algorithm reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track reconstructed by combining information from the silicon tracker and the muon system. The energy of charged hadrons is determined from a combination of their momenta measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

The leptons and all charged hadrons that are associated with jets are required to originate from the primary vertex, defined as the vertex with the highest $\sum p_T^2$ of its associated tracks. Muon candidates are further required to have a high-quality fit including a minimum number of hits in both systems. Requirements on electron identification variables based on shower shape and track-cluster matching are further applied to the reconstructed electron candidates. Muons and electrons must have $p_T > 20$ GeV and $|\eta| < 2.4$.

To reduce the background contributions of muons or electrons from semileptonic heavy-flavour decays, relative isolation criteria are applied. The relative isolation parameter, I_{rel}, is defined as the ratio of the summed p_T of all objects in a cone of $\Delta R = 0.3$ ($\Delta R = 0.4$) units around the electron (muon) direction to the lepton p_T. The objects considered are the charged hadrons associated with the primary vertex as well as the neutral hadrons and photons, whose energies are corrected to take into account pileup effects. Thus,

$$I_{rel} = \frac{\sum p_T^{charged} \text{ hadron}}{p_T^{lepton}} + \frac{\sum p_T^{neutral} \text{ hadron}}{p_T^{lepton}} + \frac{\sum p_T^{photon}}{p_T^{lepton}}.$$ (1)

The muon candidates are required to have $I_{rel} < 0.15$. For the electron candidates, different I_{rel} thresholds (0.077 or 0.068) are applied depending on the pseudorapidity of the candidate ($|\eta| < 1.48$ or $1.48 < |\eta| < 2.40$). These thresholds are obtained from a multivariate analysis technique and result from the considerable differences in both the ECAL and the tracker in the two pseudorapidity regions. The efficiencies for the above lepton identification requirements are measured using Z boson candidates in data with a dilepton invariant mass between 70 and 130 GeV, and are compared with the values from the simulation. The differences between the two evaluations are applied as a correction to the simulation.

The event selection requires the presence of two isolated opposite-sign leptons of invariant mass $M_{\ell\ell} > 12$ GeV. Lepton pairs of the same flavour (e^+e^-, $\mu^+\mu^-$) are rejected if their invariant mass is within 15 GeV of the Z boson mass. The missing transverse momentum vector p_T^{miss} is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed PF candidates in the event. Its magnitude is referred to as p_T^{miss}. In the same-flavour channels, remaining backgrounds from Z+jets processes are sup-
Cross section measurements

pressed by demanding $p_T^{miss} > 30$ GeV. For the $e^\pm \mu^\mp$ channel, no p_T^{miss} requirement is applied. Jets are reconstructed using the same anti-k_T clustering algorithm as in simulations, with the PF candidates as input particles. The jet momentum is determined as the vectorial sum of all PF candidate momenta in the jet and is found from simulation to be within 5 to 10% of the true momentum over the whole p_T spectrum and detector acceptance. An offset correction is applied to jet energies to take into account the contribution from pileup interactions. Jet energy corrections are derived from simulation and confirmed with in situ measurements of the energy balance in dijet and photon+jet events [42]. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions. The event must contain at least four reconstructed jets with $p_T > 30$ GeV and $|\eta| < 2.4$, of which at least two jets must be identified as b jets, using the combined secondary vertex (CSV) algorithm (v2), which combines secondary vertex information with lifetime information of single tracks to produce a b tagging discriminator [43]. A b tagging requirement on this discriminator is applied, which has an efficiency of about 60–70% for b jets and a misidentification probability of 1% for light-flavour jets [44]. Differences in the b tagging efficiencies between data and simulation [43] are accounted for by reweighting the shape of the CSV b tagging discriminator distribution in the simulation to match that in the data. Data/simulation p_T- and η-dependent correction factors are derived from the control samples separately for light- and heavy-flavour jets.

The diboson and multijet contributions are found to be negligible after the full event selection. The Z+jets background is estimated from data using control samples enriched in Z boson events.

Table 1 gives the predicted number of events for each physics process and for each lepton category, as well as a comparison of the total number of events expected from the simulation and observed in data. Since the full event selection requires at least two b-tagged jets, a condition which is usually satisfied by tt_b events, only 5% of the events are from non-tt_b processes. The tt_b final state is predominantly composed of tt_b events where there is one lost b jet due to acceptance requirements (73% of tt_b events). The background contribution from tt events that fail the visible phase space requirements is labelled “tt others”. The number of observed events with four or more reconstructed jets is lower than the prediction from the simulation, a condition that is also observed in the lepton+jets decay mode [45].

