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We report a synchrotron in situ diffraction experiment exploring stress evolution during compression of inter-
penetrating-phase nanocomposites based on nanoporous gold and polymer. While previous experiments provid-
ed indirect indication of local flow conditions based on macroscopic effective flow stress and micromechanics
models such as Gibson-Ashby scaling law, the lattice parameter data of our experiment access the flow stress di-
rectly. At small structure size we find excellent agreement with previous reports, supporting the match between
material and model of those studies. Yet, deviations at larger structure size suggest that coarsening generates de-
fects in metal network structure that are ignored by standard models.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

The micro- and nanostructure of nanoporous gold (NPG) prepared
by dealloying can be described as a polycrystal with a grain size of 50—
200 pm, where each grain consists of interconnected ligaments of char-
acteristic size L = 20-150 nm [1-3]. All ligaments in a grain share a
common crystal lattice. Owing to their small size, along with the trend
of smaller is stronger [4-7], the ligaments exhibit a high local strength.
In order to exploit this strength in an engineering material, composites
have been proposed which achieve interesting values of strength and
ductility; they are made by infiltration of NPG with polymers. First
results showed a distinct increase of yield stress and ductility for
NPG which was infiltrated with epoxy or polyurethane [8,9]. A
micromechanic iso-strain model predicts the stress in the strong Au
phase in good agreement with independent observations of the yielding
of porous metal bodies without polymer [9,10]. Yet, a direct confirma-
tion of the acting stress and of the local yield strength is desirable.
Here, we report results of an in situ synchrotron experiment measuring
the stress in the ligaments directly from the Au lattice parameters dur-
ing plastic flow.

A considerable interest has centred on NPG as a model system for
small-scale plasticity, and this adds relevance to our study. Systematic
variations of strength with ligament size have been reported by several
groups, yet the magnitude of the strength and the size exponent are
controversial. The deviations may connect to the quite different experi-
mental approaches, micropillar- [6,11] and nanoindentation testing [1,
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11-14] versus classic mm-scale compression [2,9,10] or even tension
[15] tests. Furthermore, the translation from macroscopic to microscop-
ic behavior almost universally rests on the Gibson-Ashby scaling equa-
tions [16] for foams. These equations do not strictly apply to the high
solid fraction at hand, and they ignore possible defects in the network
structure that may take the form of disconnected ligaments [10,17].
Our direct investigation of the acting flow stress is free of these uncer-
tainties and may thus verify the indirect analysis in the existing
literature.

Cylindrical samples of NPG, 1.1 mm in diameter and 1.6 mm long,
were prepared by following the procedures in Ref. [9]. The master
alloy Au,sAg7s was prepared by arc-melting, homogenized by annealing
for 100 h at 850 °C, shaped by wire drawing and cutting with a wire saw
and finally annealed in vacuum during 3 h at 650 °C for recovery.
Dealloying at ambient temperature used 1 M HCIO,4 prepared from
HCIO,4 (Suprapur R, Merck) and ultrapure water (18.2 M cm) at poten-
tial of 0.75 V versus an Ag/AgCl pseudo-reference electrode in the same
solution (+0.202 V vs. Ag/AgCl in saturated KCl). After the current de-
creased to below 10 pA, an increase of the applied potential to 0.85 V
for 3 h led to a completion of dealloying. Samples were rinsed in ultra-
pure water and dried in vacuum for 3 days. Subsequent annealing at
300 °C in air for or 2 or 30 min served to increase the mean ligament
size. The composites were prepared in a vacuum impregnation unit
(CitoVaca, Struers). Molds containing dry NPG were evacuated and
then filled in situ with a mixture of bisphenol F epoxy resin and amine
hardener, see Ref. [9] for details. For brevity, we designate the used
epoxy resin as BE. The molds were then heated to 60 °C for 20 min in
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air to accelerate curing. Surplus polymer was subsequently removed by
lifting the sample out of the polymer and blotting with a tissue. A second
heating at 60 °C for 48 h completed the curing.

A scanning electron microscope (SEM; LEO 1530 Gemini) operated
at 10 kV was used for characterizing the microstructure. Polished sur-
faces of the composite sample for SEM analysis were prepared by cut-
ting and wet grinding. At least 20 measurements of the smallest
projected ligament diameter were taken on the as-polished cross-sec-
tional surface. The results are 60 £ 12 nm for our sample with 2 min an-
nealing and 200 4 25 nm for the one with 30 min annealing. We refer to
those two samples by NCg and NCyqo, respectively. Solid fractions, ¢, of
samples made under identical conditions have been explored previous-
ly [8], and specifically © = 0.29 and 0.42 for sample NCgo and NCpqo,
respectively.

