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Computational biomechanics changes our
view on insect head evolution
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Despite large-scale molecular attempts, the relationships of the basal winged

insect lineages dragonflies, mayflies and neopterans, are still unresolved.

Other data sources, such as morphology, suffer from unclear functional

dependencies of the structures considered, which might mislead phylo-

genetic inference. Here, we assess this problem by combining for the first

time biomechanics with phylogenetics using two advanced engineering

techniques, multibody dynamics analysis and finite-element analysis, to

objectively identify functional linkages in insect head structures which have

been used traditionally to argue basal winged insect relationships. With a

biomechanical model of unprecedented detail, we are able to investigate

the mechanics of morphological characters under biologically realistic

load, i.e. biting. We show that a range of head characters, mainly ridges,

endoskeletal elements and joints, are indeed mechanically linked to each

other. An analysis of character state correlation in a morphological data

matrix focused on head characters shows a highly significant correlation

of these mechanically linked structures. Phylogenetic tree reconstruction

under different data exclusion schemes based on the correlation analysis

unambiguously supports a sistergroup relationship of dragonflies and may-

flies. The combination of biomechanics and phylogenetics as it is proposed

here could be a promising approach to assess functional dependencies in

many organisms to increase our understanding of phenotypic evolution.
1. Introduction
The so-called ‘Palaeoptera problem’—the unclear relationships of dragonflies

(Odonata), mayflies (Ephemeroptera) and all other winged insects (Neoptera)—

was identified as one of the few remaining challenges in deep-level insect

systematics [1]. The Palaeoptera problem is of special interest, because it also

relates to the evolution of insect flight which evolved approximately 400 Ma

[2,3]. Owing to the wingless outgroup silverfish, it is unclear how the insect

flight mechanism evolved, therefore, resolving early winged insect relation-

ships would help to further our understanding of the evolution of insect

flight [4].

Previous attempts [5–8], and more recently even large and sophisticated

transcriptomic studies [3] have failed to resolve the Palaeoptera problem unam-

biguously. Other approaches focusing on an increase in the signal-to-noise ratio

within diverse molecular datasets have also produced inconclusive results [9].

One possible solution to assess the Palaeoptera problem is to increase our

understanding of the functional relationships of characters used in phylo-

genetics in an objective way, for example, through biomechanical testing.

Revealing such functional character linkages with regards to phylogeny can

point towards problems with the way morphologies are coded in datasets, in

addition to increasing our general understanding of shape evolution under

mechanical constraints or triggers. In the context of the Palaeoptera problem,

disagreement for the most frequently favoured hypotheses Metapterygota

(Odonata þ Neoptera), and Palaeoptera (Odonata þ Ephemeroptera) is derived

partly from head morphology. Metapterygota are supported by the similar

anterior mandibular ball-and-socket articulation and the loss of mandibular
entioned
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muscles [10,11], while Palaeoptera are supported by the simi-

lar structure of the maxillary lacinia, characters related to the

antennae, and the loss of a labial muscle [12].

Until recently, however, testing objectively for character

linkage in insect head structures was impossible due to a

lack of sufficiently detailed biomechanical models. We have

developed a biomechanical workflow able to handle the

large three-dimensional models needed for analysis [13–15]

and with the advent of synchrotron radiation micro-

computed tomography (SR-mCT, [16,17]) it is now possible

to generate extremely detailed three-dimensional models of

insects [12,18,19] which can be imported into mechanical

simulation software to study the mechanical loading and

strains occurring in insect heads. These strain patterns then

allow an assessment of the degree of mechanical interdepen-

dency within the insect head and thus can serve as an

objective measure of character linkage. Testing these linked

characters for pairwise correlation based on the mechanical

data could reveal the influence of function on phylogeny.
2. Experimental procedures
(a) Synchrotron radiation micro-computed tomography

and segmentation
We built a three-dimensional model of the damselfly Lestes
virens (electronic supplementary material, figure S1) derived