The first and the second jets in decreasing order of the b tagging discriminator usually (in 85% of tt_b events) correspond to the b jets from the decays of top quarks, and hence these jets provide no discriminating power between tt_b and tt events. The third and the fourth jets from tt events are mostly light-flavour jets, while these are heavy-flavour jets for tt_b events. The normalized 2D distributions of the discriminators from simulation for the third and the fourth jets are shown in Fig. 1. These 2D distributions are used to separate tt_b events from other processes. To extract the ratio of the number of tt_b events to tt events, a binned maximum-likelihood fit is performed on the 2D distribution of the CSV b tagging discriminators of the third and the fourth jets, where the three event categories $e^\pm e^\mp$, $e^\pm \mu^\mp$, and $\mu^\pm \mu^\mp$ are merged.

The total number of tt events and the ratio of the numbers of tt_b events and tt events are free parameters in the fit. The tt_c and ttLF contributions are combined, and the ratio of the tt_b to tt_b contributions is fixed to the predictions from the MC simulation (POWHEG interfaced with
Table 1: Predicted number of events for each physics process and for each dilepton category, their total, and the observed number of events. Results are shown after the final event selection. The \(Z+jets \) normalization and uncertainty are calculated from data, while all other predictions and uncertainties come from simulated data samples. The \(t\bar{t} \) sample for event categorization is from the \textsc{POWHEG} (v2) event generator interfaced with \textsc{PYTHIA} (v8.205).

<table>
<thead>
<tr>
<th>Process</th>
<th>(e^+e^-)</th>
<th>(\mu^+\mu^-)</th>
<th>(e^±\mu^±)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\bar{t}b)</td>
<td>(6.3 \pm 0.4)</td>
<td>(8.6 \pm 0.4)</td>
<td>(24 \pm 1)</td>
<td>(39 \pm 1)</td>
</tr>
<tr>
<td>(t\bar{t}bj)</td>
<td>(16 \pm 1)</td>
<td>(21 \pm 1)</td>
<td>(57 \pm 2)</td>
<td>(95 \pm 2)</td>
</tr>
<tr>
<td>(t\bar{t}c\bar{c})</td>
<td>(7.7 \pm 0.4)</td>
<td>(11 \pm 1)</td>
<td>(27 \pm 1)</td>
<td>(46 \pm 1)</td>
</tr>
<tr>
<td>(t\bar{t}LF)</td>
<td>(157 \pm 2)</td>
<td>(220 \pm 2)</td>
<td>(596 \pm 3)</td>
<td>(972 \pm 4)</td>
</tr>
<tr>
<td>(\bar{t}\bar{t}) others</td>
<td>(18 \pm 1)</td>
<td>(19 \pm 1)</td>
<td>(61 \pm 1)</td>
<td>(99 \pm 1)</td>
</tr>
<tr>
<td>(\bar{t}\bar{V})</td>
<td>(2.5 \pm 0.1)</td>
<td>(3.2 \pm 0.2)</td>
<td>(7.3 \pm 0.2)</td>
<td>(14 \pm 1)</td>
</tr>
<tr>
<td>Single (t)</td>
<td>(6.6 \pm 0.8)</td>
<td>(8.4 \pm 0.8)</td>
<td>(23 \pm 2)</td>
<td>(39 \pm 2)</td>
</tr>
<tr>
<td>(Z+jets)</td>
<td>(0.8^{+1.0}_{-0.8})</td>
<td>(5.4 \pm 1.5)</td>
<td>(0.6 \pm 0.5)</td>
<td>(6.8 \pm 1.9)</td>
</tr>
<tr>
<td>Total</td>
<td>(215 \pm 2)</td>
<td>(297 \pm 3)</td>
<td>(796 \pm 4)</td>
<td>(1311 \pm 6)</td>
</tr>
</tbody>
</table>

Data 186 288 682 1156

\textsc{PYTHIA}). The effect of this assumption is estimated as a systematic uncertainty in Section 6. Additionally, \(\bar{t}\bar{t} \) others is scaled by the normalization parameter. The other backgrounds, such as \(\bar{t}\bar{V} \) (\(V = W \) or \(Z \)) and single top quark processes are fixed to the simulation expectations, while the \(Z+jets \) background is fixed to its estimation from control samples in data.

