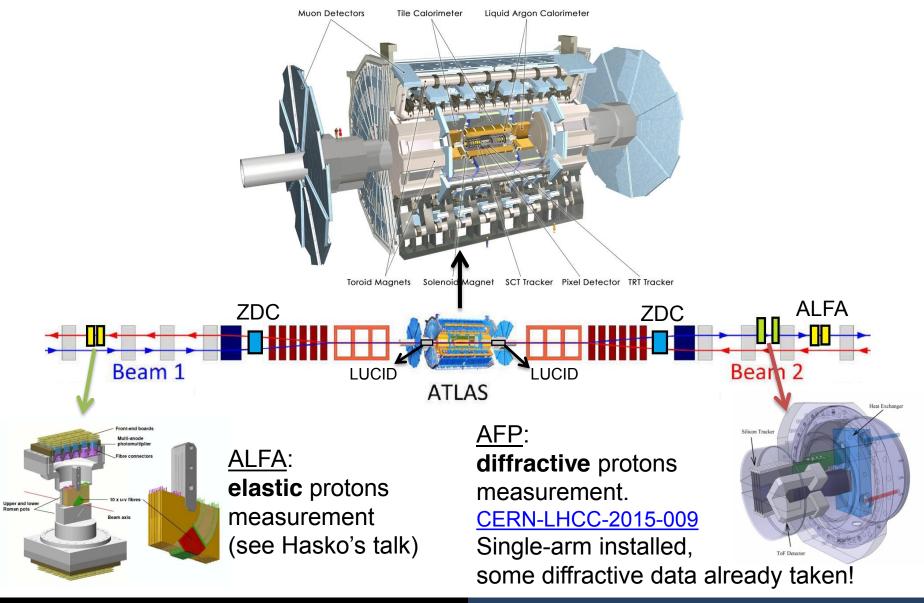

Measurements of diffractive and exclusive processes with ATLAS

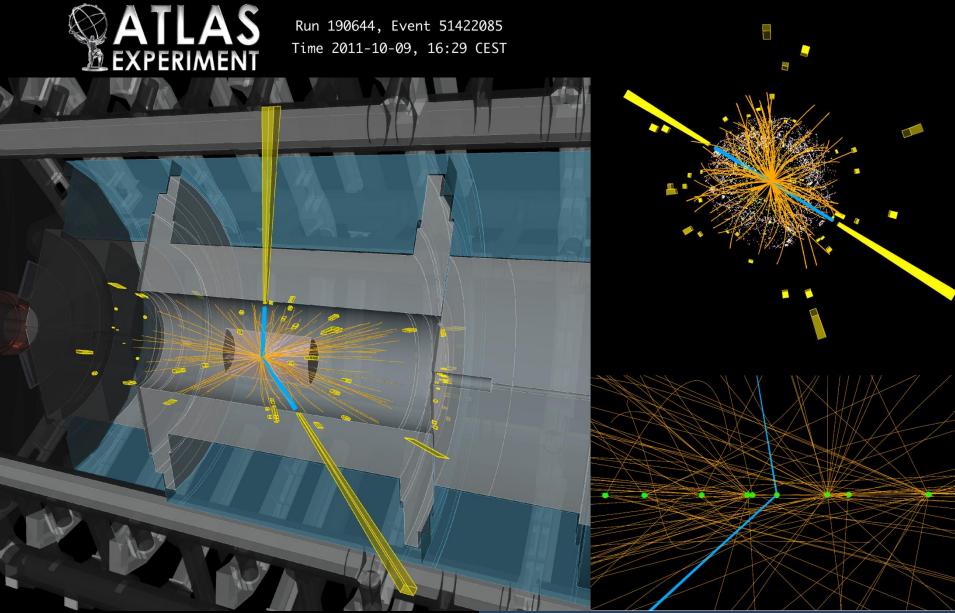
Mateusz Dyndal (DESY)
on behalf of the ATLAS Collaboration

2-8 Sep 2016


Outline

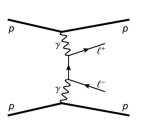
- Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ Production at 7 TeV
- Exclusive γγ → W⁺W⁻ Production and Search for Exclusive Higgs Production at 8 TeV
- Diffractive Dijet Cross Sections at 7 TeV
- Feasibility Studies for Exclusive Jet Production with AFP

