“Let's have a look!”
Observations, theories, philosophical troubles

Dr. Nicola Mößner
“Look, alternative facts are not facts. They’re falsehoods.” (Chuck Todd at NBC Meet the Press)
Facts are facts...

- Facts in international politics
 - Shaped by social dynamics
 - Embedded in social institutions
Facts are facts...

- Facts in international politics
 - Shaped by social dynamics
 - Embedded in social institutions

- Facts in science
 - Alan F. Chalmers: scientific statements are regarded as particularly reliable because science is based on facts
 - What about the influence of social dynamics and social institutions in this context?
 - Are scientific facts better off with this regard?
Facts are facts...

- Why ask a philosopher of science?
- Philosophy as a *meta-discipline*
 - Socrates: *I know that I know nothing*.
 - Going *beyond the obvious*, i.e., going beyond commonly accepted ideas - think critically!
Facts are facts...

• Why ask a philosopher of science?
• Philosophy as a meta-discipline
 – Socrates: *I know that I know nothing*.
 – Going *beyond the obvious*, i.e., going beyond commonly accepted ideas - think critically!
• Philosophy of science as meta-science
 – Critical analyses of *epistemic practices*
 – What are facts in science like?
 – What about social dynamics and institutions in this context?
Contents

- What are scientific facts?
- Observation and observability
- What is theory-ladenness of observation?
- Social dynamics in science
What are scientific facts?

• What are scientific facts?
 – Facts – evidence (indicators) – data
 – Results of experiments and observations
What are scientific facts?

• What are scientific facts?
 – Facts – evidence (indicators) – data
 – Results of experiments and observations

• Why do we need reliable facts in science?
 – Two tasks of scientific hypotheses (theories): explanation and prediction (of phenomena)
 – Testing of scientific hypotheses: falsification or confirmation
What are scientific facts?

predicts

Scientific hypothesis

Data
What are scientific facts?

- Scientific hypothesis predicts Data
- Data tests (falsify / confirm) Scientific hypothesis
What are scientific facts?

Data

Scientific hypothesis

predicts

test (falsify / confirm)

Data

Scientific hypothesis

explains

Nicola Mößner 2017
What are scientific facts?

- Scientific hypothesis predicts Data
- Test (falsify / confirm) Data
- Explain Data
- Help to develop Scientific hypothesis

Nicola Mößner 2017
What are scientific facts?

Vicious circle?

- Data
 - affects
 - test (falsify / confirm)
 - explains

- Scientific hypothesis
 - predicts
 - help to develop

Nicola Mößner 2017
Observation and Observability

• Why should we be worried about data?
 • Reliability can be questioned
 • Problem: way of access
Observation and Observability

• Why should we be worried about data?
 • Reliability can be questioned
 • Problem: way of access

• Distinction between observables and unobservables

CMS Detector 2014

Higgs boson, event recording 2012
Observation and Observability

• What is observable?
Observation and Observability

• What is observable?

• Radical claim: scepticism (e.g. René Descartes)
 • Both, observable and unobservable parts of the world, are questioned
Observation and Observability

- What is observable?
- **Radical claim:** scepticism (e.g. René Descartes)
 - Both, observable and unobservable parts of the world, are questioned
- **Moderate claim:** Scientific realists (e.g. Richard Boyd) vs. anti-realists (e.g. Bas C. van Fraassen)
 - No quarrels about observable part of the world
 - Unobservable part, however, is contested
Observation and Observability

Problem of **empirical underdetermination**:
- Unobservables are **relevant parts of scientific explanations**
Observation and Observability

Problem of **empirical underdetermination:**

- Unobservables are **relevant parts of scientific explanations**
- An example from the history of science: Phlogiston vs. Oxygen

Observable phenomenon: **Fire**

How to explain the process of combustion?

?
Observation and Observability

Problem of **empirical underdetermination**:

- Unobservables are **relevant parts of scientific explanations**
- An example from the history of science: Phlogiston vs. Oxygen

Observable phenomenon: **Fire**

How to explain the process of combustion?