The likelihood function is constructed as the product over all bins of a Poisson probability with a mean defined in each bin by

\[
\mathcal{M}(N_{\ell\ell j}, R) = N_{\ell\ell j} \left[R \mathcal{F}_{t\bar{t}b}^{norm} + R' \mathcal{F}_{t\bar{t}bj}^{norm} + (1 - R - R') \mathcal{F}_{t\bar{t}LF+t\bar{c}\bar{c}}^{norm} \right] + \frac{N_{\ell\ell j}}{N_{MC}} N_{t\bar{t}b}^{MC} + N_{t\bar{t}b}^{MC} + N_{t\bar{t}c\bar{c}} + N_{bkg},
\]

where \(\mathcal{F}_{t\bar{t}b}^{norm} \), \(\mathcal{F}_{t\bar{t}bj}^{norm} \), and \(\mathcal{F}_{t\bar{t}LF+t\bar{c}\bar{c}}^{norm} \) are the normalized expectations for each bin of \(t\bar{t}b \), \(t\bar{t}bj \), and the combination of \(t\bar{t}LF \) and \(t\bar{c}\bar{c} \), respectively. The expected number of other \(\bar{t} \) processes from the MC simulation is denoted by \(N_{MC} \). The remaining background not from the \(\bar{t} \) process is labelled \(N_{bkg} \) and is fixed to the expectation obtained from simulation and data as described above. The parameters \(N_{\ell\ell j} \) and \(N_{MC}^{MC} \) denote the number of \(\bar{t}\bar{t}j \) events from the fit and from the MC simulation, respectively. The parameter \(R \) is the ratio of the number of \(t\bar{t}b \) events with respect to the number of \(\bar{t}\bar{t}j \) events, and \(R' \) is the fraction of \(t\bar{t}bj \) events at the reconstruction level and constrained to the ratio of \(t\bar{t}bj \) events over \(t\bar{t}b \) events in the simulation. Values for \(N_{\ell\ell j} \) of 950 \pm 30 events and \(R \) of 0.056 \pm 0.008 are obtained from the fit. The correlation coefficient between the two parameters is 0.002.

The result obtained for \(R \) is corrected to account for the different selection efficiencies for the two processes. The event selection efficiencies, defined as the number of \(t\bar{t}b \) and \(\bar{t}\bar{t}j \) events after the full event selection divided by the number of events in the corresponding visible phase space, are 27% and 12%, respectively. For the \(t\bar{t}b \) process, there are at least 4 b jets in the events, therefore, it is easier to fulfill the requirement of at least two b-tagged jets than the \(t\bar{t}j \) process.

Figure 2 shows the comparisons of the b tagging discriminator distributions of the third and the fourth jets in the events from data and simulation, where the simulated histograms have been scaled to the fit result.

The b-tagged jet multiplicity distribution in Fig. 3 shows the comparison between data and the
Cross section measurements simulation after the requirement of at least four jets, together with the ratio of the number of data events to the expectation in the lower panel, where the simulated histograms have been scaled to the fit result.

Figure 1: Normalized 2D distributions of the b jet discriminators of the third (x-axis) and the fourth (y-axis) jets sorted in decreasing order of b tagging discriminator value, after the full event selection for t\(\bar{t}b\)b (upper left), t\(\bar{t}bj\) (upper right), t\(fjc\) (lower left), and t\(fLF\) (lower right) processes.

The t\(\bar{t}b\)b and t\(\bar{t}jj\) cross sections in the visible phase space are calculated using the relationship \(\sigma_{\text{visible}} = N/(\epsilon\mathcal{L})\), where \(\mathcal{L}\) is the integrated luminosity, \(N\) is the number of events from the fit result, and \(\epsilon\) is the efficiency for each process. For the purpose of comparing with the theoretical prediction and the measurements in the other decay modes, the cross sections in the full phase space are extrapolated from the cross sections in the visible phase space using the relation \(\sigma_{\text{full}} = \sigma_{\text{visible}}/A\), where \(A\) is the acceptance, defined as the number of events in the corresponding visible phase space divided by the number of events in the full phase space. The acceptances are calculated based on the POWHEG simulation and are 2.2% and 2.0% for t\(\bar{t}b\)b and t\(\bar{t}jj\), respectively, including the leptonic branching fraction of both W bosons [46].
Figure 2: Distributions of b jet discriminator for the third (left) and the fourth (right) jets in decreasing order of b tagging discriminator value, after the full event selection. The points show the data and the stacked histograms are from simulated events, normalized by the results of the fit. The ratio of the number of data events to the expected number, as given by the stacked histograms, is shown in the lower panels. The hatched region indicates the modelling uncertainty in the MC simulation.

