Search for leptophobic Z' bosons decaying into four-lepton final states in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A search for heavy narrow resonances decaying into four-lepton final states from cascade decays of a Z' boson has been performed using proton-proton collision data at $\sqrt{s} = 8$ TeV collected by the CMS experiment, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. No excess of events over the standard model background expectation is observed. Upper limits for a benchmark model on the product of cross section and branching fraction for the production of these heavy narrow resonances are presented. The limit excludes leptophobic Z' bosons with masses below 2.5 TeV within the benchmark model. This is the first result to constrain a leptophobic Z' resonance in the four-lepton channel.
1 Introduction

Extensions of the standard model (SM) that incorporate one or more extra Abelian gauge groups predict the existence of one or more neutral gauge bosons [1, 2]. These occur naturally in most grand unified theories. Heavy neutral bosons are also predicted in models with extra spatial dimensions [3-4], e.g. Randall–Sundrum models [5-6], where these resonances may arise from Kaluza–Klein excitations of a graviton. Searches for heavy neutral resonances at hadron colliders, and most recently at the CERN LHC, are typically performed using the dijet [7-10], dilepton [11-14] diphoton [15-17], and $t \bar{t}$ final states. The dilepton channel provides a clean signal compared with the dijet and $t \bar{t}$ channels. However, in leptophobic Z' models, where the Z' does not couple to SM leptons, the dilepton limits are not applicable. Although searches based on the dijet final state remain applicable, they suffer from large dijet backgrounds produced by quantum chromodynamics (QCD) subprocesses. We extend the search for heavy neutral vector bosons by considering possible Z' decays into new particles predicted by various theoretical extensions of the SM.

In this Letter, we report on a search for a leptophobic Z' resonance that decays into four leptons via cascade decays as described in Ref. [22]. In this model, the Z' is coupled to quark pairs but not to lepton pairs, and can be produced with a large cross section at the LHC. These non-standard Z' resonances also decay to pairs of new scalar bosons (ϕ) each of which subsequently decays to pairs of leptons ($\phi \rightarrow \ell \ell'$, where ℓ and $\ell' = e$ or μ). Figure 1 shows the leading-order Feynman diagram for the production of four-lepton final states via a Z' resonance at a hadron collider. The reconstruction of the ϕ bosons in the dilepton channel is inefficient because the two daughter leptons are highly collimated. In the following sections we describe a technique to increase the selection efficiency.

The analysis is a search for heavy narrow resonances decaying into four isolated final state leptons. The benchmark model [22] assumes ($\Gamma / M < 1\%$), corresponding to a natural width of the Z' resonance that is much smaller than the detector resolution. The following final states are considered: $\mu\mu\mu\mu$, $\mu\mu\mu e$, $\mu\mu e e$, and $\mu e e e$. In particular, $\mu\mu\mu e$, $\mu\mu e e$ and $\mu e e e$ channels are included to allow for the possibility of lepton flavor violation (LFV) [23-25] in the decays of the new scalar bosons. In this Letter, we set limits on the product of the cross section and branching fraction for production and decay to four leptons, and interpret the results in the context of the benchmark model described above [22].
2 The CMS detector and signal simulation

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Each detector is composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

Muons are measured in the range $|\eta| < 2.4$ with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative p_T resolution for muons with $20 < p_T < 100$ GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The p_T resolution in the barrel is better than 10% for muons with p_T up to 1 TeV [26].

The ECAL consists of 75,848 crystals that provide coverage in pseudorapidity $|\eta| < 1.48$ in a barrel region (EB) and $1.48 < |\eta| < 3.00$ in two endcap regions (EE). The electron momentum is estimated by combining the energy measurement in the ECAL with the momentum measurement in the tracker. The momentum resolution for electrons with transverse momentum $p_T \approx 45$ GeV from $Z \to e^+e^-$ decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for showering electrons in the endcaps [27].

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [28].

3 The Monte Carlo samples

The Monte Carlo (MC) samples for the benchmark model are produced using the C\textsc{alchep} 3.4.1 generator [29] interfaced with \textsc{pythia} 6.4.24 [30]. These samples are divided into five decay channels ($\mu\mu\mu\mu$, $\mu\mu\mu\epsilon$, $\mu\mu\epsilon\epsilon$, $\mu\epsilon\epsilon\epsilon$, $\epsilon\epsilon\epsilon\epsilon$) for different Z' boson masses ($m_{Z'}$) ranging from 250 to 3000 GeV in increments of 250 GeV. The benchmark model assumes that new particles other than Z' and ϕ are heavy enough not to affect the production and decay of the Z' boson.