In situ X-ray diffraction investigated one sample for each of the two
ligament sizes. We used the EH1 end station of the beam line P07 at
PETRA III, with an X-ray energy E = 87.4 keV [18]. A Perkin Elmer
1621 flat panel detector, 1538 mm distant from the samples, registered
the 2D-scattering pattern in situ during the compression tests. The beam
size on the sample was 0.4 x 0.4 mm? and the exposure time was 2 s.
Fig. 1(A) shows the geometry of the diffraction. The initial reference
state was an external stress of 20 MPa in order to discard artefacts
from sample movement during the initial loading.

The mechanical tests used an in situ compression device equipped
with a load cell. Strain was determined from the load surface displace-
ment. Constant engineering strain rates of 1.5 x 10~ % s~ and 1.9 x
104 s~ were applied for specimens NCgo and NC,qo, respectively.
The true compression stress, o, was calculated under the assumption

Detector

Specimen

Fig. 1. (A) Schematic illustration of diffraction geometry, showing cylindrical sample
(golden) aligned with Cartesian laboratory coordinates ¥, y, z. Grey: scattering plane.
Incoming beam (grey, from left) is diffracted by scattering angle 26, with scattering
vector (blue) inclined by tilt angle ¢ = 6 to the load axis, z. Diffracted beam (grey) and
scattering vector have azimuthal angle (. Also indicated is the angle vy, as used in Eq.
(2). (B) Grey-scale coded diffraction pattern on the 2D detector. Innermost ring is the
Au(111) reflection. Specimen NCgo in initial state (left) and after macroscopic
compression strain of 8.5% (right).

of constant volume, o;=F(1— |&,|)/Ao where Ay is the initial cross
section and F, g, are the load and the plastic strain.

In the diffraction geometry of this in situ experiment, the reflections
at the azimuthal pattern angles 3 = 90°, 270° belong to lattice plane
normal tilted against the loading axis z by an angle  with ¢y = + 6
(6 = Bragg angle) and coplanar with the y-z plane of the specimen co-
ordinates (c.f. Fig. 1(A)). In a first evaluation step powder diffraction
patterns I(6) were obtained by integration of the intensities over azi-
muthal sectors at 3 £ 15°. The elastic strain €,,() in the direction of
the reflection lattice plane normal is given by [19]

d(p)—do(B) _ sindo(B) _,
do®)  sind(p)

& (B) = )

where dy and d are the lattice spacings at a reference state and during
the compression test, respectively. The Bragg angles, 6y, 6, were obtain-
ed as maxima positions by fitting the sector-averaged diffraction data
with Pseudo Voigt functions. Each of the ¢, with ¢ = {hkl} = {111},
{200}, {220}, {113} and {222} was evaluated as a function of the external
stress and for each of the two azimuthal directions p = 90°, 270°.

The evaluation of the local stresses used the assumptions of 1) ran-
dom texture and 2) applicability of Hooke's law with an averaging of
the elastic constants after Reuss, see below, for the elastomechanics of
the metal. We further assume that the local elastic strain state in speci-
men coordinates is completely specified by the transverse strain com-
pONENts &y, &y, and the component, €., in the load direction. It then
follows that the local strain, g@"‘, in the direction of the scattering vector
(hkl) is [19]

€l° = £y, sin’eos®y + &y,sin*sin®y + &2 cost 2)

Here {s and 1y are the polar and azimuthal angles, in the laboratory
coordinates, of the direction (hkl) (see Fig. 1(A)).

The local stress state can be assumed uniaxial in z-direction. Then,
for each crystallite contributing to a reflection in the direction p =
90°, 270° (i.e. Yy = 90°), Hooke's law implies

el (y = 90°) = (Sz3sin2d1 + S33c052¢) Oz 3)

Where the S; are entries of the compliance tensor, in laboratory co-
ordinates, of that crystallite. For an fcc polycrystal the stress o5 after
Reuss can then be obtained from the mean of the local elastic strains, €,
by an averaging of the elastic compliances over all possible transforma-
tions with «({hkl),z) =

8B =90°,270°) = ((8)535in" + (8)33c052) et @)

The mean values of the tensors, C, of the elastic compliance and the
elastic stiffness satisfy [20]

(Cor) = o 121 0Qup ) Quar(@)CT; (5)

(5)=(c™) (6)

Here Voigt's notation is used for the elastic stiffness coefficient, with
the Cartesian axis labelled by indices K,M in crystal coordinates and P,T
in specimen coordinates, respectively. The sum convention applies.
Q(w) is the tensor which transforms the elastic single crystal constants
G/t in base crystal coordinates to all systems whose z-axes lie on a cone
with aperture angle 20 = 2is around the lattice plane normal {hk[).
Values for Cy1, Ci2, C44 for gold were taken from Ref. [21].