6 Estimation of systematic uncertainties

The systematic uncertainties are determined separately for the $t\bar{t}b\bar{b}$ and $t\bar{t}jj$ cross sections, and their ratio. In the ratio, many systematic effects cancel, specifically normalization uncertainties, such as the ones related to the measurement of the integrated luminosity and the lepton identification, including trigger efficiencies, since they are common to both processes. The various systematic uncertainties in the measured values are shown in Table 2 for the visible phase space.

The systematic uncertainty in the lepton identification is calculated by varying the correction factor for the efficiency within its uncertainty, as derived from Z boson candidates as a function of lepton η and p_T, and also taking into account the different phase space between Z boson and $t\bar{t}$ events.

The systematic uncertainties associated with the b tagging efficiency for heavy- and light-flavour jets are studied separately, varying their values within the corresponding uncertainties. The b-flavour correction factors are obtained using $t\bar{t}$ enriched events by tagging one b jet and probing the other b jet. Their dominant uncertainty comes from the contamination when one of the b jets is not reconstructed [47] (indicated as “b quark flavour” in Table 2). The light-flavour jet correction factors are determined from Z+jets enriched events with at least two jets (indicated as “light flavour” in Table 2). The uncertainty arises because in this control sample of Z+jets, the contamination from the Z+b process is not well modelled. The correction factor for c jets is not measured, owing to the limited amount of data, and is assumed to be unity with an uncertainty twice as large as for b jets [43] (indicated as “c quark flavour” in Table 2). In the correction factor evaluation, the statistical uncertainty, which can arise owing to low event yields in certain regions, e.g. at values of the b tagging discriminator near one, is also taken into account.

The b tagging discriminator can also be affected by the jet energy scale (JES) variations [42] since the efficiency correction changes through its p_T dependence. The corresponding system-
Figure 3: Distribution of b jet multiplicity after the four-jet requirement, but without the b tagging requirement, for the $e^\pm e^\mp$ (upper left), $e^\pm \mu^\mp$ (upper right), and $\mu^\pm \mu^\mp$ (lower left) final states and the sum of the three final states (lower right). The points show the data and the stacked histograms are from simulated events, normalized by the results of the fit. The ratio of the number of data events to the expected number, as given by the stacked histograms, is shown in the lower panels. The hatched region indicates the modelling uncertainty in the MC simulation.
Table 2: Summary of the systematic uncertainties in percentage (%) from various sources contributing to σ_{ttb}, σ_{tjj}, and the ratio $\sigma_{\text{ttb}}/\sigma_{\text{tjj}}$ for a jet $p_T > 20$ GeV in the visible phase space.

<table>
<thead>
<tr>
<th>Source</th>
<th>σ_{ttb}</th>
<th>σ_{tjj}</th>
<th>$\sigma_{\text{ttb}}/\sigma_{\text{tjj}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pileup</td>
<td>0.4</td>
<td><0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>JES & JER</td>
<td>7.8</td>
<td>7.4</td>
<td>2.6</td>
</tr>
<tr>
<td>b tag (b quark flavour)</td>
<td>19</td>
<td>4.7</td>
<td>19</td>
</tr>
<tr>
<td>b tag (c quark flavour)</td>
<td>14</td>
<td>1.3</td>
<td>14</td>
</tr>
<tr>
<td>b tag (light flavour)</td>
<td>14</td>
<td>9.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Ratio of ttb and ttbj</td>
<td>2.6</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Background modelling</td>
<td>3.8</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>$\text{ttc}\bar{c}$ fraction in the fit</td>
<td>5.2</td>
<td>1.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Lepton trigger/identification</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
</tr>
<tr>
<td>MC generator</td>
<td>9.4</td>
<td>6.2</td>
<td>3.0</td>
</tr>
<tr>
<td>μ_F and μ_R scale</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>scale in PS</td>
<td>13</td>
<td>9.9</td>
<td>10</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Efficiency ($\text{ttc}\bar{c}$ fraction)</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Jet multiplicity modelling</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Top quark p_T modelling</td>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Simulation (statistical)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td>2.3</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>34</td>
<td>19</td>
<td>28</td>
</tr>
</tbody>
</table>

The ratio of ttb events with respect to ttbj events is based on the POWHEG MC simulation. The uncertainty arising from this rate is evaluated by comparing the reference value (POWHEG) with that of a MADGRAPH5_aMC@NLO sample, and POWHEG samples with different μ_F and μ_R scales in the ME and parton shower (PS) calculations.