from high-resolution SR-mCT performed at the Deutsches

Elektronen Synchrotron (DESY, Hamburg, Germany). After

fixation in Bouin solution [20] which usually leads to a

shrinkage of soft tissue of approximately 5% [20], the

sample was washed in 70% EthOH, critical point dried

(Model E4850, BioRad), and mounted on beamline-specific

specimen holders. SR-mCT was performed at beamline

DORIS III/BW2 with a monochromatic X-ray beam at

8 keV photon energy, 3.4� magnification and an isotropic

voxel size of 4.7 mm. We designated the voxels (segmenta-

tion) of the reconstructed image stacks to the head capsule,

mandibles and mandibular muscles using the open-source

segmentation software ITK-SNAP [21]. The segmentation

was done using a combination of semi-automatic active

contour segmentation and manual correction of the

semi-automatic segmentation in three orthogonal planes.

Owing to the superior quality of the image stacks, manual

correction of the automatic segmentation was only necessary

at the transitions from head capsule to other chitinous parts

such as antennae.
1

(b) Multibody dynamics modelling
Apart from a detailed three-dimensional geometric model of

head, mandibles and muscles, precise information on muscle

and joint forces is needed to perform a biologically realistic

mechanical analysis (electronic supplementary material,

figures S1 and S2). As it is currently impossible to measure

the joint reaction forces at the mandibles of insects, we used

multibody dynamics analysis (MDA; electronic supplemen-

tary material, figure S5), an engineering tool which is

becoming increasingly popular for the analysis of skull

biomechanics in vertebrates [22–25]. MDA outputs joint

reaction and muscle forces which can subsequently be used

as the input for finite-element analysis (FEA; see below).
RSPB20162412—23/1/17—13:34–Copy Edited by: Not Mentioned
An MDA model was created by importing volumetric

models of the head capsule and mandibles into ADAMS

2013 (MSC Software Corp. USA). The cranium was con-

strained in all degrees of freedom, and spherical anterior

and posterior joints defined between the cranium and the

mandibles so that the mandibles were modelled as movable

parts relative to the cranium. Each muscle was modelled

through a series of strands in order to replicate the pennation

observed in the microCT data. It has been shown that the

potential groundplan mandible muscle equipment of dragon-

flies is composed of seven muscles [12,26], and the chosen

damselfly Lestes virens shows this muscle pattern. The

M. hypopharyngomandibularis was not considered in this

model since it is a small muscle connecting two movable

parts (mandible and a hypopharyngeal sclerite). Therefore,

the influence of this muscle cannot be modelled with

certainty. Consequently, the MDA model contained six

muscles which were represented through a total of 30 strands

on each side of the head (electronic supplementary material,

figure S2).

The maximum intrinsic force of each muscle was esti-

mated as: maximum cross-sectional area times muscle

stress. Each muscle cross-sectional area was determined

from the microCT data by measuring the attachment area at

the head exoskeleton. As most mandibular muscles, and in

particular the main adductor muscle, have a fan-like geo-

metry, measurement at the attachment site represents the most

accurate and repeatable approach to ensure an orientation

of the plane of measurement perpendicular to each region

of the respective muscle, to capture the widest cross-sectional

area and to avoid measurement errors due to potential

shrinkage. Reported insect muscle stress values vary

widely, ranging from 13.7 to 49 N cm22 measured for single

myofibrils [27–29]. Because specific data for this particular

insect is not available, a standard value of 25 N cm22 was

used for the intrinsic muscle stress in this simulation

[30,31]. Results from the simulation of muscle forces are

accordingly as shown in the electronic supplementary

material, figure S5.