Signal MC samples are produced with six different values of the ϕ mass (m_ϕ), with $m_\phi = 50$ GeV used as the reference mass value in the interpretation of the results. An important feature of this analysis is the presence of a “boosted signature” associated with the collimation of the two leptons coming from the same parent particle and resulting from the large difference between $m_{Z'}$ and m_ϕ. In addition, samples are generated with m_ϕ masses of 5, 10, 20, 30 and 40% of the $m_{Z'}$, for which, in most cases, the contribution from the boosted signature is less important. The product of the leading order (LO) signal cross section and branching fraction in each channel varies with $m_{Z'}$ (from 250 to 3000 GeV) as follows: $\mu\mu\mu\mu$ and $\epsilon\epsilon\epsilon\epsilon$ from 0.8 pb to 3.0×10^{-6} pb, $\mu\epsilon\epsilon\epsilon$ from 12.3 pb to 4.7×10^{-5} pb, and $\mu\mu\mu\epsilon$ and $\mu\mu\epsilon\epsilon$ from 3.1 pb to 1.2×10^{-5} pb. The branching fraction of $\phi \to \ell\ell'$ is set to 1 and therefore only the leptonic decay channels are considered. These signal MC samples are used to optimize event selection, evaluate signal efficiencies and calculate exclusion limits.

The dominant SM background is the production of ZZ decaying into four leptons. The $q\bar{q}$-induced ZZ production is generated using the \textsc{pythia} event generator and the gg-induced production using the \textsc{gg2zz} program [31]. Additional backgrounds from diboson production (WW and WZ) are generated with \textsc{pythia}, and from top quark production ($t\bar{t}$, tW, and tW) are generated with \textsc{powheg} 1.0 [32]. Other processes, such as $t\bar{t}Z$ and triboson produc-
tion (WWγ, WWZ, WZZ, and ZZZ), are generated with MADGRAPH 5.1.3.30, rescaled by the next-to-leading order (NLO) K-factors [33]. Simulated event samples are normalized using the integrated luminosity and higher order theoretical cross sections: next-to-next-to-leading order for tt [34] and NLO for ZZ [35] and the other backgrounds.

The MC samples are generated using the CTEQ6L [36] set of parton distribution functions (PDFs) and the PYTHIA ZZ* tune [37, 38] in order to model the proton structure and the underlying event. The samples are then processed with the full CMS detector simulation software, based on GEANT4 [39, 40], which includes trigger simulation and event reconstruction.

4 Event selection

The 2012 data set of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, is used for the analysis. Data are collected with lepton triggers with various p_T thresholds. The trigger used for the muon-enriched channels (\(\mu\mu\mu\mu, \mu\mu\mu\)) requires the presence of at least one muon candidate with $p_T > 40$ GeV and $|\eta| < 2.1$. The trigger used for the electron-enriched channels (\(\mu\mu\epsilon\epsilon, \epsilon\epsilon\epsilon\)) requires two clusters of energy deposits in the ECAL with transverse energy $E_T > 33$ GeV each. For the $\mu\mu\epsilon\epsilon$ channel, the trigger requires $p_T > 22$ GeV for both the muon and the electron.

In the subsequent analysis, events are required to contain a reconstructed primary vertex (PV) with at least four associated tracks, and its r (z) coordinates are required to be within 2 (24) cm of the nominal interaction point. The PV is defined as the vertex with the highest sum of p_T^2 for the associated tracks. We select the events with four leptons in the final state, where the leptons are identified by the selection criteria described below. The two leading leptons are required to have $p_T > 45$ GeV and the two subleading leptons to have $p_T > 30$ GeV. All four leptons must satisfy $|\eta| < 2.4$. No charge requirement is applied to the lepton selection.