Explanation 1: Combustion = **phlogiston** is released by a substance
Observation and Observability

Problem of **empirical underdetermination**:

- Unobservables are **relevant parts of scientific explanations**
- An example from the history of science: Phlogiston vs. Oxygen

Observable phenomenon: **Fire**

How to explain the process of combustion?

Explanation 1: Combustion = **phlogiston** is released by a substance

Explanation 2: Combustion = substance reacts with **oxygen**
Observation and Observability

• Many phenomena are **only accessible via instruments**
• But: **what makes the difference** between observables and unobservables?
Observation and Observability

• Many phenomena are **only accessible via instruments**
• But: **what makes the difference** between observables and unobservables?

'Naked' eye

Using glasses
Observation and Observability

• Many phenomena are only accessible via instruments
• But: what makes the difference between observables and unobservables?

'Naked' eye

Using glasses

Using a telescope

Using a tube full of water to detect neutrinos and, thereby, to observe mechanisms beneath the surface of the sun

Nicola Mößner 2017
Observation and Observability

• Many phenomena are only accessible via instruments
• But: what makes the difference between observables and unobservables?

'Naked' eye
Using glasses
Using a telescope

Grover Mawell: slippery slope argument

Using a tube full of water to detect neutrinos and, thereby, to observe mechanisms beneath the surface of the sun

Nicola Mößner 2017
Observation and Observability

• Alternative approach by Peter Kosso (1988)
 • Complexity of observational process
 • Information transmission model of observability
Observation and Observability

• Alternative approach by Peter Kosso (1988)
 • Complexity of observational process
 • Information transmission model of observability
Observation and Observability

- Alternative approach by Peter Kosso (1988)
 - Complexity of observational process
 - Information transmission model of observability
Observation and Observability

Dimensions of observability
Observation and Observability

Dimensions of observability

1. **Immediacy**: Does and, if so, how does x interact with the observational apparatus?

2. **Directness**: How many interactions take place?
Observation and Observability

Dimensions of observability

1. **Immediacy**: Does and, if so, how does x interact with the observational apparatus?

2. **Directness**: How many interactions take place?

3. **Amount of interpretation**: How many different theoretical accounts are needed to explain those interactions?
Observation and Observability

Dimensions of observability

1. **Immediacy**: Does and, if so, how does x interact with the observational apparatus?

2. **Directness**: How many interactions take place?

3. **Amount of interpretation**: How many different theoretical accounts are needed to explain those interactions?

4. **Independence of interpretation**: Is the theoretical approach that explains the observational data independent of the theory that is to be tested by those data?
Observation and Observability

Dimensions of observability

1. **Immediacy**: Does x interact with the instrument? / Is x detectable or not?
Observation and Observability

Dimensions of observability

2. **Directness**: How many interactive steps take place?

Phenomenon x

Observational apparatus $o_1 \ldots o_n$

Observational apparatus

Interacts with

Interacts with

Interacts with

Interacts with

Nicola Mößner 2017
Observation and Observability

Dimensions of observability

3. **Amount of interpretation:** How many different instruments / theories are involved?

![Diagram showing the interaction between Phenomenon x and CERN's accelerator complex, including CMS, ALICE, SPS, and ATLAS.]
Observation and Observability

Dimensions of observability

4. **Independence**: Do we use the same theory to explain x and the observation of x?

Phenomenon x
Observational apparatus
Observational apparatus

Theoretical approach to understand x
Theoretical approach to understand function

Nicola Mößner 2017
Theory-ladeness of observation

• Observation is a complex process, not a binary relation between observer and phenomenon
 • Ludwik Fleck (1935): Veni, vidi, vici assumption is a myth
Theory-ladeness of observation

• Observation is a complex process, not a binary relation between observer and phenomenon
 • Ludwik Fleck (1935): Veni, vidi, vici assumption is a myth
• No brute facts available in science
 • Relevance of interpretation, i.e. background theories
Theory-ladeness of observation