Fig. 1(B) shows examples of scattering patterns from sample NCgo
before and during compression arising from the diffraction by the
Gold phase. The diffraction rings have a noticeable granularity, which
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results from the limited number of diffracting crystals. Intensity maxima
from individual crystals are spread out in azimuthal direction, with a
variance of almost zero, which indicates mosaic spread in the crystals.
After 8.5% strain, the spread is increased and now amounts to +3°.
This value is in the same range as observed for the orientation splitting
of grains in a bulk polycrystalline aggregate at moderate plastic strains
[22].

Fig. 2A shows the experimental effective macroscopic stress-strain
graphs of the in situ experiments. The macroscopic yield stresses are
seen to differ, 100 MPa for specimen NCgg and 76 MPa for NCypq. The
stresses at 4% plastic strain are considered here as representative of a
state, where both constituents have reached the plastic deformation.
This plastic flow criterion is met at 114 MPa and 94 MPa for specimens
NCeo and NCyqg, respectively.

Fig. 2B shows four examples of the X-ray strains &,,(3 =90°,270°) for
either one of the two specimens, plotted versus the macroscopic stress.
All X-ray strains are referred to the projected lattice parameters at zero
load in the respective orientation. Graphs such as Fig. 2B were found ini-
tially linear and in close but not perfect agreement for opposing (3.

After the onset of plasticity, a splitting of the strain-stress graphs of
the azimuthal angles 3 = 90°, 270 was observed for almost all reflec-
tions. This can be explained as follows: For a polycrystal with random
texture and a statistically representative number of irradiated crystal-
lites in the irradiated volume both cases 3 = 90°, 270° should be equiv-
alent. However this is not the case for the investigated specimens,
where the number of crystallites in the irradiated volume is below
100 and the number of crystallites contributing to any specific reflection
{hkl} even lower. Since each reflection from a polycrystal under stress is
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Fig. 2. Stress-strain relations from in situ compression tests of two composites with
ligament sizes 60 nm (NCgp) and 200 nm (NCyqp). A True effective macroscopic
compression stress versus engineering strain. Stresses at 4% plastic strain are denoted by
horizontal lines. B Lattice strains &, for the directions (113) (for NCs) and (200) (for
NCyq0) evaluated from the azimuthal directions 3 = 90° and 270°.

influenced by the local stress state of diffraction volume, statistical scat-
ter arises from averaging over few grains from different ensembles. Fur-
ther variation results from the strong absorption in Au, which leads to
different absorption for different x-ray pathways through the sample.
In the interest of a representative analysis, we restrict the discussion
to results obtained by averaging over opposed azimuthal angles.

From each single value of the X-ray strain the Reuss average of the
microscopic stress was calculated after Eqs. (2)-(6). The resulting
Reuss micro- vs. macrostress curves for the reflections {200}, {220},
{110} and {222} are shown in Fig. 3. The stress curves exhibit a good
consistency for all measured reflections. This supports the Reuss averag-
ing as well as the microscopic stress values of our study. Using again the
4% strain state as representative for stable plastic flow of both constitu-
ents in the composite, we find flow stresses in the metal phase of 0@ =
193 4 11 MPa for NCgo and 0% = 169 + 16 MPa for NCygo.

The key findings of our study are values for the strength or, more ap-
propriately, the flow stresses at an early stage of the plastic deformation.
The macroscopic behavior, as measured by the load cell, is representa-
tive of averages of the stresses in the phases of the composite. In addi-
tion, the lattice parameter data directly measure averages of the local
stresses in the nanoscale metal ligaments. Since the experiment probes
plastic flow in situ, the stresses directly monitor the flow stress of a
nanoscale metal. We now discuss the implications for the mechanical
behavior of the metal and for the load partitioning in the composite.

Reference [10] has compiled previous results for the local strength at
the ligament level derived from tests on mm-scale NPG or NPG-based
composites. Fig. 4 compares our results to that earlier data. The most ob-
vious observation is that the local flow stress of our 60 nm material
agrees precisely with the previous reports for NPG and for composite
samples. This is remarkable in particular since the earlier NPG data
was partly inferred from macroscopic tests, assuming that the Gibson
Ashby scaling relation holds. Recall that the present data is directly mea-
sured from the lattice parameters, without assumptions on effective
stress averaging in a network that underlies the scaling relation. The
agreement therefore supports the earlier analysis and specifically its as-
sumption that the Gibson Ashby relation is in fact applicable to NPG.
This would seem to argue against an anomalously low connectivity in
the network, which has been speculated upon [10,17] in view of the
rather low yield strength.