Muon candidates are reconstructed by a combined fit including hits in both tracker and muon detectors (“global muons”) [26]. Global muons are required to pass the following criteria: at least one pixel detector hit, at least six strip tracker layers with hits, at least one muon chamber hit, at least two muon detector planes with muon segments, a transverse impact parameter of the tracker track $|d_{xy}| < 0.2$ cm with respect to the PV, a longitudinal distance of the tracker track $|d_z| < 0.5$ cm with respect to the PV, and $\delta p_T/p_T < 0.3$ where δp_T is the uncertainty in the measured p_T of the track. All muon candidates are required to be isolated. A muon is considered isolated if the scalar p_T sum of all tracks, excluding the identified muon candidates, within a cone of $\Delta R < 0.3$ around the muon does not exceed 10% of the muon p_T, where $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$. We remove the contribution of the second lepton candidate if it is within a cone of $\Delta R < 0.3$.

An electron candidate is identified by matching a cluster in the ECAL to a track in the silicon tracker [27]. Identification criteria are applied to suppress jets misidentified as electrons. Electrons are required to pass the following criteria: the profile of energy deposition in the ECAL should be consistent with an electron, the sum of HCAL energy deposits behind the ECAL cluster should be less than 10% of the associated ECAL deposit, the track associated with the cluster should have no more than one hit missing in the pixel detector layers and $|d_{xy}|$ should be less than 0.02 cm with respect to the selected PV. All electron candidates are required to be isolated using the following definition: the p_T sum of all other tracks in a cone of $\Delta R < 0.3$ around the track of the electron candidate is required to be less than 5 GeV and the E_T sum of the energies of the calorimeter deposits that are not associated with the candidate is required to be less than 5% of the candidate’s E_T. This differs from the isolation requirement of 3% in
5 Background estimation

Ref. [13], because of the inefficiency (of approximately 6% at electron $E_T = 1$ TeV) caused by overlapping electrons due to the high Lorentz boost of the ϕ boson ($m_\phi = 50$ GeV). In addition, if the direction of the second lepton candidate falls within the isolation cone of the first ($\Delta R < 0.3$), the contributions it makes to both p_T and E_T are subtracted when imposing the isolation requirements.

The kinematic distributions of the final-state particles are similar for all five channels. The final state consists of two leading leptons with high p_T and two subleading leptons with relatively low p_T. The two leptons from the same parent ϕ boson can be highly Lorentz boosted if m_ϕ is significantly smaller than $m_{Z'}$. This feature is generally found for high-mass ($m_{Z'} > 1$ TeV) samples in the case of $m_\phi = 50$ GeV. This boosted signature introduces a significant inefficiency for the event selection except for the LFV case (ϕ decaying into $e\mu$). To take into account the boosted signature for ϕ decaying into $\mu\mu$, one of the muon candidates selected by the above criteria is allowed to be reconstructed only as a tracker muon, a track in the tracker matched to track segments in the muon system (“tracker muons”) [26], if the two muons are as close as $\Delta R < 0.4$. In such exceptional cases, the requirement of at least one muon chamber hit and at least two muon detector planes with the muon segments are not applied to the tracker muon.

The boosted signature for a ϕ decaying into ee is much more complicated since the electrons can easily merge into a single cluster in the ECAL. In this case, only one electron candidate is reconstructed from the two original electrons. The probability for having a merged candidate is about 50% with $m_{Z'} = 3$ TeV and $m_\phi = 50$ GeV. These events would be rejected by the four-lepton requirement, introducing a large signal inefficiency. To select such events, an electron candidate having a ratio of ECAL cluster energy to track momentum larger than 1.5 and a second track with $p_T > 30$ GeV within the cone of ΔR (electron, track) < 0.25, is considered as a “merged electron”. Events are accepted with three (two) leptons if they contain one (two) merged electron(s), since each merged electron is considered to contribute to two electrons to the total. In order to avoid significant misidentification, merged electrons are only considered if the ECAL cluster energy is bigger than 500 GeV.

The dominant background in this analysis arises from ZZ events decaying into four leptons. To suppress this background, events with two oppositely charged same-flavor lepton pairs are rejected if the mass of the lepton pair, $m_{\ell\ell}$, is in the range 89–93 GeV. The Z mass window is made as narrow as possible in order to minimise degradation of the signal efficiency in the case of $m_\phi \approx m_Z$. This requirement results in negligible signal efficiency loss for $m_{Z'} > 500$ GeV. More than 70% (30%) of the ZZ background is rejected by the mass window veto requirement in the muon (electron) channel. This requirement is not applied to the merged electron case, thus accounting for the difference in rejection efficiency for the two channels.