Each muscle strand was activated using a dynamic geo-

metric optimization (DGO) method, which calculates the

force within a strand based upon its orientation, in order to

cause the mandible to follow a specific motion (for a detailed

description of the DGO method, see [32]). The DGO was

employed to initially simulate jaw opening to a gap that

was sufficient to enable a food particle to be placed at the

mid-point between the mandibles (electronic supplementary

material, figure S2). During the subsequent closing phase,

the mandibles contacted the food particle and generated a

bite force. The predicted maximum bite force of 0.39 N was

0.08 N higher than the maximum measured bite force

(0.31 N) in a similarly sized different dragonfly species [33],

thus it can be assumed that the MDA model was predicting

physiologically reasonable joint reaction and muscle forces

as was also shown in former sensitivity studies [34,35].

The MDA model is deposited under Dryad accession

number DIO XXXXX Q.
(c) Finite element analysis (FEA)
We used the open-source finite-element solver VOX-FE2

[13] for the analysis of stress and strains in the head.

A graphical user interface developed as a plugin for
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PARAVIEW (v. 4.1.0, www.paraview.org; plugin available

from http://sourceforge.net/projects/vox-fe) was used to

generate the FE mesh and define the muscle forces and

model constraints. The segmented head geometries were

exported from ITK-SNAP and converted in PARAVIEW

into an FE mesh of 9.7 million hexahedral elements by

direct voxel conversion. Joint reaction forces at the anterior

and posterior joints were obtained from the MDA model

simulation. Muscle loads were applied as distributed forces

in the model to reflect their wide attachment sites in vivo
(‘Load case A’; electronic supplementary material, figure

S3b). Reaction forces at the mandible joints, bite force and

muscle forces were applied according to the MDA calcu-

lations. While these forces are exactly those required to

place the head in static equilibrium, rounding errors in the

solution phase means that additional constraints must be

defined on the FE model to prevent any rigid body motion.

Three points were chosen at the edges of occipital foramen

(the opening of the head to the thorax), two at the lateral

sides and one at the dorsal side. All three nodes were

constrained in all directions.

Young’s modulus (E) and Poisson’s ratio (n) of cuticle

where taken from own measurements reported in other

studies [36] and are in agreement with the literature data

(here: E ¼ 7.3 GPa, n ¼ 0.3 [37,38]).

To determine whether strains in particular parts of the

head structure during biting are generated predominantly

by the joint reaction forces or by the muscle forces, separate

analyses were run either with the main mandibular adductor

muscle modelled as a 12 stranded muscle rather than a dis-

tributed force (‘Load case B’; electronic supplementary

material, figure S3c), or without the forces of this muscle

(‘Load case C’; electronic supplementary material, figure

S3d ). Note that load case C is a non-physiological loading

scenario and used solely to investigate the relative impor-

tance of each applied load. The FEA model is deposited

under Dryad accession number DIO XXXXX.

(d) Further analysis of the mechanically linked
characters

To explore the influence of the mechanically linked morpho-

logical characters on current phylogenetic estimates, we

tested them for pairwise character correlations using the ‘fitPa-

gel’ test within the ‘phytools’ package in R [39] which depends

on R packages ‘ape’ [40,41] and ‘geiger’ [42]. The test is based

on the correlation test for discrete data proposed by Pagel [43]

taking into account branch lengths and phylogeny of an inde-

pendent tree inference. To carry out this test, we considered a

morphological data matrix (electronic supplementary material,

table S1) obtained from the literature which is focused on the

analysis of deep-level insect relationships using head struc-

tures [12,44]. For testing against a phylogeny, we considered

the large-scale transcriptomic analysis carried out by Misof

et al. [3] as this constitutes the most up-to-date and rigorous

estimate of diversification times in insects (and therefore of

branch lengths which are required for the Pagel test). The orig-

inal phylogeny [3] was pruned in R to reduce it to the same

number of taxa like in the morphological matrix. Since the

Palaeoptera problem received no support in the Misof et al.
[3] study, we also tested the morphological characters against

the major published alternative hypotheses Metapterygota

and Chiastomyaria by realigning the Misof et al.[3] phylogeny
RSPB20162412—23/1/17—13:34–Copy Edited by: Not Mentioned
accordingly, keeping the branch lengths and the rest of the top-

ology identical. Pagel’s correlation method only works on

binary data [43]. Therefore, we recoded several characters

within the original character matrix to fit this prerequisite.