Focusing first on the sample with the smallest ligament size, NCg,
we emphasize the excellent agreement of our result for the local
strength with the previous data. This means that the local flow stress
in the metal has now been consistently measured by three independent
approaches, emphasizing the consistency of the underlying pictures,
and specifically supporting the high-strength of the metal ligaments at
small size, similar to what has been found for isolated nano-objects.

With attention to Fig. 4 we note that, contrary to the 60 nm sample,
the one with 200 nm ligament size is considerably stronger than in-
ferred from the earlier experiments on pure NPG. This confirms a
trend that already emerged in the earlier results from a model based
evaluation of macroscopic flow stress data of NPG-based composites
[9]. By comparing our NCyoo data to the much lesser strength inferred
from combining NPG data with Gibson Ashby scaling, one is lead to
speculate on a failure of the Gibson Ashby model to describe the behav-
ior of the NPG (in earlier publications) at larger L. This would seem to
contradict our above conclusions. Yet, the observation is consistent
with the proposition, in Ref. [10], that ligament growth during anneal-
ing (here from 60 to 200 nm) may reduce the scaled network connectiv-
ity, similar to what happens during the percolation-to-cluster transition
in late-stage spinodal coarsening. With a poorly connected ligament
network in the 200 nm sample, the Gibson Ashby relations would be
less suitable for describing the load distribution in the metal network.

Owing to its microstructural heterogeneity, such as disorder in the
network structure and a distribution of ligament cross-sections, NPG
under load exhibits a wide distribution of local stresses [23,24]. As is
common in heterogeneous media, the experiment then probes an
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Fig. 3. Microscopic stresses in the gold crystal lattice vs. true compression stresses for specimens NCqgo (A) and NCyqo (B). Curves are best nonlinear regression fits to point clouds of Reuss
stresses from four different reflections. Symbols: microscopic stress at 4% macroscopic plastic strain.

effective yield stress which differs from the local stress in that part of the
microstructure where plasticity is initiated. Stress distribution is
accounted for by models, such as the Gibson-Ashby approach, where
networks of struts exhibit a mixed stress state, compression/tension as
well as bending. Bending has been identified as the dominant deforma-
tion mode of the ligaments in NPG [25]. This is of relevance for deforma-
tion studies on NPG in general, and specifically for in situ diffraction
studies under load, since the mean lattice parameter is poorly sensitive
to bending. Yet, infiltrating the porous metal with a polymer changes
the plastic flow field by enhancing the tension/compression component
[8,9], which is reflected in the diffraction data. Thus, the lattice parame-
ter variations in our study of nanocomposites will indeed correlate with
the local yield stress. This notion is supported by our finding of a good
agreement between the diffraction-based yield stress and data inferred
from compression tests.

In our experiments the lattice-parameter based data for the local
stress in the metal phase is supplemented by data for the effective mac-
roscopic stress in the composite, provided by a load cell. We now discuss
the implications for the partitioning of the stresses between metal- and
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Fig. 4. Local flow stress, 0", at 4% macroscopic plastic strain in the metal phase versus
ligament size L. Comparison of direct, diffraction derived data (colored hexagons) to
literature values inferred from experimental macroscopic flow stress and
micromechanical theory linking macroscopic and microscopic stresses. Published data
for similar, nanoporous gold- (NPG-) type materials are from the compilation in Ref.
[10]: stars, NPG analyzed with the Gibson-Ashby scaling law. Large grey symbols, NPG-
based composite materials with the polymers RIM, BE, PU, evaluated with the linear
mixing rule of Ref. [9]. Line: 0*«L~1, see Ref. [10].

polymer-phase of the composites. The partition of stresses must satisfy
[26]

O-Zmzacro =@ O-gréetal + (] _(P)Ggglymer (7)

where the 0, are the stresses in load direction, averaged either macro-
scopically or in each of the two components. For the present materials,
the stress of the polymer phase at 4% plastic strain, as calculated after
Eq. 7, amounts to 81 + 5 MPa and 40 + 11 MPa for the specimens
NCeo and NCyp respectively. This difference may suggest that the flow
stress of the polymer increases with decreasing pore size.

To summarize, this work studied the stress distribution in an inter-
penetrating-phase NPG-based nanocomposite material by in situ x-ray
diffraction during compressive plastic flow. At small structure size we
find excellent agreement with previous reports, supporting the match
between material and model of those studies. Yet, deviations at larger
structure size are compatible with the suggestion from previous work,
that coarsening changes the connectivity in the metal network struc-
ture, an effect which is ignored by standard models.
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