- Observation is a complex process, not a binary relation between observer and phenomenon
 - Ludwik Fleck (1935): Veni, vidi, vici assumption is a myth
- No brute facts available in science
 - Relevance of interpretation, i.e. background theories
 - “All observation in science is influenced by theory” (Kosso 1993, 113).
 - Theory-ladenness of observation seems to be unavoidable
 - Why does this matter?
Theory-ladenness of observation

- Worrisome consequences of theory-ladenness
 - Do we fabricate the evidence that we are in need of?
 - Do we generate alternative “facts”?
Theory-laden-ness of observation

• Worrisome consequences of theory-ladenness
 • Do we fabricate the evidence that we are in need of?
 • Do we generate alternative “facts”?

TV comedy
“Zondag met Lubach”
The Netherlands welcomes Trump in his own words: https://www.youtube.com/watch?v=ELD2AwFN9Nc
Theory-ladenness of observation

• Worrisome consequences of theory-ladenness
 • Do we fabricate the evidence that we are in need of?
 • Do we generate alternative “facts”?

Madurodam,
NL

TV comedy
“Zondag met Lubach”
The Netherlands welcomes Trump in his own words: https://www.youtube.com/watch?v=ELD2AwFN9Nc
Theory-ladenness of observation

- Worrisome consequences of theory-ladenness
 - Do we fabricate the evidence that we are in need of?
 - Do we generate alternative “facts”?

Madurodam, NL

TV comedy “Zondag met Lubach”
The Netherlands welcomes Trump in his own words: https://www.youtube.com/watch?v=ELD2AwFN9Nc
Theory-ladenness of observation

- Worrisome consequences of theory-ladenness
 - Do we fabricate the evidence that we are in need of?
 - Do we generate alternative “facts”?

Madurodam, NL

TV comedy “Zondag met Lubach”
The Netherlands welcomes Trump in his own words: https://www.youtube.com/watch?v=ELD2AwFN9Nc
Theory-ladenness of observation

Vicious circle if Independence condition is violated (Kosso's 4. dimension of observability)

Nicola Mößner 2017
Theory-ladenness of observation

• Martin Carrier (1994) calls this “measuremental theory-ladenness” of observations
 • Measuring procedures are influenced by theories
 • Theories are needed to interpret data
Theory-ladenness of observation

- Martin Carrier (1994) calls this “measuremental theory-ladenness” of observations
 - Measuring procedures are influenced by theories
 - Theories are needed to interpret data
 - Problems arise if the theory used to build the measuring device is equivalent to the one that should be tested by data produced by this device
 - How can we handle this problem?
Theory-ladenness of observation

Example: The discovery of the Higgs boson (2012)

- **Indirect measurement**: theoretical assumptions guided research
Theory-ladenness of observation

Example: The discovery of the Higgs boson (2012)

• **Indirect measurement**: theoretical assumptions guided research

1. Where to look for the data?

• Instruments needed: e.g. particle accelerator working with a particular level of energy
Theory-ladenness of observation

Example: The discovery of the Higgs boson (2012)

• **Indirect measurement**: theoretical assumptions guided research

1. **Where to look for the data?**
 • Instruments needed: e.g. particle accelerator working with a particular level of energy

2. **What counts as evidence?**
 • Retrodiction: certain particles of decay allow inferences with certain probabilities
Theory-ladenness of observation

• Reliability considerations:
 • Special Issue “Synthese” 2017
 Vol. 194(2)
Theory-ladenness of observation

• Reliability considerations:
 • Special Issue “Synthese” 2017
 Vol. 194(2)
 • Statistical significance of
 the data (five sigma)
Theory-ladenness of observation

- Reliability considerations:
 - Special Issue “Synthese” 2017 Vol. 194(2)
 - Statistical significance of the data (five sigma)
 - Usage of different ways of access: different kinds of detectors at different experiments
Theory-ladenness of observation

• James Ladyman (2002): argument in favour of unobservables
 • At least some of them are detectable via instruments
 • “The greater the extent to which detections can be corroborated by different means [different instruments / methods], the stronger the argument for realism in connection with their putative target.”
Theory-ladenness of observation

• James Ladyman (2002): argument in favour of unobservables
 • At least some of them are detectable via instruments
 • “The greater the extent to which detections can be corroborated by different means [different instruments / methods], the stronger the argument for realism in connection with their putative target.”
 • It would be miraculous if different detective devises show the same results, in case there was no real entity causing those results
Social dynamics in science

• But why do we focus on the Higgs boson and hope for „new physics“ as a by-product only?
Social dynamics in science

• But why do we focus on the Higgs boson and hope for „new physics“ as a by-product only?