These are the following characters for our subsample: orien-

tation of head (character 1), areas of origin of antennal

muscles (35) and anterior mandibular joint (70). Refer to the

electronic supplementary material, tables S1 and S2 for a full

overview on the original and the recoded subset matrix.

We subsequently tested those characters which code for

head capsule and mandible structures in the widest sense

(e.g. including also all mandibular and tentorial muscles;

electronic supplementary material, table S2). Owing to this,

the final Pagel test ‘all-versus-all’ resulted in 462 pairwise

tests of 31 head and mandible characters for each hypothesis

(Palaeoptera, Metapterygota and Chiastomyaria). For the

final matrix reduction, we only considered those characters

which showed a highly significant correlation ( p , 0.0005)

in each pairwise test for all three hypotheses (electronic sup-

plementary material, table S3). The results were visualized

using the ‘chordDiagramFromDataFrame’ function in the

‘circlize’ package of the R software environment [45]. To pre-

vent an artificial downweighting of character complexes, we

only excluded one character of each correlated character

pair for the subsequent tree reconstructions. To test the

effect of excluding different parts of character pairs found

in the correlation analysis, we generated four reduced charac-

ter matrices based on the correlative data, one basically

excluding the joint characters and keeping the mandible

muscle characters (which were retrieved as highly intercon-

nected; Matrix 1; electronic supplementary material, dataset

S1). In the second matrix, we excluded the joint characters

and kept the characters related to the tentorium (Matrix 2;

electronic supplementary material, dataset S2), the third

matrix was reduced by the mandible muscle characters

while we kept the joint characters (Matrix 3; electronic sup-

plementary material, dataset S3), while the fourth matrix

was reduced vice versa to the second matrix (Matrix 4;

electronic supplementary material, dataset S4). Finally, the

fifth matrix was reduced by all characters retrieved as

highly significant (electronic supplementary material, dataset

S5). These five morphological data matrices were used for

phylogenetic analysis using maximum parsimony in TNT

[46] and Bayesian inference implemented in MR BAYES 3.2.2.

[47] using established procedures [48,49].
3. Results
The performance of the FEA head models were examined by

considering the first and third principal strain distributions

(11 and 13, respectively), which correspond to the most

tensile and most compressive strains at each point of the

model. 11 and 13 distributions show areas of highest strain

at the mandible joints, which are each composed of an

anterior and posterior ball-and-socket joint in Odonata and

Neoptera (figure 1a,b; electronic supplementary material,

movie S1), and along certain ridges, which are regions of

thickened cuticle (figure 1c–e; electronic supplementary

material, figure S4 and movie S1). In particular, strain (11 þ
13) near the anterior mandibular joints is distributed along

the invagination of the anterior tentorial pits (externally vis-

ible invagination areas of the endoskeleton), the subgenae

http://www.paraview.org
http://sourceforge.net/projects/vox-fe
http://sourceforge.net/projects/vox-fe
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Figure 1. FEA of the head capsule of Lestes virens for a typical load case
during biting. (a) Overview of the outer morphology of an exemplary
damselfly head (Lestes sponsa, Zygoptera, Odonata) to facilitate orientation.
(b) Three-dimensional reconstruction showing mandible joint points (red),
principal mandible motion (yellow) and a part of the main adductor
muscle (orange). Note the mandible motion around a fixed axis of rotation.
Black arrows are the joint reaction force vectors derived from the MDA,
frontolateral view. (c) First principal strain (11) during a typical load case
in frontolateral view, phylogenetically relevant structures are indicated.
(d ) First (11, left) and third principal strain (13, right) in frontal view.
(e) First (11, left) and third principal strain (13, right) in ventral view.
Values are in microstrain (mS), eye and mandibles are shown to facilitate
orientation. Scale bar only valid for (d þ e).
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(a lateral region of the head capsule above the mandibles),

dorsally towards the circumantennal ridge and along the

epistomal ridge, a ridge spanning anteriorly over the head

from one anterior tentorial pit to the other (figure 1c,d ).
RSPB20162412—23/1/17—13:34–Copy Edited by: Not Mentioned
Parts of the cephalic endoskeleton, basically a hard, X-

shaped structure connected to the inside of the head which

is called tentorium in insects, equally show high strain

values mainly towards the anterior mandibular joints and

towards the central part of the tentorium (called the corpo-

tentorium; figure 1e). Specifically, the anterior tentorial

arms, which are two arms of the ‘X’ connected to head,

and the dorsal tentorial arms (connected to the upper parts

of the head) show high strain under biting load.

11 and 13 at the posterior mandibular ball-and-socket

joints are distributed mainly over the subgenal ridge (the

ridge separating the subgena from the rest of the head) and a

ridge originating at the posterior joint running in posterior

direction towards the circumocular ridge (which is an internal

ridge enclosing the eye; figure 1e; electronic supplementary

material, movie S1). Strain levels at the circumocular ridge

are also high despite these structures being located compar-

ably far away from the mandibular joints (figure 1c,d;

electronic supplementary material, figure S4).

To detect whether the observed strain patterns are really

connected to the biting action of the mandibles, we addition-

ally ran artificial loading scenarios by modifying (Load case

‘B’) or excluding (Load case ‘C’) the forces of the mandibular

muscles, which are mainly attached to the backside of the

head and the tentorium, from the simulation.

When the main mandibular adductor was modelled as a

simple 12 stranded muscle (Load case ‘B’) rather than being

distributed over the actual muscle attachment area (Load

case ‘A’) the FEA predicted the same strain at the constraint

points (electronic supplementary material, figure S2), which

is a good indicator that the applied loading is still close to

equilibrium. However, upon closer inspection of the muscle

attachment areas at the back of the head, the strain patterns

are clearly unrealistic, since the strain is highly localized to

the muscle attachment points (electronic supplementary

material, figure S5).

In load case ‘C’, mandibular muscles were excluded from

the analysis so that only the joint reaction loading forces were

applied to the model. Again this resulted in similar overall

strain patterns for the structures investigated in our study,

i.e. those used as morphological characters. But, as expected,

notable differences were observed in the strain distribution at

the back of the head near the occipital foramen where the

constraints were applied in order to prevent free body

movement (electronic supplementary material, figure S5). It

is important to stress the fact that both load cases (B þ C),

but especially case ‘C’ without muscle forces, constitute

biologically unrealistic boundary conditions for the FE

analyses. A number of studies showed that unrealistic force

simulation can even lead to different strain patterns thus

affecting the conclusions drawn [34,35,50,51]. Based on

these results, we conclude that the conspicuous strain pattern

seen in load case A is generated primarily by the forces acting

at the mandible joints, i.e. the biting motion of the mandibles.

To explore whether the mechanical linkage (expressed

as strain patterns) between the mentioned head capsule

structures is detectable within data used for phylogenetic

reconstruction, we investigated a character matrix focused

on head characters for character correlation based on our

mechanical results (see Experimental procedures). In total,

272 (19.6%) of the 1386 tested head character pair combi-

nations show a highly significant correlation to each

other (figure 2). Among these combinations, head ridges,
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in particular the subgenal, the occipital and the epistomal

ridge, the endoskeleton, both mandibular joints and a

number of mandibular muscles (figure 2c) show a high

degree of correlation with other head characters or to each

other. Closer examination of the detailed dependencies

(figure 2d; electronic supplementary material, figure S6)

reveals that the presence of a subgenal and an epistomal

ridge each is correlated with the presence of an anterior

joint. In turn, the anterior mandibular joint shows corre-

lations with the configuration of a number of endoskeletal

characters and the presence of several intramandibular

muscles. These muscles are in turn correlated to each other.

We used the results from this correlation test of ‘all-

versus-all’ characters for a reduction of the largest published

character matrix for insect heads [12,44]. In each of the result-

ing four scenarios of character exclusion, we account for

different mechanically linked character complexes under the

premise to prevent double-downweighting due to exclusion

of character pairs. Refer to the material and methods

section and electronic supplementary material, appendix SI

electronic supplementary material, table S1–S3 and dataset

S1–S5 for further details on character exclusion. All trees

based on the different reduced datasets unambiguously

support the Palaeoptera hypothesis, a sistergroup relationship

of dragonflies and mayflies (figure 3).
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4. Discussion
Using a highly detailed (approx. 10 M elements) finite-

element model of an approximately 3 mm wide insect head

allowed the visualization of the mechanical relationship of

certain head structures under load for the first time.

The analysis shows that the strain arising in the head from

biting is supported by the subgenal, epistomal, circumoccular

and occipital ridges and the anterior and dorsal tentorial

arms in the anterior part of the endoskeleton (figure 1).

Closer inspection furthermore reveals that the proximity of

the subgenal ridge with the circumoccular ridge supports

the strain generated by the two ball-and-socket mandibular

joints (figure 1). Combinations of these morphological struc-

tures have been used previously to infer the relationships of

basal winged insects [10–12,44], but this analysis now clearly

establishes that they are in fact mechanically connected to

each other. It appears that the evolution of a fixed axis of

rotation of the mandible, as it is present in basal winged

insects except mayflies, also selected for a strong subgenal

and epistomal ridge and stronger endoskeletal arms, and

coincided with the trend of a loss or reduction of the small

tentoriomandibular muscles in winged insects [52]. Evidence

from the present (table in electronic supplementary material,

figure S2) and other studies [33,53] indicates that the small
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Figure 3. Phylogenetic reconstruction using different exclusion scenarios of
mechanically correlated characters. Support values are indicated at the
nodes. First node value: Bremer support; second node value: posterior
probabilities.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

20162412

6316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

ARTICLE IN PRESS
tentoriomandibular muscles contribute less than 3–6% of the

force of the main adductor muscle (additionally with a sub-

optimal attachment geometry) in dragonflies and this is

probably also the case for other winged insects where

lineage-dependent (electronic supplementary material, table

S1) remnants of these muscles exist with a similar geometrical

configuration as in dragonflies [52]. Apparently, the large

mandibular adductor muscle M. craniomanibularis internus

provides the main force proportion which is in agreement

with the large head volume this muscle occupies in those

insects which use their mandibles for feeding [54,55], secur-

ing mating rights [56,57] or other functions where high or

quickly released bite forces are advantageous. In primary

wingless insects such as silverfish and bristletails, the tentor-

iomandibular muscles are well developed which is probably

correlated with the different configuration of the mandible

joints and more degrees of freedom of the mandibular

movement in these lineages.

The structural changes in ridge and joint configuration are

believed to result in stronger biting capabilities in Odonata

and Neoptera, and were formerly used as a strong argument

in favour of the Metapterygota (Odonata þ Neoptera)

hypothesis [10,11,58]. These statements have thus far not

been investigated with an objective testing scheme focused

on the mechanical linkage of morphological characters,

since it proved to be extremely difficult to experimentally

investigate the mechanics of insect heads under load due to

their small size. MicroCT datasets combined with the meth-

odological approach presented here, clearly show functional

linkage in joint and ridge structures in these winged insects.

Indeed, the uniformity of structures associated with the man-

dibular joint, the main mandibular muscles and certain

ridges, such as the subgenal ridge, across the winged insects

considered here is striking and the correlation analysis of the

available morphological data matrix supports that this

uniformity of character states generates biasing phylogenetic

signal (figure 2). Other recent datasets additionally indicate

that traditional mandibular performance measures, such

as the mechanical advantage [59–61], are similar across

distantly related lineages such as dragonflies [36] and cock-

roaches [62] despite their varying food preferences.

However, many more species from different lineages need

to be studied to corroborate this idea of similar mechanical

performance despite varying food preferences.
RSPB20162412—23/1/17—13:35–Copy Edited by: Not Mentioned
Excluding subsets of the above-mentioned problematic

characters according to the found character correlations

supports the Palaeoptera hypothesis (figure 3). The ancestral

mode of insect flight thus most probably was an indirect

system with the flight muscles attached to the thorax as

shown by mayflies and all other winged insects except dra-

gonflies. The direct flight mechanism accordingly is likely a

derived condition which most probably evolved only once

in the common ancestor of dragonflies. Supporting characters

(i.e. synapomorphies) for the Palaeoptera clade are the length

ratios of the antennal segments, the absence of antennal circu-

latory organs, the presence of dentisetae at the maxillae and

the absence of a muscle in the labium. Other studies focused

on a mathematical detection of convergence equally support

these characters as synapomorphies [63].

(a) Biomechanics allows for the objective study
of character linkage in insects

Apart from insect heads, character linkage has also been

assessed in a range of plant [64–66] and bird character com-

plexes [67,68]. While the three earlier studies used ‘classical’

character mapping on a molecular phylogeny, the other

two formally assessed potential confounding signals within

the character state distribution, an approach also used for

insect heads [63]. The problematic issue mentioned in all of

these studies is the uncertain functional relationship between

characters since the methods used only test for compositional

bias within a character state distribution [67] and not directly

for functional interdependencies.

Another potential drawback of mathematical concerted

convergence testing is that it is not possible to reveal the

influence of retained (plesiomorphic) character states that

do not undergo adaptive character state changes [69–71].

Mathematical concerted convergence analysis only tests for

conspicuous patterns of character state changes. However,

plesiomorphic characters might also influence state changes

in other characters [72,73]. In this context, biomechanical test-

ing of character interdependency is an approach to better

understand both directional (resulting in autapomorphies)

and stabilizing (resulting in maintained plesiomorphies)

elements of selection pressures acting on the mechanical evol-

ution of structures [74]. In our case, the configuration of the

anterior tentorial pit (character 50 in electronic supplemen-

tary material, table S4), the presence of an anterior

mandibular joint (char 68), and the configuration of the pos-

terior mandibular joint (char 71) may constitute such

plesiomorphic characters which are, according to our data,

mechanically interdependent on each other and thus show

concerted plesiomorphy [64]. Concerted plesiomorphy—the

retention of ancestral states in groups of characters—is a

term introduced as the essential effect underlying phylo-

genetic niche conservatism [75–78]. Thus, with a

biomechanical testing of character interdependency we

should also be able to better explain the morphological

basis of phylogenetic niche conservatism [77].

The biomechanical assessment of convergence is still at its

infancy. There are only a handful of studies simulating

the mechanical behaviour of insect body parts [56,57,79]. By

contrast, the mechanical analysis of vertebrate body parts

is at an advanced stage with many studies using FEA

[35,80–82] and to a minor extent the combination of FEA

with MDA [15,34,83,84]. In fact biomechanical studies in
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vertebrates altered our understanding of the evolution in

seemingly well-studied groups [82,85]. The crucial factor in

our view is to use approaches resulting in objective

parameters for assessment of character evolution. Combining

biomechanical simulation techniques with morphological

phylogenetics is certainly a promising avenue to better

understand the phenotypic evolution of single traits, as well

as whole character complexes under mechanical constraints

in a diverse range of lifeforms.
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34. Gröning F, Jones MEH, Curtis N, Herrel A, O’Higgins
P, Evans SE, Fagan MJ. 2013 The importance of
accurate muscle modelling for biomechanical
analyses: a case study with a lizard skull. J. R. Soc.
Interface 10, 20130216. (doi:10.1098/rsif.2013.0216)
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