A typical event selection efficiency is 50–70% ($\mu\mu\mu\mu$), 55–65% ($\mu\mu\mu$ and $\mu\mu\epsilon$) and 45–65% ($\mu\epsilon\epsilon\epsilon$ and $\epsilon\epsilon\epsilon\epsilon$) throughout the entire $m_{Z'}$ range at $m_\phi = 50$ GeV. The heavier m_ϕ values correspond to a less boosted signature and therefore are selected with a higher efficiency. For $m_{Z'} > 2$ GeV, the efficiency for the other m_ϕ samples is approximately 10–15% (1–5%) higher in the electron (muon) channels than for the $m_\phi = 50$ GeV scenario, where the range of values reflects the variation with $m_{Z'}$.

5 Background estimation

Most of the SM backgrounds are suppressed by requiring four isolated high-quality lepton candidates. As discussed above, the dominant backgrounds are ZZ events decaying into four leptons. Other background originates from top quark events with two genuine leptons and
two lepton candidates arising from misidentified jets. The WW (WZ) events can also pass the signal selection if they contain two (one) misidentified or nonprompt leptons from jets. In the case of triboson production, there may be four genuine leptons associated with jets or missing transverse energy. These backgrounds are estimated using MC simulation.

The contribution from events with more than two leptons arising from misidentified jets is expected to be small because this analysis requires four isolated leptons in the final state. This background is estimated using the “misidentification rate” method described in Ref. [13]. The misidentification rate measured as a function of electron \(E_T \) in the barrel and endcap is applied to events with electron candidates passing the trigger but failing the full selection. The contribution from jet backgrounds estimated using this procedure is found to be negligible.

Figure 2 shows the four-lepton invariant mass \((m_{4\ell})\) distribution for selected events. The observed events and estimated backgrounds are summarized in Table 1. As shown in the figure and table, the observed events are in agreement with the expected backgrounds. The table shows two different mass ranges. In the region \(m_{4\ell} > 1 \text{ TeV} \), the backgrounds from SM processes are very small, typically less than one event.

Figure 2: The \(m_{4\ell} \) spectrum for the combination of the five studied channels. The points with vertical bars represent the data with their statistical uncertainties; the histograms represent the expectations from SM processes; “Top quark” denotes the sum of the events for \(tt, tW, t\bar{W}, t\bar{t}Z \) processes; “EW” denotes the sum of the events from \(WW, WZ, WW\gamma, WWZ, WZZ, \) and \(ZZZ \) processes. The inset shows the expectation from the benchmark model for a signal at \(m_{Z'} = 2.5 \text{ TeV} \) with \(m_{\phi} = 50 \text{ GeV} \).

6 Results

No excess of events is observed in the data sample compared to the SM expectations. Exclusion limits at 95% confidence level (CL) are calculated in the context of the benchmark model with
Table 1: Summary of the observed yield and expected backgrounds for all channels, where N_{obs} is the number of observed events in data. The total background (N_{tot}) is the sum of three different backgrounds that are estimated using MC simulations; N_{ZZ} refers to the background from ZZ events; N_t is the background from $t\bar{t}$, single top quark, and $t\bar{t}Z$ production; N_{EW} is the background from WW and WZ, and triple gauge boson production. The quoted uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Channel</th>
<th>0.1 < $m_{4\ell}$ < 1.0 TeV</th>
<th>$m_{4\ell}$ > 1.0 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{obs}</td>
<td>N_{ZZ}</td>
</tr>
<tr>
<td>$Z' \rightarrow \mu\mu\mu\mu$</td>
<td>3</td>
<td>4.9 ± 0.3</td>
</tr>
<tr>
<td>$Z' \rightarrow \mu\mu\mu\epsilon$</td>
<td>6</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>$Z' \rightarrow \mu\mu\epsilon\epsilon$</td>
<td>12</td>
<td>9.3 ± 0.4</td>
</tr>
<tr>
<td>$Z' \rightarrow \mu\epsilon\epsilon\epsilon$</td>
<td>2</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>$Z' \rightarrow \epsilon\epsilon\epsilon\epsilon$</td>
<td>9</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>Combined</td>
<td>32</td>
<td>29.9 ± 0.7</td>
</tr>
</tbody>
</table>