The systematic uncertainty in the number of pileup events is estimated by varying the total inelastic cross section by 5% to cover all of the uncertainties in the modelling of the pileup [32].

The contributions from Z+jets and single top quark processes are small, and the 2D b tagging discriminator distributions from these backgrounds are similar to those of the tLF component. Therefore, these backgrounds do not affect the measurement significantly. The uncertainty caused by mismodelling of these backgrounds is assessed by varying the contribution to cover the uncertainty in the single top quark production cross section (indicated as “Background modelling” in Table[2]). For the efficiency of ttjj events, the uncertainty owing to the heavy-flavour fraction is negligible because of their small fraction. An uncertainty to account for the modelling of the $\text{ttc}\bar{c}$ fraction by simulations is also assigned by varying the contribution by 50% in the fit. This is derived from the theoretical uncertainty on the ttjj cross section.

The dependence of the correction factor at the particle level on the assumptions made in the MC simulation is another source of systematic uncertainty: the generators POWHEG and MADGRAPH5_aMC@NLO are compared and the difference in the efficiency is taken as systematic uncertainty. In simulation, event weights are calculated that represent the usage of the uncer-
tainty eigenvector sets of the PDF. The uncertainties in the PDFs are accounted for by using these various event weights. The uncertainties from the μ_F and μ_R scales at the ME level are estimated by making use of a weighting scheme implemented in POWHEG to vary the scales by a factor of two up and down with respect to their reference values $\mu_F = \mu_R = \sqrt{m_t^2 + p_{T,t}^2}$, where m_t is 172.5 GeV, with $p_{T,t}$ being the top quark transverse momentum. The uncertainties from the μ_F and μ_R scales at the PS level are assessed by using additional simulations where the scales are changed by a factor of two up and down relative to their reference values. The uncertainty from the modelling of jet multiplicity, in particular, the mismodelling for events with more than five jets, is also taken into account. It is estimated to be 5% by comparing the rates of high-multiplicity events in data and simulation.

The size of the MC sample used for $t\bar{t}b\bar{b}$ simulation being limited, the uncertainty from the statistical fluctuations in the simulated event samples is assessed by repeating the fit with the method described in Ref. [48]. The difference of 1.5% in the result is accounted for in the systematic uncertainty.

In addition to the theoretical and modelling uncertainties described above, the uncertainty coming from the modelling of the top quark p_T distribution in the ME calculations is taken into account. The uncertainty is calculated by taking the difference in shape between the parton-level p_T spectrum from the ME generator and the unfolded p_T spectrum from the data [49]. The uncertainty due to the top quark p_T modelling is negligible in this analysis, as shown in Table 2.

Adding all these contributions in quadrature gives a total systematic uncertainty of 28% in the cross section ratio, with the dominant contributions coming from the b tagging efficiency and the misidentification of light- and c-flavoured partons, followed by the matching scale systematic uncertainties.

The uncertainty in σ_{tjj} is significantly smaller than that in $\sigma_{t\bar{t}b\bar{b}}$ since the measurement of the latter requires the identification of multiple b jets. The uncertainty in $\sigma_{t\bar{t}b\bar{b}}$ is larger than that for the cross section ratio, since the uncertainties that are common between $t\bar{t}b\bar{b}$ and $t\bar{t}jj$, such as the JES uncertainty, partially or completely cancel in the ratio.

When extrapolating the measurements from the visible phase space to the full phase space, the systematic uncertainty in the acceptance is included. The effect of the MC modelling of the acceptance is estimated by comparing the results between MADGRAPH5_aMC@NLO and POWHEG. This uncertainty amounts to 4% for each of the cross section measurements and 1% for the cross section ratio.