• Are scientific facts different from facts in the social world?
 • Facts in the social world are dependent on human activity (politics, economics, etc.): they are produced
 • Scientific facts are independent of human activities: they have to be discovered, but are not invented
 • But: measuremental theory-ladenness calls for attention
Social dynamics in science

• Ludwik Fleck (1935), Thomas Kuhn (1962): more wide-ranging social influences in science
 • Science as a social institution bound by tradition
 • Paradigm / thought style: shared practices, background beliefs, social conventions
Social dynamics in science

• Ludwik Fleck (1935), Thomas Kuhn (1962): more wide-ranging social influences in science
 • Science as a social institution bound by tradition
 • Paradigm / thought style: shared practices, background beliefs, social conventions
 • Relevance of education and scientific training
 • Students are taught what is relevant to their community
 - What is an interesting phenomenon to observe?
 - How to observe correctly?
 - How to interpret the data?
Social dynamics in science

• Kuhn's strong thesis: scientists sharing different paradigms live in different worlds; they perceive different phenomena
Social dynamics in science

• **Kuhn's strong thesis:** scientists sharing different paradigms live in different worlds; they perceive different phenomena

• Picture Puzzle: **shift in perspective**

• Martin Carrier calls this “perceptual theory-ladenness of observation”

Wikimedia Commons: Wenzel Hollar (1607-1677): "Landschafts-Kopf"
Social dynamics in science

• But: *thesis is too strong* – communication still possible as well as revisions of faulty hypotheses

• *Nature's resistance* to unduly interpretation
Social dynamics in science

- But: thesis is too strong – communication still possible as well as revisions of faulty hypotheses
- Nature's resistance to unduly interpretation
- Example: Giovanni Schiaparelli's "Martian canals" 19th century
- Evidence of intelligent beings?
- Problem of translation: canali = channel ≠ canal

Wikimedia Commons: Schiaparelli's map of Mars, compiled over the period 1877-1886
Social dynamics in science

• But: thesis is too strong – communication still possible as well as revisions of faulty hypotheses

• Nature's resistance to unduly interpretation

• Example: Giovanni Schiaparelli's “Martian canals” 19th century

• Evidence of intelligent beings?

• Problem of translation: canali = channel ≠ canal

• Optical illusion: human eye connects faint dots into lines

Wikimedia Commons: Schiaparelli's map of Mars, compiled over the period 1877-1886
Social dynamics in science

• However, social influences are still wide-ranging, why?
Social dynamics in science

• However, social influences are still wide-ranging, why?
• Social dynamics influence choice of problems, methods, theories – in a way science is bound by tradition
 • How to get funding?
 • How to satisfy your reviewer to publish an article?
 • How to get your paper accepted at a conference?
Social dynamics in science

• However, social influences are still wide-ranging, why?
• Social dynamics influence choice of problems, methods, theories – in a way science is bound by tradition
 • How to get funding?
 • How to satisfy your reviewer to publish an article?
 • How to get your paper accepted at a conference?
• Does this narrow the focus of science?
 • Case study by Michael Gordin (2012) on Immanuel Velikovsky (“Worlds in Collision”)
 • Science versus pseudo-science
But this is the topic
for another talk
in philosophy of science....
References

• Chalmers, A. F. *What Is this Thing Called Science?* Open University Press, 1999

• Kosso, P. *Reading the Book of Nature*. Cambridge University Press, 1993

• Ladyman, J. *Understanding Philosophy of Science*. Routledge, 2003