The systematic uncertainties are dominated by the uncertainty in the background estimates and in the lepton selection efficiencies. A 30% uncertainty in the total background cross section (ZZ and $t\bar{t}$) is used to account for uncertainties arising from PDFs and higher-order QCD corrections in the measured 8 TeV cross sections. The systematic uncertainty in the muon selection including reconstruction, identification, and isolation is 0.5% [26]. The uncertainties in the electron selection are 0.7% (0.6%) for electrons below 100 GeV in EB (EE) and 1.4% (0.4%) for electrons above 100 GeV in EB (EE) [13]. The uncertainties due to the lepton efficiency in both signal and background yields vary between 2.2% and 2.7% as a function of $m_{4\ell}$. Including the effect of the merged lepton signature, a total uncertainty of 10% is assigned for each channel. The impact of the uncertainty in the electron energy scale on signal (background) yield is 1% (0.5%) [13]. Uncertainties in the muon momentum scale and mass resolutions are below 0.1%. [26] The uncertainty in the integrated luminosity is assigned to be 2.6% [42]. In this analysis, the statistical uncertainties are dominant and the systematic uncertainties have a small impact on the results. We tested the robustness of the limits by doubling the values assumed for the systematic uncertainties. We observed a negligible change in the calculated limits, and conclude that the limits are insensitive to any underestimation of the systematic uncertainties.

Limits on the product of cross section and branching fraction are set in the context of the benchmark model as a function of $m_{4\ell}$. The mass resolution of the detector is assumed to be larger than the natural width of the Z' resonance in all channels. In the limit calculation, we set the mass window to be six times the mass resolution centred around the signal mass point considered. A counting experiment is performed for the limit calculation. Figure 3 shows the upper limit on the product of the cross section and branching fraction, for the combination of all five channels. Using the benchmark model of Ref. [22] we translate these cross section upper limits into lower limits on the Z' boson mass. For the combination of the five channels, the value obtained for this lower mass limit is 2.5 TeV. The black solid (dashed) line indicates the observed...
(expected) 95% CL upper limits, the inner (outer) band indicates the ±1 (2) standard deviation uncertainty in the expected limits, and the blue dashed line shows the theoretical Z' cross section for $m_\phi = 50$ GeV. This theoretical cross section is calculated under the benchmark model assumption that the branching fraction $B(\phi \rightarrow \ell\ell') = 100\%$. In the region above the 1–1.5 TeV, the bands are not visible since backgrounds are negligible here.

Figure 3: The 95% CL upper limit on the cross section times branching fraction as a function of $m_{4\ell}$ for the combination of the five channels. The shaded green (yellow) band indicates the one (two) sigma uncertainty in the expected limits. The blue dashed line represents the theoretical predictions for the benchmark model [22] for $m_\phi = 50$ GeV.

Table 2 shows the exclusion limit on $m_{Z'}$ for the five separate channels and for the combination. Results are presented for the benchmark assumption $m_\phi = 50$ GeV, and for the five different values of the ratio $m_\phi/m_{4\ell}$ assumed for the generated signal samples, taking into account the event selection efficiencies described above. The predicted cross sections decrease as the ratio $m_\phi/m_{4\ell}$ increases. The contribution of the merged lepton signature also decreases, resulting in an overall efficiency increase. Therefore the scenarios with $m_\phi/m_{4\ell} = 5, 10, 20, 30$ and 40% of $m_{Z'}$, give slightly higher limits than the $m_\phi = 50$ GeV scenario.

7 Summary

Results have been presented from a search for heavy narrow resonances decaying into four-lepton final states via intermediate scalar particles ϕ, where the branching fraction of $\phi \rightarrow \ell\ell$ ($\ell = e$ or μ) is set to 1. These results are based on a sample of proton-proton collision data at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The four-lepton invariant mass spectra are consistent with the standard model predictions. Masses of Z' bosons have been excluded at 95% confidence level for a specific benchmark model with $m_\phi = 50$ GeV, and for five different assumptions for the ratio $m_\phi/m_{Z'}$ ($m_\phi/m_{Z'} = 5, 10, 20, 30$ and 40%). Five decay channels ($\mu\mu\mu\mu, \mu\mu\mu\mu, \mu\mu\mu\mu, \mu\mu\mu\mu, \mu\mu\mu\mu$) are considered in this analysis. Combining all
Table 2: The 95% CL lower limits (in TeV) on $m_{Z'}$ for the five separate channels and for their combination. Results are presented for the benchmark assumption $m_\phi = 50$ GeV, and for the five different values of the ratio $m_\phi/m_{Z'}$.