7 Results

After accounting for all corrections and systematic effects, the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{tjj}$ is measured in the visible phase space from a fit to the measured CSV b tagging discriminator distributions. The measured cross section ratio in the visible phase space for events with particle-level jets is

\[
(\sigma_{t\bar{t}b\bar{b}}/\sigma_{tjj})^{\text{vis}} = 0.024 \pm 0.003 \text{ (stat)} \pm 0.007 \text{ (syst)}. \tag{3}
\]

The result is obtained in the visible phase space, defined as events having two leptons with $p_T > 20$ GeV and $|\eta| < 2.4$, plus at least four jets, including at least two b jets with $p_T > 20$ GeV and $|\eta| < 2.5$. The cross section ratio in the full phase space that uses the acceptance correction
described in Section 5 is
\[\frac{\sigma_{\text{tb}b}}{\sigma_{\text{tjj}}} = 0.022 \pm 0.003 \text{(stat)} \pm 0.006 \text{(syst)}. \]

The predicted values from POWHEG are 0.014 ± 0.001 and 0.012 ± 0.001 for the visible and full phase space, respectively, where the uncertainty in the simulation is the sum in quadrature of the statistical, and the \(\mu_F/\mu_R \) scale systematic uncertainties. The prediction obtained from POWHEG simulation (interfaced with PYTHIA) underpredicts the measured cross section ratio by a factor of 1.8, but it is compatible with the observation within two standard deviations. The measured cross sections in the visible and the full phase space are presented in Table 3.

Table 3: The measured cross sections \(\sigma_{\text{tb}b} \) and \(\sigma_{\text{tjj}} \) and their ratio for the visible and the full phase space, corrected for acceptance and branching fractions. The uncertainties on the measurements show separately the statistical and systematic components, while those are combined for the POWHEG predictions.

<table>
<thead>
<tr>
<th>Phase space</th>
<th>(\sigma_{\text{tb}b}) [pb]</th>
<th>(\sigma_{\text{tjj}}) [pb]</th>
<th>(\frac{\sigma_{\text{tb}b}}{\sigma_{\text{tjj}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible</td>
<td>Measurement SM (POWHEG)</td>
<td>0.088 ± 0.012 ± 0.029</td>
<td>3.7 ± 0.1 ± 0.7</td>
</tr>
<tr>
<td>Full</td>
<td>Measurement SM (POWHEG)</td>
<td>4.0 ± 0.6 ± 1.3</td>
<td>184 ± 6 ± 33</td>
</tr>
</tbody>
</table>

8 Summary

Measurements of the cross sections \(\sigma_{\text{tb}b} \) and \(\sigma_{\text{tjj}} \) and their ratio \(\frac{\sigma_{\text{tb}b}}{\sigma_{\text{tjj}}} \) are presented using a data sample recorded in pp collisions at \(\sqrt{s} = 13 \text{ TeV} \), corresponding to an integrated luminosity of 2.3 fb\(^{-1}\). The cross section ratio has been measured in a visible phase space region using the dilepton decay mode of \(\text{t} \overline{\text{t}} \) events and corrected to the particle level, corresponding to the detector acceptance. The measured cross section ratios in the visible and the full phase space are \(\frac{\sigma_{\text{tb}b}}{\sigma_{\text{tjj}}} = 0.024 \pm 0.003 \text{(stat)} \pm 0.007 \text{(syst)} \) and \(\frac{\sigma_{\text{tb}b}}{\sigma_{\text{tjj}}} = 0.022 \pm 0.003 \text{(stat)} \pm 0.006 \text{(syst)} \), respectively, where a minimum transverse momentum for the particle-level jets of 20 GeV is required. Theoretical ratios predicted from the POWHEG simulation (interfaced with PYTHIA) are 0.014 ± 0.001 for the visible and 0.012 ± 0.001 for the full phase space, which are lower than the measured values but consistent within two standard deviations. The individual cross sections \(\sigma_{\text{tb}b} = 4.0 \pm 0.6 \text{ (stat)} \pm 1.3 \text{ (syst)} \) pb and \(\sigma_{\text{tjj}} = 184 \pm 6 \text{ (stat)} \pm 33 \text{ (syst)} \) pb have also been measured. These results, in particular the ratio of the cross sections, provide important information for the \(\text{t}\overline{\text{t}}\text{H} \) search, permitting the reduction of a dominant systematic uncertainty that derives from the uncertainty in the \(\text{tb}\overline{\text{b}} \) background. They can also be used as a figure of merit for testing the validity of next-to-leading-order QCD calculations at \(\sqrt{s} = 13 \text{ TeV} \).