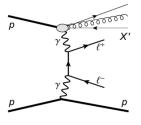
The ATLAS sub-detectors

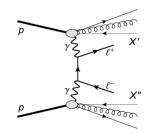

Exclusive photon-induced processes: Motivation

- Exclusive $\gamma\gamma \rightarrow X$ production can be computed in QED+EWK with relatively small uncertainty (EPA)
 - True if we neglect proton absorptive corrections...
- Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production
 - Standard candle for photon-induced physics
 - Non-negligible background to Drell-Yan like reactions
 - Possible to use pp $(\gamma\gamma)$ \rightarrow pp $\ell^+\ell^-$ for luminosity calibration at the LHC?
- Exclusive W+W-
 - Test of SM γγWW quartic gauge coupling
 - Probe of anomalous quartic gauge couplings (aQGCs)
- Exclusive (CEP) gg → Higgs → W⁺W⁻
 - Similar final state as in exclusive $\gamma\gamma \rightarrow W^+W^-$ studies
 - Can be used for Higgs properties studies (low systematics due to the clean production environment)

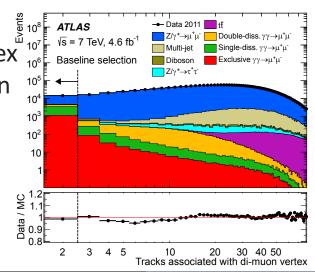
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production at 7 TeV, PLB 749 (2015) 242-261

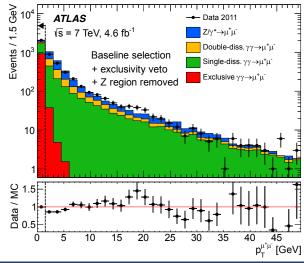



Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production at 7 TeV, PLB 749 (2015) 242-261



• Photon-induced processes: cross-section dominated by so-called **single-** and **double-proton dissociative** reactions. Non-negligible background for many analyses (low, high-mass DY, $\phi^*/p_T(Z)$ measurement, ...)



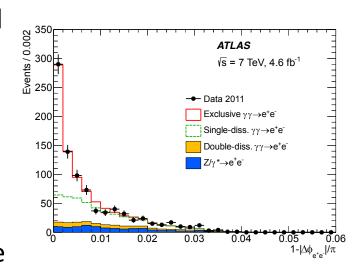

- Preselection:
 - p_T^{μ} >10 GeV, $|\eta_{\mu}|$ <2.4, $M_{\mu+\mu}$ >20 GeV
 - $p_T^e > 12 \text{ GeV}$, $|\eta_e| < 2.4$, $M_{e+e} > 24 \text{ GeV}$

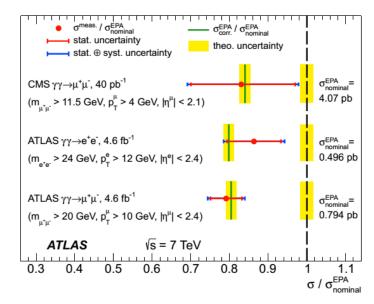
- Exclusive selection:
 - 3 mm dilepton-vertex longitudinal isolation
 efficiency = 74%
 - p_T of the dilepton system < 1.5 GeV

Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production at 7 TeV, PLB 749 (2015) 242-261

- Signal extraction: binned maximum-likelihood fit to the measured dilepton acoplanarity distribution
- Corresponding fiducial cross-sections:

•
$$\sigma_{\gamma\gamma\to e^+e^-}^{excl.}$$
 = 0.428 ± 0.035(stat.) ± 0.018(syst.) pb

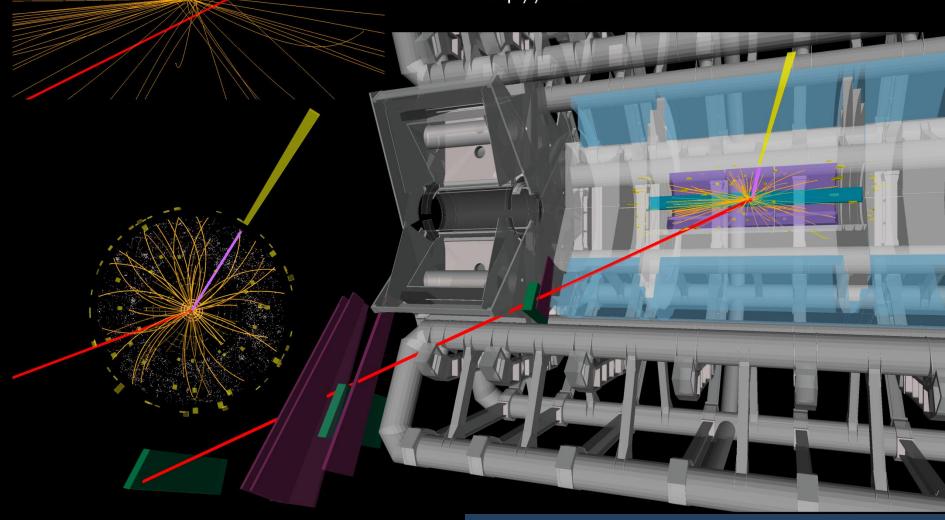

•
$$\sigma_{\gamma\gamma\to\mu+\mu-}^{excl.}$$
 = 0.628 ± 0.032(stat.) ± 0.021(syst.) pb


Theory predictions (QED-EPA), with absorptive corrections from PLB 741 (2015) 66-70
 (20% effect)

•
$$\sigma_{\gamma\gamma\to e^+e^-}^{EPA, \, corr.}$$
 = 0.398 ± 0.007(theo.) pb

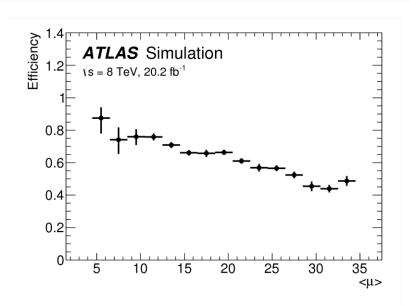
•
$$\sigma_{\gamma\gamma\to\mu+\mu-}^{EPA,\;corr.}$$
 = 0.638 ± 0.011(theo.) pb

Agreement also with similar CMS measurement


Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Search for Exclusive H at 8 TeV (arXiv:1607.03745) PRD 94 (2016) 032011

Run: 203432 Event: 53911100

2012-05-15 13:35:15 CEST

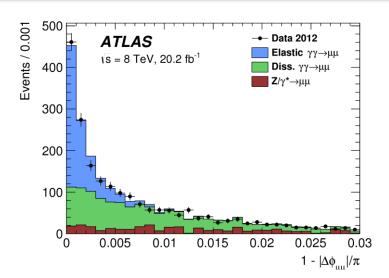


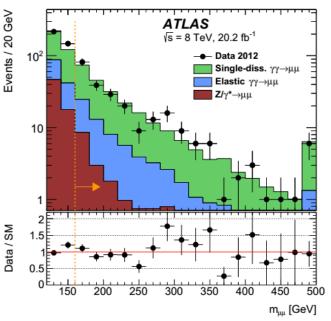
Event selection

- WW \rightarrow evµv final states are considered
- 1 mm dilepton-vertex longitudinal isolation -> efficiency = 58 ± 6%
- Full event selection criteria:

Variable	Excl W ⁺ W ⁻	Excl Higgs
p_T^{lep}	$>$ 25, 20 ${ m GeV}$	$>$ 25, 15 ${ m GeV}$
$m_{e\mu}$	$> 20 \mathrm{GeV}$	$> 10 \mathrm{GeV}$
$ ho_T^{e \mu}$	$> 30 \mathrm{GeV}$	$> 30 \mathrm{GeV}$
Δz_0^{iso}	1mm	1mm
$p_T^{e\mu}$ (aQGC)	$> 120 \mathrm{GeV}$	-
$m_{e\mu}$	-	$< 55 \; \mathrm{GeV}$
$\Delta\phi_{e\mu}$	-	< 1.8
m_T	-	$< 140 \; \mathrm{GeV}$

Higgs selection: lower pT / mass requirement (one W is off-shell)

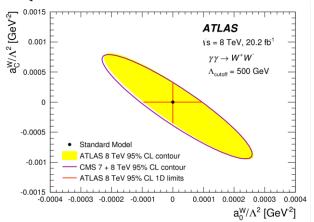


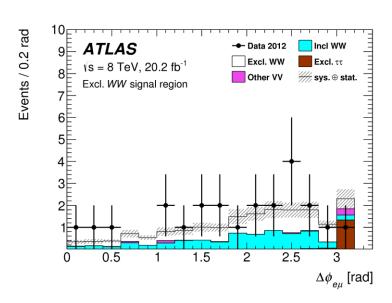

- $\gamma\gamma \rightarrow \ell^+\ell^-$ validation
- Ratio of observed elastic \(\psi\psi\) → \(\ell^+\ell^-\) to bare EPA prediction:

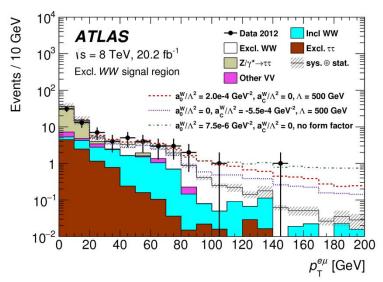
$$f_{\rm EL} = 0.76 \pm 0.04(\text{stat.}) \pm 0.10(\text{sys.})$$

- -> Suppression is stronger due to larger invariant mass being probed
- No simulation available for SD and DD $\gamma\gamma \rightarrow W^+W^-$ (and EL+SD+DD are mixed due to W decays): a correction factor is applied using $\gamma\gamma \rightarrow \ell^+\ell^-$ for $m_{\ell+\ell-} > 160$ GeV:

$$f_{\gamma} = \frac{N_{\text{Data}} - N_{\text{Background}}^{\text{Powheg}}}{N_{\text{Elastic}}^{\text{Herwig++}}} \bigg|_{m_{\mu\mu} > 160 \text{ GeV}} = 3.30 \pm 0.22(\text{stat.}) \pm 0.06(\text{sys.})$$

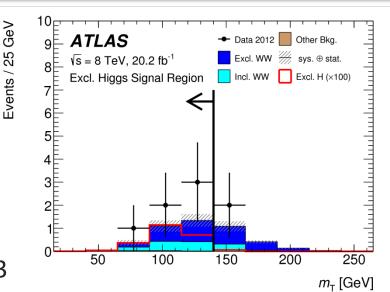


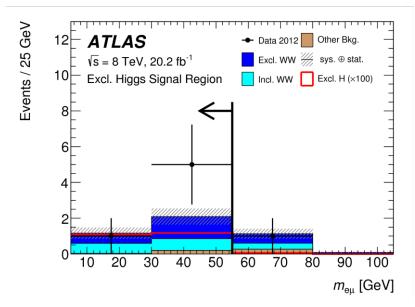


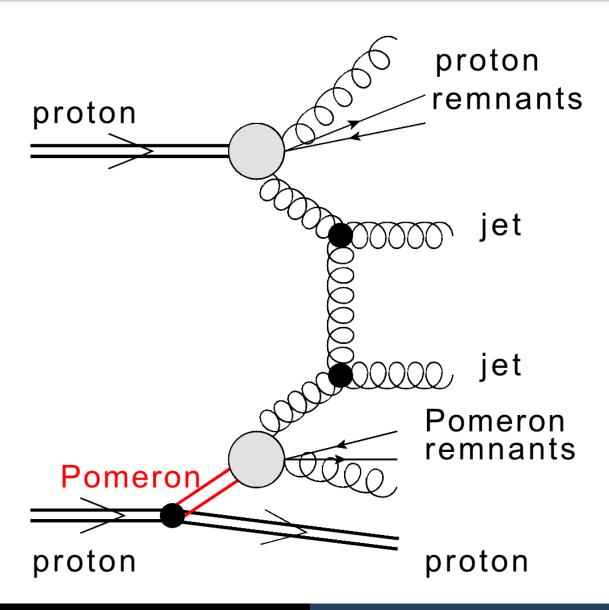


Results (γγ → W⁺W⁻ and aQGCs)

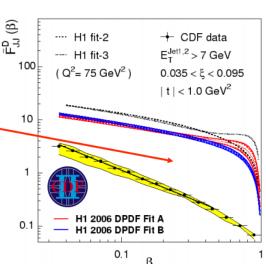
- Exclusive W⁺W⁻ event yields: Data = 23,
 Background = 8.3 ± 2.6, Signal = 9.3 ± 1.2
 ->Measurement significance of 3σ
- aQGC event yields [pT(eμ) > 120 GeV]:
 Data = 1, Background = 0.37 ± 0.13,
 SM Signal = 0.37 ± 0.04
 - -> new aQGC limits are set

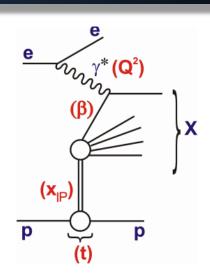


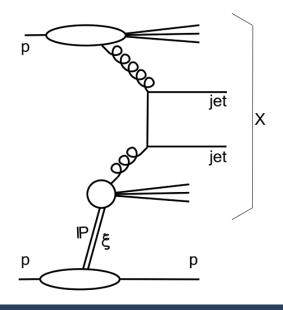



Results (exclusive Higgs)

- Exclusive and inclusive W⁺W⁻ are the dominant background
- Exclusive Higgs event yields: Data=6,
 Background = 3.0 ± 0.8, Signal = 0.023 ± 0.003
- Observed and expected limits:
 σ < 1.2 pb @ 95% CL (Observed)
 σ < 0.7 pb @ 95% CL (Expected)
- Upper limit = 400 x predicted σ
 (predictions include just the elastic process)

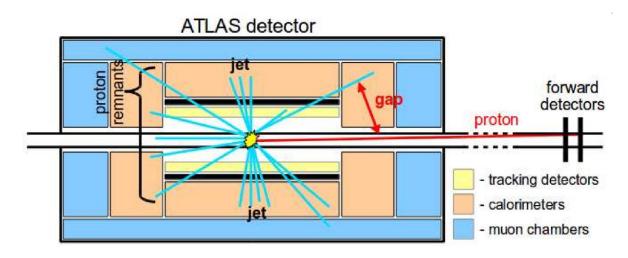






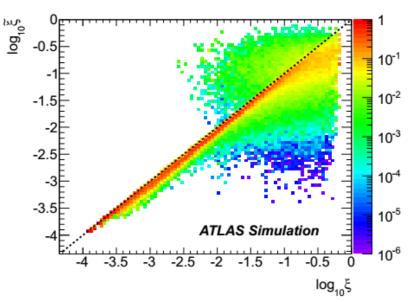
Motivation

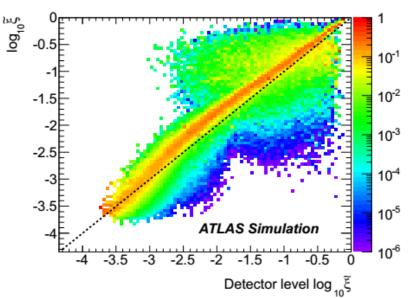
- Diffractive DIS at HERA: Diffractive parton densities dominated by gluon
- pp(pbar) collisions:
 Failure in comparison of Tevatron proton-tagged diffractive dijets
 with HERA DPDFs
 - -> 'rapidity gap survival probability' due to rescattering (absorptive corrections) breaks factorisation



Kinematics and selection

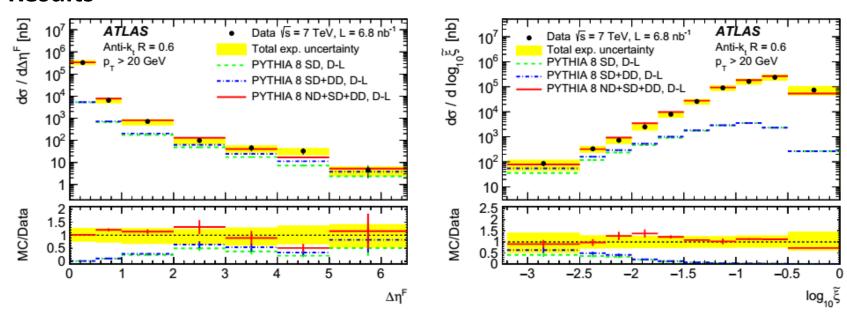
- Low pile-up data sample from 2010 with √s= 7 TeV and integrated luminosity of 6.8 nb
- Jets with anti-kT algorithm, pT > 20 GeV, $|\eta|$ < 4.4, R=0.4, 0.6
- Gaps characterisedusing $\Delta\eta_F$, based on tracks ($|\eta|$ < 2.5, pT > 200 MeV) and calocells ($|\eta|$ < 4.8) that are >5 σ out of noise distribution



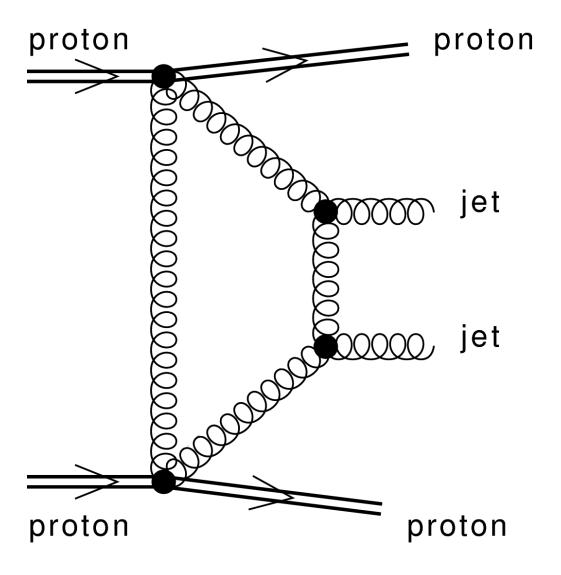

Event characteristics

• Diffractive proton energy loss (ξ) is extracted from energy deposits:

$$\tilde{\xi} \simeq M_{\rm X}^2/s = \sum p_{\rm T} e^{\pm \eta}/\sqrt{s}$$


• Experimental resolution on $log(\xi)$ is approximately 10%

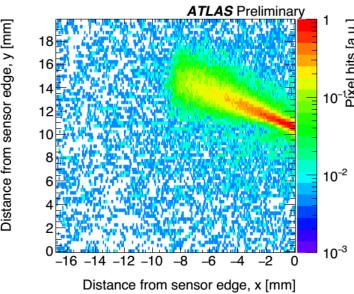
Results



- Diffractive component is required for more complete description of data
- Pythia8 gives a good description of shape and normalization
- Rapidity gap survival factor is extracted in the context of POMWIG (and H1 2006 Fit B DPDFs):

$$S^2 = 0.16 \pm 0.04$$
 (stat.) ± 0.08 (exp. syst.)

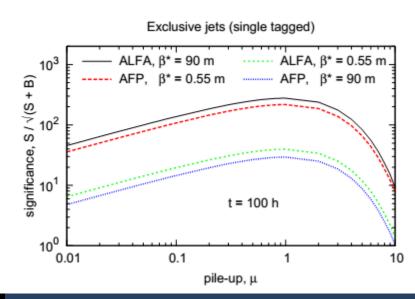
Feasibility Studies for Exclusive Jet Production with AFP, ATL-PHYS-PUB-2015-003



Feasibility Studies for Exclusive Jet Production with AFP, **ATL-PHYS-PUB-2015-003**

- AFP detector status (see Marek's talk)
- Single-arm with 3 3D pixel detector layers (near station) and 4 layers (far station) fully integrated with ATLAS
- 300 b fill #4906 (10th of May 2016), AFP readout (20 σ from the beam) but triggered by ATLAS $(\mu \lesssim 26, 2:16 \text{ hrs})$
- Low-μ run with dedicated AFP-based triggers is also recently recorded $(\approx 0.04 \text{ pb}^{-1})$





Feasibility Studies for Exclusive Jet Production with AFP, ATL-PHYS-PUB-2015-003

- Motivation and feasibility results
- Constrains other exclusive productions (e.g. Higgs)
- Cross section measurement is possible, even with single-tag configuration:
 - $S/B = 10^4$ after applying all the selection requirements
 - ~400 events expected with 1pb⁻¹ of data
 - See also EPJC 75 (2015) 320

Summary

Exclusive (photon-induced) processes

- Cross sections of the exclusive $\gamma\gamma \to \ell^+\ell^-$ production have been measured
 - -> Observation is consistent with the suppression (20%) expected due to proton absorption contributions
- Evidence of SM exclusive $\gamma\gamma \rightarrow W^+W^-$ production (significance of 3σ)
 - -> No evidence for an excess in the kinematic region targetting aQGC
 - -> Limits on exclusive Higgs production cross section are also set

Diffractive Dijets

- Evidence for diffractive contribution in 7 TeV data
- Detailed understanding heavily limited by poorly known non-diffractive contribution
- Future prospects with dedicated proton spectrometers (AFP) are very promising