<table>
<thead>
<tr>
<th>m_ϕ (GeV)</th>
<th>0.05$m_{Z'}$</th>
<th>0.1$m_{Z'}$</th>
<th>0.2$m_{Z'}$</th>
<th>0.3$m_{Z'}$</th>
<th>0.4$m_{Z'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>µµµµ</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>µµµe</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>µµee</td>
<td>2.4</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>µeeee</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>ee</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Combined</td>
<td>2.5</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

channels, a lower limit on the Z' mass of 2.5 TeV is obtained for the benchmark model, and 2.6 TeV for each of the models assuming a fixed ratio between m_ϕ and $m_{Z'}$. This is the first result to constrain a leptophobic Z' resonance in the four-lepton channel.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTHA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RAEP (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities
Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, Y. Mohammed, E. Salama

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Vespremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty17, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Behnamian, S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, A. Fahim29, M. Khakzad, M. Mohammad Najafabadi, M. Naseri, S. Paktinat Mehdiabadi30, F. Rezaei Hosseinabadi, B. Safarzadeh31, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa, b, C. Calabriaa, b, C. Caputoa, b, A. Colaleoa, c, D. Creanzaa, c, L. Cristellaa, b, N. De Filippisa, c, M. De Palmaa, b, L. Fiorea, G. Iasellia, c, G. Maggia, c, M. Maggia, G. Minielloa, b, S. Mya, b, S. Nuzzoa, b, A. Pompilia, c, G. Pugliesea, c, R. Radognaa, b, A. Ranieria, G. Selvaggiia, b, L. Silvestrissa, c, R. Vendittia, b, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, b, S. Braibant-Giacomella, b, L. Brigliadori, b, R. Campaninal, b, P. Capiluppia, b, A. Castro, b, F.R. Cavallo, S.S. Chhibra, b, G. Codispottia, b, M. Cuffiani, b, G.M. Dallavalle, F. Fabbria, A. Fanfani, b, D. Fasanellia, b, P. Giacomelli, C. Grandia, L. Guiduccia, b, S. Marcellinia, G. Masetti, A. Montanaria, F.L. Navarria, b, A. Perrotta, A.M. Rossia, b, T. Rovellia, G.P. Sirolia, b, N. Tosia, b, L. Viliania, b, c

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo, b, M. Chiroliba, b, S. Costa, a, b, A. Di Mattia, F. Giordano, b, R. Potenza, a, b, A. Tricomi, b, C. Tuvea, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, b, V. Ciullia, b, C. Civinini, R. D’Alessandro, E. Focardi, b, V. Gori, b, P. Lenzi, b, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliania, b, 17
Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas
National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M.Perfilov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University - Physics Department, Science and Art Faculty

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA
Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow,

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Helwan University, Cairo, Egypt
10: Now at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Yazd University, Yazd, Iran
31: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
32: Also at Università degli Studi di Siena, Siena, Italy
33: Also at Purdue University, West Lafayette, USA
34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, USA
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at California Institute of Technology, Pasadena, USA
44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
46: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
47: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Riga Technical University, Riga, Latvia
50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Gaziosmanpasa University, Tokat, Turkey
57: Also at Ozyegin University, Istanbul, Turkey
58: Also at Izmir Institute of Technology, Izmir, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Yildiz Technical University, Istanbul, Turkey
63: Also at Hacettepe University, Ankara, Turkey
64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
66: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
67: Also at Utah Valley University, Orem, USA
68: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
69: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
70: Also at Argonne National Laboratory, Argonne, USA
71: Also at Erzincan University, Erzincan, Turkey
72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
73: Also at Texas A&M University at Qatar, Doha, Qatar
74: Also at Kyungpook National University, Daegu, Korea