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria);
CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

[14] CMS Collaboration, “Measurement of the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ in pp collisions at $\sqrt{s} = 8$ TeV”, *Phys. Lett. B* 746 (2015) 132, doi:10.1016/j.physletb.2015.04.060

[38] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus
N. Shumeiko

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang5, X. Gao5

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Flores, C.F. González Hernández, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger6, M. Finger Jr.6

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim7,8, Y. Mohammed9, E. Salama10,11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor

Wigner Research Centre for Physics, Budapest, Hungary
G. Bence, C. Hajdu, D. Horváth19, F. Sikler, V. Veszprémi, G. Vesztergombi20, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók20, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati22, S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo, S.K. Swain
Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglinia, K. Chatterjeea,b, V. Ciullia,b, C. Civeninia, R. D’Alessandroa,b, E. Focardia,b, P. Lenzia,b, M. Meschinia, S. Paololettia, L. Russoa,29, G. Sguazzonia, D. Stroma, L. Viliania,b,15

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera15

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
V. Calvellia,b, F. Ferroa, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
L. Brianzaa,b,15, F. Brivioa,b, V. Cirioa, M.E. Dinardoa,b, S. Fiorettia,b,15, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b, K. Pauwels, D. Pedrinia, S. Pigazzinia,b, S. Ragazzia,b, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,15, M. Espositob, F. Fabozzia,c, F. Fiengaa,b, A.O.M. Iorioa,b, W.A. Khana, G. Lanzaa, L. Listaa, S. Meolaa,d,15, P. Paoluccia,15, C. Sciaccaa,b, F. Thyssena

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia,15, N. Bacchettaa, L. Benatoa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa, M. Dall’Ossoba,b, P. De Castro Manzanoa, T. Dorigoa, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Margonib, A.T. Meneguzzoa,b, M. Michelottoa, F. Montecassianoa, M. Passaseoa, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, F. Fallavollitaa,b, A. Magnania,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegotti, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
L. Alunni Solestizia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b, D. Spiga

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria,15, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, A. Giassia, M.T. Grippoa,29, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,30, P. Spagnoloa, R. Trenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea,b,15, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, R. Paramattia,b, F. Preiatoa,b, S. Rahatlouia,b, C. Rovellia, F. Santanastasioa,b

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c,15, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costab, R. Covarellia,b, A. Deganoa,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteia,b, M. Montenoa
M.M. Obertinoa,\,b, L. Pachera,\,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,\,b, F. Raveraa,\,b, A. Romeroa,\,b, M. Ruspaa,\,c, R. Sacchia,\,b, K. Shchelinaa,\,b, V. Solaa, A. Solanoa,\,b, A. Staianoa, P. Traczyka,\,b

\textbf{INFN Sezione di Trieste}a, Università di Triesteb, Trieste, Italy

S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,\,b, A. Zanettia

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea

A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon

Hanyang University, Seoul, Korea

J.A. Brochero Cifuentes, J. Goh, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, R. Lopez-Fernandez, J. Mejia Guisaao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vasilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva, S. Polikarpov, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, V. Savrin, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen, D. Shtol

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni,

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar56, K. Ocalan57, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya58, O. Kaya59, E.A. Yetkin60

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner
Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

Catholic University of America, Washington, USA
R. Bartek, A. Domínguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda
Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg
Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA

1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at Joint Institute for Nuclear Research, Dubna, Russia
7: Also at Helwan University, Cairo, Egypt
8: Now at Zewail City of Science and Technology, Zewail, Egypt
9: Now at Fayoum University, El-Fayoum, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at Université de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
14: Also at Tbilisi State University, Tbilisi, Georgia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at Purdue University, West Lafayette, USA
30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
31: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
32: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
33: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
34: Also at Institute for Nuclear Research, Moscow, Russia
35: Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at National and Kapodistrian University of Athens, Athens, Greece
38: Also at Riga Technical University, Riga, Latvia
48: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
49: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
50: Also at Gaziosmanpasa University, Tokat, Turkey
51: Also at Istanbul Aydin University, Istanbul, Turkey
52: Also at Mersin University, Mersin, Turkey
53: Also at Cag University, Mersin, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Adiyaman University, Adiyaman, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Necmettin Erbakan University, Konya, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at BEYKENT UNIVERSITY, Istanbul, Turkey
66: Also at Bingol University, Bingol, Turkey
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Sinop University, Sinop, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea