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Abstract: We initiate the bootstrap program for N = 3 superconformal field theories (SCFTs)

in four dimensions. We consider the problem from two fronts: the protected subsector described by

a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries

parametrize the Coulomb branch of N = 3 theories. In order to describe a protected subsector of a

family of N = 3 SCFTs, we study a 2d chiral algebra with super Virasoro symmetry that depends on

an arbitrary parameter, identified with the central charge of the theory. Turning on to crossing, we

work out the superconformal block expansion of the crossing equations and apply standard numerical

bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but

also, thanks to input from the chiral algebra results, we are able to exclude solutions with N = 4

supersymmetry, allowing us to zoom in on a specific N = 3 SCFT.
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1 Introduction

The study of superconformal symmetry has given invaluable insights into quantum field theory, and

in particular into the nature of strong-coupling dynamics. The presence of supersymmetry gives us

additional analytical tools and allows for computations that are otherwise hard to perform. A cursory

look at the superconformal literature in four dimensions shows a vast number of works on N = 2 and

N = 4 superconformal field theories (SCFTs), with the intermediate case of N = 3 almost absent.



The main reason for this is that, due to CPT invariance, the Lagrangian formulation of any N = 3

theory becomes automatically N = 4. By now however, there is a significant amount of evidence that

superconformal theories are not restricted to just Lagrangian examples, and this has inspired recent

papers that revisit the status of N = 3 SCFTs.

Assuming these theories exist, the authors of [1] studied several of their properties. They found in

particular that the a and c anomaly coefficients are always the same, that, in stark contrast with the

most familiar N = 2 theories, pure N = 3 theories (i.e., theories whose symmetry does not enhance to

N = 4) have no marginal deformations and are therefore always isolated, and also, that pure N = 3

SCFTs cannot have a flavor symmetry that is not an R-symmetry.

Since the only possible free multiplet of an N = 3 SCFT is a vector multiplet, the low energy

theory at a generic point on the moduli space must involve vector multiplets, and the types of short

multiplets whose expectations values can parametrize such branches were analyzed in [1]. When an

N = 3 vector multiplet is decomposed in N = 2, it contains both an N = 2 vector and hyper multiplet,

which implies that the theories possess both N = 2 Higgs and Coulomb branches that are rotated by

N = 3.

Shortly after [1], the authors of [2] presented the first evidence for N = 3 theories by studying

N D3-branes in the presence of an S-fold plane, which is a generalization of the standard orientifold

construction that also includes the S-duality group. The classification of different variants of N = 3

preserving S-folds was done in [3], leading to additional N = 3 SCFTs, obtained by N D3-branes

probing the various S-folds. In [4] yet another generalization was considered, in which in addition

to including the S-duality group in the orientifold construction, one also considers T-duality. This

background is known as a U-fold, and the study of M5-branes on this background leads to N = 3

theories associated with the exceptional (2, 0) theories.

The systematic study of rank one N = 2 SCFTs (i.e., with a one complex dimensional Coulomb

branch) through their Coulomb branch geometries [5–8] has recovered the known N = 3 SCFTs, as

well as led to new ones [7, 9]. Some of these theories are obtained by starting from N = 4 SYM

with gauge group U(1) or SU(2) and gauging discrete symmetries, while others correspond to genuine

N = 3 SCFTs which are not obtained by discrete gauging. Note that, as emphasized in [3, 9], gauging

by a discrete symmetry does not change the local dynamics of the theory on R
4, only the spectrum of

local and non-local operators. In particular, the central charges and correlation functions remain the

same.

Of the class of theories constructed in [3], labeled by the number N of D3-branes and by integers

k, ℓ associated to the S-fold, some have enhanced N = 4 supersymmetry, or arise as discretely gauged

versions of N = 4. The non-trivial N = 3 SCFT with the smallest central charge corresponds to the

theory labeled by N = 1 and ℓ = k = 3 in [3], with central charge given by 15
12 . This corresponds to

a rank one theory with Coulomb branch parameter of scaling dimension three, and it will be one of

the main focus of this work. Since the Coulomb branch operators of N = 3 theories must have integer

dimensions [1], and since theories with a Coulomb branch generator of dimension one or two enhance

to N = 4, it follows that dimension three is the smallest a genuine N = 3 theory with a Coulomb

branch can have, and that this theory could indeed correspond to the “minimal” N = 3 SCFT. By

increasing the number of D3-branes, we obtain higher rank versions of this minimal theory. More

generally, the rank N theories with k = ℓ, are not obtained from others by discretely gauging, and

have an N dimensional Coulomb branch.

Since pure N = 3 SCFTs have no relevant or marginal deformations, they are hard to study

by standard field theoretical approaches. Apart from the aforementioned papers, recent progress in

understanding N = 3 theories includes [10–13]. The classification of all N = 3 SCFTs is not complete
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yet, and one can wonder if there are theories not arising from the S-fold (and generalizations thereof)

constructions. On the other hand, one would like to obtain more information on the spectrum of the

currently known theories. In this paper we take the superconformal bootstrap approach to address

these questions, and tackle N = 3 SCFTs by studying the operators that parametrize the Coulomb

branch. These operators sit in half-BPS multiplets of the N = 3 superconformal algebra, and when

decomposed in N = 2 language contain both Higgs and Coulomb branch operators. We will mostly

focus on the simplest case of Coulomb branch operators of dimension three.

The bootstrap approach does not rely on any Lagrangian or perturbative description of the theory.

It depends only on the existence of an associative local operator algebra and on the symmetries of

the theory in question, and is therefore very well suited to the study of N = 3 SCFTs. Since the

original work of [14] there have been many papers that study SCFTs through the lens of the numerical

bootstrap, for a partial list see [15–29]. A necessary ingredient in any superconformal bootstrap

analysis is the computation of the superconformal blocks relevant for the theory in question, efforts

in this direction include [30–39]. Although correlation functions of half-BPS operators in various

dimensions have been studied [31], the case of N = 3 has not yet been considered, and calculating the

relevant superconformal blocks will be one of the goals of this paper.

Also relevant for our work is the information encoded in the 2d chiral algebras associated to 4d

SCFTs [40–54]. The original analysis of [40] implies that any four-dimensional N > 2 SCFT contains

a closed subsector of local operators isomorphic to a 2d chiral algebra. For N = 3 theories, part of the

extra supercharges of the N = 3 make it to the chiral algebra and therefore its symmetry enhances to

N = 2 super Virasoro [10]. The authors of [10] constructed a family of chiral algebras conjectured to

describe the rank one N = 3 theories, generalizing these chiral algebras in order to accommodate the

higher-rank cases will be another subject of this work.

The paper is organized as follows. In section 2 we study the two-dimensional chiral algebras

associated with N = 3 SCFTs, determining the N = 3 superconformal multiplets they capture, and

some of their general properties. We then attempt to construct chiral algebras for the higher rank

ℓ = k = 3 theories. We propose a set of generators that, under certain assumptions, describe a closed

subalgebra of these theories, and write down an associative chiral algebra for them. Associativity fixes

all OPE coefficients in terms of a single parameter: the central charge of the theory. In section 3.4 we

use harmonic superspace techniques in order to obtain the superconformal blocks that will allow us

to derive the crossing equations for half-BPS operators of section 4. We focus mostly on a dimension

three operator, but also present the case of a dimension two operator as a warm up. Section 5 presents

the results of the numerical bootstrap, both for generic N = 3 SCFTs and also attempting to zoom

in to the simplest known N = 3 theory by inputting data from the chiral algebra analysis of section

2. We conclude with an overview of the paper as well as directions for future research in section 6.

2 N = 3 chiral algebras

Every 4d N = 2 SCFT contains a protected sector that is isomorphic to a 2d chiral algebra, obtained

by passing to the cohomology of a nilpotent supercharge [40]. Because N = 3 is a special case of

N = 2, one can also study chiral algebras associated to N = 3 SCFTs. This program was started

for rank one theories in [10], and here we explore possible modifications such that one can describe

higher-rank cases as well. We will put particular emphasis on theories containing a Coulomb branch

operator with scaling dimension three, since these are the correlators we will study numerically in

section 5.
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In order to do this we will need extensive use of the representation theory of the N = 3 super-

conformal algebra; this was studied in [1, 55–59] and is briefly reviewed in appendix A. We will also

leverage previous knowledge of chiral algebras for N = 2 SCFTs, and so it will be useful to view N = 3

theories from an N = 2 perspective. Therefore, we will pick an N = 2 subalgebra of N = 3, with the

SU(3)R × U(1)r R-symmetry of the latter decomposing in SU(2)RN=2
× U(1)rN=2

× U(1)f . The first

two factors make up the R-symmetry of the N = 2 superconformal algebra and the last corresponds

to a global symmetry. Therefore, from the N = 2 point of view, all N = 3 theories necessarily have a

U(1)f flavor symmetry arising from the extra R-symmetry currents. The additional supercharges and

the U(1)f flavor symmetry imply that the Virasoro symmetry expected in the N = 2 chiral algebras

will be enhanced to a super Virasoro symmetry in the N = 3 case [10].

Let us start reviewing the essentials of the chiral algebra construction (we refer the reader to [40]

for more details). The elements of the protected sector are given by the cohomology of a nilpotent

supercharge Q that is a linear combination of a Poincaré and a conformal supercharge,

Q = Q1
− + S̃2 −̇ . (2.1)

In order to be in the cohomology operators have to lie on a fixed plane R2 ⊂ R
4. The global conformal

algebra on the plane sl(2)× s̄l(2) is a subalgebra of the the four-dimensional conformal algebra. While

the generators of the sl(2) commute with (2.1), those of s̄l(2) do not, and an operator in the cohomology

at the origin will not remain in the cohomology if translated by the latter. However, it is possible to

introduce twisted translations obtained by the diagonal subalgebra of the s̄l(2) and a complexification

sl(2)R of the R-symmetry algebra su(2)R, such that the supercharge satisfies

[Q, sl(2)] = 0 , [Q, something] = diag(s̄l(2)× sl(2)R) . (2.2)

From these relations one can prove that Q-closed operators restricted to the plane have meromorphic

correlators. We call the operators that belong to the cohomology of Q “Schur” operators. The Schur

operators in N = 2 language are local primary fields which obey the conditions

∆− (j + ̄)− 2RN=2 = 0 , ̄− j − rN=2 = 0 . (2.3)

The cohomology classes of the twisted translations of any such operator O corresponds to a 2d local

meromorphic operator

O(z) = [O(z, z̄)]
Q
. (2.4)

The two important Schur operators that we expect to have in anyN = 2 theory with a flavor symmetry

are1

• Ĉ0(0,0): The highest-weight component of the SU(2)RN=2
current (with charges ∆ = 3, j = ̄ =

1
2 , RN=2 = 1, rN=2 = 0) corresponding to the 2d stress tensor T (z).

• B̂1: The highest-weight component J11 of the moment map operator (∆ = 2, j = ̄ = 0, RN=2 =

1 and rN=2 = 0) is mapped to the affine current J(z) of the flavor group.

These two Schur operators give rise to a Virasoro and an affine symmetry in the chiral algebra [40]

respectively, with the two-dimensional central charges obtained in terms of their four-dimensional

1We follow the conventions of [60] for N = 2 superconformal multiplets.
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counterparts by

c2d = −12c4d , k2d = −
k4d
2

. (2.5)

Note that, since we insist on having unitarity in the four-dimensional theory, the 2d chiral algebra will

be necessarily non-unitary.

The chiral algebra description of a protected subsector of correlators is extremely powerful. By

performing the twist of [40] on a four-dimensional correlation function of Schur operators, we are left

with a meromorphic 2d correlator that is completely determined by knowledge of its poles and residues.

The poles can be understood by taking various OPE limits, thus fixing the correlator in terms of a

finite number of parameters corresponding to OPE coefficients, as will be done in subsection 4.1.1.

In the cases we will study in section 5, the meromorphic piece can be fixed using crossing symmetry

in terms of a single parameters, which can be identified with the central charge of the theory. It is

important to emphasize that this can be done without knowledge of which particular chiral algebra is

relevant for the SCFT at hand.

2.1 Chiral algebras for N = 3 four-dimensional SCFTs

Let us now study the N = 3 case in more detail. Any local N = 3 SCFT will necessarily contain a

stress tensor multiplet, which in table 8 corresponds to B̂[1,1]. After an N = 2 decomposition of this

multiplet (shown in (A.1)) one finds four terms, each contributing with a single representative to the

chiral algebra. These four multiplets are related by the action of the extra supercharges enhancing

N = 2 to N = 3, and four of these (Q3
+ and Q̃3 +̇ and their conjugates) commute with Q [10].

Therefore, acting on Schur operators with these supercharges produces new Schur operators, and the

representatives of the four multiplets will be related by these two supercharges. The multiplets and

their representatives are:

• A multiplet containing the U(1)f flavor currents (B̂1), whose moment map M IJ gives rise to a

two-dimensional current J(z) = [M(z, z̄)]
Q
of an U(1)f affine Kac-Moody (AKM) algebra,

• Two “extra” supercurrents, responsible for the enhancement to N = 3, which as shown in [40]

contribute as operators of holomorphic dimension 3
2 . These are obtained from the moment map

by the action of the supercharges G(z) =
[
Q3

+M(z, z̄)
]
Q
and G̃(z) =

[
Q̃3 +̇M(z, z̄)

]
Q

[10]. 2

• The stress tensor multiplet (Ĉ0,(0,0)) which gives rise to the stress tensor of the chiral algebra

T (z) = 1
2

[[
Q3

+, Q̃3 +̇

]
M(z, z̄)

]
Q

[10].

The supercharges Q3
+ and Q̃3 +̇ have charges ±1 under the U(1)f flavor symmetry, where we follow

the U(1)f charge normalizations of [10]. Therefore the operators G(z) and G̃(z) have a J charge

of +1 and −1 respectively. This multiplet content is exactly the one we would expect from the

considerations in the beginning of this section, with the extra supercharges, that commute with Q,

producing a global d = 2, N = 2 superconformal symmetry.3 Moreover, the operator content we just

described corresponds precisely to the content of an N = 2 stress tensor superfield which we denote

by J , enhancing the Virasoro algebra to an N = 2 super Virasoro algebra [10].

2These arise from N = 2 multiplets D 1
2
(0,0)

and D 1
2
(0,0)

respectively in the notation of [60].

3The holomorphic sl(2) that commutes with the supercharge Q, more precisely the Q-cohomology of the superconformal
algebra, is enhanced to a sl(2|1).
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2.1.1 N = 3 superconformal multiplets containing Schur operators

Our next task is to understand which multiplets of the N = 3 superconformal algebra contribute to

the chiral algebra, aside from the already discussed case of the stress tensor multiplet.
Instead of searching for superconformal multiplets that contain conformal primaries satisfying

(2.3), we will take advantage of the fact that this was already done in [40] for N = 2 multiplets, and
simply search for N = 3 multiplets that contain N = 2 Schur multiplets. To accomplish this, we
decompose N = 3 multiplets in N = 2 ones by performing the decomposition of the corresponding
characters. In appendix A we present a few examples of such decompositions. Going systematically
through the multiplets,4 we find the following list of N = 3 Schur multiplets:

Ĉ[R1,R2],(j,̄)|Schur =u
R2−R1+2(̄−j)
f

[
ĈR1+R2

2
,(j,̄)

⊕ u
−1
f ĈR1+R2

2
,(j,̄+

1
2
)
⊕ uf ĈR1+R2

2
,(j+

1
2
,̄)

⊕ ĈR1+R2
2

,(j+
1
2
,̄+

1
2
)

]
, (2.6)

B̂[R1,R2]|Schur =u
R2−R1
f

[
B̂R1+R2

2

⊕ u
−1
f DR1+R2−1

2
,(0,0)

⊕ uf DR1+R2−1
2

,(0,0)

⊕ ĈR1+R2−2
2

,(0,0)

]
, for R1R2 6= 0 , (2.7)

B̂[R1,0]|Schur =u
−R1
f

[
B̂R1

2

⊕ ufDR1−1
2

,(0,0)

]
, (2.8)

B̂[0,R2]|Schur =u
R2
f

[
B̂R2

2

⊕ u
−1
f DR2−1

2
,(0,0)

]
, (2.9)

D[R1,R2],̄|Schur = u
R2−R1+2̄+2
f

[
DR1+R2

2
,(0,̄)

⊕ u
−1
f DR1+R2

2
,(0,̄+

1
2
)
⊕ uf ĈR1+R2−1

2
,(0,̄)

⊕ ĈR1+R2−1
2

,(0,̄+
1
2
)

]
for R1 > 0 , (2.10)

D[R1,R2],j |Schur = u
R2−R1−2j−2
f

[
DR1+R2

2
,(j,0)

⊕ u
−1
f ĈR1+R2−1

2
,(j,0)

⊕ ufDR1+R2
2

,(j+
1
2
,0)

⊕ ĈR1+R2−1
2

,(j+
1
2
,0)

]
for R2 > 0 , (2.11)

D[0,R2],̄|Schur = u
R2+2̄+2
f

[
DR2

2
,(0,̄)

⊕ u
−1
f DR2

2
,(0,̄+

1
2
)

]
, (2.12)

D[R1,0],j |Schur = u
−R1−2j−2
f

[
DR1

2
,(j,0)

⊕ ufDR1
2

,(j+
1
2
,0)

]
. (2.13)

Let us stress again that we are not showing the full decomposition in N = 2 multiplets, but only the

Schur multiplets. In performing the decompositions we kept the grading of the N = 2 multiplets with

respect to the U(1)f flavor symmetry, denoting the corresponding fugacity by uf .

Some noteworthy multiplets in this list are the stress tensor multiplet B̂[1,1], already discussed

in the beginning of this subsection, as well as the half-BPS operators B̂[R1,0] (and their conjugates

B̂[0,R1]) which are connected to the Coulomb branch, as discussed in section 1. Due to their physical

significance we present their full decomposition in N = 2 multiplets in A.1 and A.2. As described in

4One can quickly see that in table 8 multiplets that obey no N = 3 shortening conditions on the one of the sides
also obey no N = 2 shortening condition on one of the sides, and these are known [40] not to contain Schur operators.
Therefore we must go only through the multiplets that obey shortening conditions on both sides.
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[58], there are no relevant Lorentz invariant supersymmetric deformations of N = 3 theories, while the

only such deformations that are exactly marginal are contained in the multiplet B̂[2,0] (and conjugate

B̂[0,2]). However, these multiplets also contain additional supersymmetry currents, as can be seen from

their N = 2 decomposition, that allow for the enhancement of N = 3 to N = 4, and thus pure N = 3

theories are not expected to have exactly marginal operators. Let us also recall that the multiplets

Ĉ[0,0],(j,̄) contain conserved currents of spin larger than two, and therefore are expected to be absent

in interacting theories [61, 62].

Quasi-primaries and Virasoro primaries

Each of the N = 2 multiplets listed above will contribute to the chiral algebra with exactly one global

conformal primary (also called quasi-primary), with holomorphic dimension as given in table 1 of [40]

and with U(1)f charge f , under the J(z) current, as can be read off from the uf fugacity in the above

decompositions. These multiplets generically will not be Virasoro primaries. As shown in [40], only

the so-called Hall-Littlewood (HL) operators5 (B̂R, DR,(j,0) and DR,(0,̄)) are actually guaranteed to be

Virasoro primaries. The remaining multiplets will appear in the chiral algebras sometimes as Virasoro

primaries, sometimes as only quasi-primaries.

Super Virasoro primaries

Similarly, each N = 3 multiplet gives rise in the chiral algebra to a global supermultiplet consisting of

a global super primary and its three global superdescendants obtained by the action of Q3
+ and Q̃3 +̇.

6

Generically however, these multiplets will not be super Virasoro primaries, even if the global super

primary corresponds to a Virasoro primary. Recall that a super Virasoro primary must, in addition to

being a Virasoro primary, have at most a pole of order one in its OPE with both G(z) and G̃(z), and

have at most a singular term of order one in the OPE with J(z).7 This last condition corresponds to

being an AKM primary.

Let us consider the operators which have as a global superprimary a Virasoro primary. For the

case of B̂[R1,R2] multiplets, we see that its two (or one in case R1R2 = 0) level 1
2 descendants are

HL operators, and thus Virasoro primaries. The two-dimensional superconformal algebra then implies

that the global superprimary is not only a Virasoro primary, but that it is also annihilated by all

the modes G
n>+

1
2
, G̃

n>+
1
2
. However, this is not enough to make it a super Virasoro primary, as it

is not guaranteed that these operators are AKM primaries. An obvious example is the stress tensor

multiplet, where the AKM current is clearly not an AKM primary, and thus B̂[1,1] does not give rise

to a super Virasoro primary.

The other guaranteed Virasoro primaries sit in D[R1,R2],̄ multiplets and their conjugates, for which

the global superprimary is a HL operator. The authors of [10] showed that, even though one of its

level 1
2 descendants is not a HL operator, it is still a Virasoro primary, and the same considerations

as for the B̂[R1,R2] multiplets apply.

In certain cases it is possible to show that the operators in question are actually super Virasoro

primaries, and concrete examples will be given below. For example, if one considers a B̂[R1,R2] generator

5Following [40] we refer to operators which are N = 1 chiral and satisfy the Schur condition as Hall-Littlewood
operators.

6Recall that the global superprimary is annihilated only by the G
−

1
2

, G̃
−

1
2

, L−>0 modes of G(z), G̃(z), T (z), and

global super descendants are obtained by the action of G
+

1
2

and G̃
+

1
2

7These conditions translate into the following modes annihilating the superprimary state: Ln>0, G
n>+

1
2

, G̃
n>+

1
2

and Jn>0.
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that is not the stress tensor multiplet, then the OPE selection rules for the N = 2 B̂R1+R2

2

multiplet

[63] imply it is also an AKM primary [42].

Chiral and anti-chiral operators

Finally we note that the multiplets in (2.8) and (2.9) give rise, in two dimensions, to anti-chiral

and chiral operators respectively: they are killed by Q̃3 +̇ and Q3
+ respectively. In addition these

two-dimensional superfields have holomorphic dimension satisfying h = R2

2 = − f
2 and h = R1

2 = f
2

respectively.

2.1.2 [3, 0] chiral algebras

We are now in a position to describe the general features of the chiral algebras associated to the

known N = 3 theories. We will describe the chiral algebra in terms of its generators, by which we

mean operators that cannot be expressed as normal-ordered products and/or (super)derivatives of

other operators. In what follows we assume the chiral algebra to be finitely generated. The whole set

of states of the chiral algebra is then obtained by taking normal-ordered products and derivatives of

the generators. Although there is yet no complete characterization of what should be the generators

of the chiral algebra of a given four-dimensional theory, it was shown in [40] that all generators of the

HL chiral ring are generators of the chiral algebra. Moreover, the stress tensor is always guaranteed to

be present in the chiral algebra and, with the exception of cases where a null relation identifies it with

a composite operator, it must always be a generator. However this is not necessarily the complete list,

and indeed examples with more generators than just the above have been given in [40, 42].8 The chiral

algebras associated to 4d SCFTs do not always correspond to known examples in the literature, and

in such situations one must construct a new associative two-dimensional chiral algebra. This problem

can be bootstrapped by writing down the most general OPEs for the expected set of generators and

then imposing associativity by solving the Jacobi identities. Chiral algebras are very rigid structures

and in the cases so far considered [10, 42], the Jacobi identities are powerful enough to completely fix

all OPE coefficients, including the central charges.

Rank one chiral algebras

In [10], the authors assumed that the only generators of the chiral algebras corresponding to the rank9

one N = 3 SCFTs described in 1 (with k = ℓ, N = 1) were the stress tensor and the generators of its

Higgs branch:

B̂[1,1] , B̂[ℓ,0] , B̂[0,ℓ] , ℓ = 3, 4 . (2.14)

In the above, the first gives rise in two dimensions to the stress tensor multiplet and the last two

to anti-chiral and chiral operators respectively. With these assumptions they were able to write an

associative chiral algebra for the cases ℓ = 3, 4 only for a finite set of values of the central charge. This

set is further restricted to the correct value expected for the known N = 3 theories

c4d = a4d =
2ℓ− 1

4
, (2.15)

8 One possible way to determine which generators a given chiral algebra should have is through a Schur index [57, 64–
66] analysis, as done in [40, 42]. Similarly if one believes to have the correct chiral algebra associated with a given theory
then a further test is to compare the corresponding graded partition function with the superconformal index. In the
case at hand, however, the superconformal index remains elusive.

9Defined as the dimension of the Coulomb branch of the theory when viewed as an N = 2 SCFT.
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by imposing the expected Higgs branch relation

B̂[ℓ,0]B̂[0,ℓ] ∼
(
B̂[1,1]

)ℓ
, (2.16)

where by an abuse of notation we represented the highest weight of the multiplet by the same symbol

as the multiplet itself. We recall that relations on the Higgs branch appear as null states in the chiral

algebra. Associativity also fixes all other OPE coefficients. The authors of [10] were also able to

construct an associative chiral algebra for ℓ = 5 and ℓ = 6 satisfying the Higgs branch relation if the

central charge is given by (2.15). However, as they point out, ℓ = 5 does not correspond to an allowed

value for an N = 3 SCFTs, as five is not an allowed scaling dimension for the Coulomb branch of a

rank one theory, following from Kodaria’s classification of elliptic surfaces (see, e.g., [5, 10]). The case

ℓ = 6 is in principle allowed, however no such N = 3 theory was obtained in the S-fold constructions

of [3].10

Higher rank theories

We will now attempt to generalize the chiral algebras of [10] to the higher-rank case (with k = ℓ,

N > 1). In particular, we focus on the theories whose lowest dimensional generator corresponds to

a B̂[3,0] and its conjugate, since these are the ones relevant for the following sections. To compute

OPEs and Jacobi identities we will make extensive use of the Mathematica package [67]. Following

its conventions, we use the two-dimensional N = 2 holomorphic superspace with bosonic coordinate

z and fermionic coordinates θ and θ̄, and define the superderivatives as

D = ∂θ −
1
2 θ̄∂z , D̄ = ∂θ̄ −

1
2θ∂z . (2.17)

We will denote the two-dimensional generators arising from the half-BPS Higgs branch generators

B̂[0,3] (B̂[3,0]) by W (W̄).11 Furthermore, we denote the two-dimensional superfield arising from the

stress tensor (B̂[1,1]) by J . The OPE of J with itself is fixed by superconformal symmetry,

J (Z1)J (Z2) ∼
c2d/3 + θ12θ̄12J

Z2
12

+
−θ12DJ + θ̄12D̄J + θ12θ̄12∂J

Z12
, (2.18)

where we defined

Zij = z1 − z2 +
1
2

(
θ1θ̄2 − θ2θ̄1

)
, θ12 = θ1 − θ2 , θ̄12 = θ̄1 − θ̄2 . (2.19)

The OPEs of J with W and W̄, given in (B.1), are fixed by demanding that these two operators be

super Virasoro primaries. As discussed in the previous subsection, W and W̄ could fail to be super

Virasoro primaries only if their global superprimary (arising from an N = 2 B̂3/2) fails to be an AKM

primary. However, since we are assuming the B̂3/2 multiplet to be a generator, and since the AKM

current comes from a B̂1 N = 2 multiplet, it is clear from the selection rules of N = 2 B̂R operators

[63] that these must be AKM primaries.

The self OPEs of the chiral (anti-chiral) W (W̄) superfields are regular, as is also clear from the

N = 3 OPE selection rules derived in 3.22. Finally, all that is left is to write down the most general

10We emphasize that the existence of a two-dimensional chiral algebra does not imply that there exists a four-
dimensional theory that gives rise to it. In fact it is still not clear what are the sufficient conditions for a chiral algebra
to correspond to a physical four-dimensional theory.

11Note that in [67] what is called chiral primary is what we call anti-chiral primary, e.g., W̄ which obeys DW̄ = 0.
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OPE for WW̄ in terms of all of the existing generators [10]

W(Z1)W̄(Z2) ∼
2∑

h=0

1

Z3−h
12

(
3− h

2

θ12θ̄12
Z12

+ 1 + θ12D

)
λOh

Oh , (2.20)

where the sum runs over all uncharged operators, including composites and (super)derivatives.

The authors of [10] showed that, considering just these three fields as generators, one finds an

associative chiral algebra only if c2d = −15, which indeed corresponds to the correct value for the

simplest known non-trivial N = 3 SCFT (k = ℓ = 3 and N = 1 in the notation of [3]). However, there

are higher rank versions of this theory (k = ℓ = 3 and N > 1), that contain these half-BPS operators

plus higher dimensional ones. From [3], we see that a list of half-BPS operators would correspond to

B̂[0,R] , B̂[R,0] , with R = 3, 6, . . . , 3N , (2.21)

giving rise in two dimensions to additional chiral and antichiral operators with charges f = ±6, . . .±6N ,

and holomorphic dimension h = |f |/2. One can quickly see that the extra generators never appear

in the OPEs of W, W̄,J , as the only OPE not fixed by symmetry is the WW̄, and U(1)f charge

conservation forbids any of the B̂[R,0] with R > 6 to appear. If the generators of the chiral algebras

of higher rank theories corresponded only to the half-BPS operators plus the stress tensor, then we

would reach a contradiction: W, W̄,J would form a closed subalgebra of the full chiral algebra, but

the central charge would be frozen at c2d = −15, which is not the correct value for rank greater than

one.

Therefore, to resolve this contradiction we must allow for more generators in the higher-rank case,

and at least one of these must be exchanged in the WW̄ OPE. The only freedom in this OPE is to add

an uncharged dimension two generator. From the OPE selection rules we derive in 3.21 one can see

that this operator must correspond to a B̂[2,2]. There is another possibility, namely a Ĉ[0,0],0 multiplet,

but in four dimensions it contains conserved currents of spin greater than two, which should be absent

[61, 62] in interacting theories such as the ones we are interested in. The minimal resolution is to add

the generator corresponding to B̂[2,2]. We then make the following assumption:

The generators of the chiral algebra associated with the ℓ = k = 3 theories with N > 1 are given

by

• The stress tensor J ,

• (Anti-)chiral operators arising from the generators of the Coulomb branch operators B̂[0,R]

(B̂[R,0]) with R = 3, 6, . . . , 3N ,

• A generator corresponding to B̂[2,2] which we denote by U .

and as before we denote by W and W̄ the generators arising from B̂[0,3] and conjugate.12 Of course

nothing forbids the existence of additional generators, but the minimal modification that unfreezes

the value of the central charge is the addition of U . In fact, examples are known where the number of

generators not arising from generators of the HL ring grows with the number of HL generators [42].

12The fact that we do not allow for any other operator of dimension one (or smaller) prevents the symmetry of the
chiral algebra from enhancing to the small N = 4 superconformal algebra one gets from 4d N = 4 theories, thereby
excluding N = 4 solutions from our analysis. And by not allowing for additional dimension 3/2 generators we also
exclude discretely gauged versions of N = 4.
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We can then proceed to write down the most general OPEs. It is easy to check that in the OPEs

involving

J , W , W̄ , and U , (2.22)

the operators in (2.21) with R > 6 cannot be exchanged. This implies that if our assumptions above

are correct, the generators in (2.22) form a closed subalgebra.

In what follows we will check if it is possible to write an associative algebra for (2.22) without

needing to fix the central charge. We write down the most general ansatz for the OPEs of these

operators which, as explained above, are all super Virasoro primaries with the exception of J . The

regularity of the self OPEs of W and W̄ follows simply from OPE selection rules, while the OPE

between W and W̄ is given by (2.20), allowing for the exchange of U as well. The OPEs involving

U are quite long and therefore we collect them in appendix B. Imposing Jacobi identities we were

able to fix all the OPE coefficients in terms of the central charge, as can be seen from the results in

appendix B. We should point out that our goal was to obtain a one-parameter family of associative

algebras labeled by the central charge, and as such we did not take into consideration null states that

could arise for specific values of c2d.

2.1.3 Fixing the OPE coefficients from the chiral algebra

In the next sections we will study numerically the complete four-point function of two B̂[3,0] and two

B̂[0,3] operators, but first we want to fix as much as possible from knowledge of the chiral algebra.

Thanks to our solution we can compute the OPE coefficients of all operators appearing in the right hand

side of the WW̄ OPE. However, we still need to identify the four-dimensional superconformal multiplet

that each two-dimensional operator corresponds to. Let us start by examining the low dimensional

operators appearing in this OPE: we can write all possible operators with a given dimension that can

be made out of the generators by normal ordered products and (super) derivatives. Furthermore, they

must be uncharged, since the product WW̄ is. All in all we find the following list:

dimension operators

0 Identity

1 J

2 U , JJ , DD̄J , J ′

3 WW̄, JDD̄J , J ′′, J ′J , JJJ , DD̄J ′, DJ D̄J , DD̄U , JU , U ′

. . . . . .

From these operators we are only interested in the combinations that are global superprimary fields, as

the contributions of descendants will be fixed from them.13 Note also that, if we are interested in the

four point function of 〈WW̄WW̄〉, we only see, for the exchange of an operator of a given dimension,

a sum of the contributions of all global primaries, and we cannot distinguish between individual fields.

At dimension h = 1 there is only one operator – the super primary of the stress-tensor multiplet

– and its OPE coefficient squared can be computed to be (after normalizing the identity operator to

appear with coefficient one in the four-point function decomposition, and normalizing the J two-point

function to match the normalization for the blocks (g2d N=2, see (C.5)) that we use in the following

sections)
∣∣λWW̄J

∣∣2 = −
27

c2d
. (2.23)

13Note that this is only true because W and W̄ are chiral and anti-chiral, and therefore their three-point function
with an arbitrary superfield has a unique structure, being totally determined by a single number.
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This does not depend on the particular chiral algebra at hand, as the OPE coefficient with which the

the current J is exchanged, is totally fixed in terms of their charge f and the central charge. As

we will show in 4.1.1, the two-dimensional correlation function of the two W and two W̄, is fixed in

terms of one parameter which we take to be the OPE coefficient of J , and thus related to c2d. This

implies that, for the exchange of operators of dimension larger than one, any sum of OPE coefficients

corresponds to a universal function of c2d that does not depend on the particular chiral algebra under

consideration.

At dimension h = 2 we find two global superprimaries, one corresponding to U itself, and the other

containing JJ . From the four-dimensional OPE selection rules, shown in (3.21), it follows that both

superprimaries must correspond to B̂[2,2] supermultiplets in four dimensions, as the only other option

is Ĉ[0,0],0 which should be absent in interacting theories [61, 62]. This means that, even from the point

of view of the four-dimensional correlation function, these two operators are indistinguishable. Thus,

all we can fix is the sum of two OPE coefficients squared:

∣∣λWW̄U

∣∣2 +
∣∣λWW̄(JJ )

∣∣2 = −
18

c2d
, (2.24)

where we used the same normalizations as before, and fixed an orthonormal basis for the operators.

This number is independent of the particular details of the chiral algebra: it only requires the existence

of W, W̄ and J .

At dimension h = 3, we find four global super primaries made out of the fields listed above, three of

which are Virasoro primaries. In this case, however, these three different operators must belong to two

different types of four-dimensional multiplets (once again we are excluding the multiplet containing

higher spin currents). Namely, they must correspond to B̂[3,3] and Ĉ[1,1],ℓ=0, and distinguishing them

from the point of view of the chiral algebra is hard. The two-dimensional operators arising from B̂[3,3]

are guaranteed to be Virasoro primaries, while those of Ĉ[1,1],0 could be or not. Assuming that all

Virasoro primaries come exclusively from B̂[3,3] we can compute the OPE coefficient with which this

multiplet is exchanged by summing the squared OPE coefficients of all Virasoro primaries

3∑

i=1

∣∣λJJViri, h=3

∣∣2 =
2(c2d(5c2d + 127) + 945)

5c2d(2c2d + 13)
. (2.25)

We can take the large c2d = −12c4d limit, where the solution should correspond to generalized free

field theory. In this case we can find from the four-point function given in appendix E that the OPE

coefficient above should go to 1, and indeed this is the case. We could also have assumed that different

subsets of the three Virasoro primaries correspond to B̂[3,3]. Not counting the possibility used in (2.25),

there is one possibility which does not have the correct behavior as c4d → ∞, and two that have:

2∑

i=1

∣∣λJJViri, h=3

∣∣2 =
351378− 10c2d(c2d(c2d(c2d + 22)− 260)− 8430)

(c2d − 1)c2d(2c2d + 13)(12− 5c2d)
, (2.26)

3∑

i=2

∣∣λJJViri, h=3

∣∣2 =
2(c2d + 15)(c2d(c2d(5c2d + 37) + 39) + 4482)

5(c2d − 1)c2d(c2d + 6)(2c2d − 3)
. (2.27)

We can now also compute for each of the above cases the OPE coefficient of the Ĉ[1,1],ℓ=0 multiplet,

and we find that only (2.25) and (2.27) are compatible with 4d unitarity (the precise relation between

2d and 4d OPE coefficients is given by (4.20)).
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Rank one case

Let us now comment on what happens for the case of the rank one theory, where c2d = −15 and the

extra generator U is absent. In this case we find a single (non-null) Virasoro primary at dimension

three.14 This implies that either there is no B̂[3,3] multiplet and that the OPE coefficient is zero, or,

which seems like a more natural option, that the Virasoro primary corresponds to this multiplet, with

OPE coefficient ∣∣λJJVirh=3

∣∣2 =
22

85
. (2.28)

The above corresponds to setting c2d = −15 in both (2.25) and (2.26), as expected since for this value

the extra generator is not needed and decouples. The possibility that there is no B̂[3,3] multiplet in the

rank one theory and thus that the OPE coefficient is zero corresponds to the c2d = −15 case of (2.27).

If this last possibility were true, then we would have that the operator WW̄ ∼ J 3 is not in the Higgs

branch, since Higgs branch operators correspond to B̂R multiplets in N = 2 language. Hence, there

would be an extra Higgs branch relation setting J 3 = 0, which does not seem plausible. Nevertheless,

we will allow for (2.27) for generic values of the central charge. It is possible that one can select among

the two options ((2.25) and (2.27)) for generic central charge precisely by using knowledge of the Higgs

branches of the higher rank theories, and making use of the considerations in [68] about recovering

the Higgs branch out of the chiral algebra, but we leave this for future work.

If we now go to higher dimension, the list of operators keeps on growing, and their four-dimensional

interpretation is always ambiguous. A dimension h global superprimary can either be a Ĉ[2,2],h−4 or a

Ĉ[1,1],h−3 four-dimensional multiplet, and in this case there does not seem to be an easy way to resolve

the ambiguity.15

3 Superblocks

In this section we will use harmonic superspace techniques in order to study correlation functions

of half-BPS operators. We will follow closely [39, 69], where a similar approach was used to study

correlation functions in several superconformal setups.

3.1 Superspace

Coset superspace. We introduce the superspace M as a coset M ≃ SL(4|3)
/
G≤0. Here, the

factor G≤0 corresponds to lower triangular block matrices with respect to the decomposition given in

(3.1) below. We take E(p) ∈ G>0 as coset representative explicitly given by

E(p) := exp





0(2|1) V X

0 0 V

0 0 0(2|1)



 =





1(2|1) V X+

0 1 V

0 0 1(2|1)



 , (3.1)

where

X =

(
xαα̇ λα

πα̇ y

)
, V =

(
θα

v

)
, V =

(
θ̄α̇ v̄

)
. (3.2)

In the above, α ∈ {1, 2}, α̇ ∈ {1, 2} are the familiar Lorentz indices and the coordinates {λα, πα̇, θα, θ̄α̇}

are fermionic, while the y, v, v̄ are bosonic R-symmetry coordinates. The action of SL(4|3) on this

14There is another Virasoro primary, which is a composite operator that is null for this central charge. This null
corresponds precisely to the Higgs branch relation of the form WW̄ ∼ JJ 3 described in [10].

15One possibility would be to find two sets of OPEs such that in each set of the above multiplets is forbidden to
appear by selection rules.
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G(+,0) G(0,+) G(0,0) G(−,0) G(0,−)

g ◦ (X+, V ) (X++bV , V ) (X+, V + b̄) (AX+, V )D−1 (X+, V +c̄X+) (X+, V )h̄

g ◦ (X−, V ) (X−, V + b) (X−−V b̄, V ) A(X−D−1, V ) h(X−, V ) (X−, V −X−c)

Table 1. We used the definitions h := (13 +V c̄)−1 and h̄ := (13 + cV )−1. The transformations corresponding
to G(+,+), G(−,−) are generated by the ones above. For convenience we give the explicit form of super-special-
conformal transformations G(−,−): (X+, V ) 7→ (X+, V )(1 + CX+)−1 and (X−, V ) 7→ (1 + X−C)−1(X−, V ).

superspace follows from the coset construction and is summarized in table 1. Notice that SL(4|3) acts

invariantly within the superspaces M+, M− with coordinates {X+, V }, {X−, V } respectively, where

we have defined X± = X ± 1
2V V . The basic covariant objects extracted from the invariant product

E(p2)
−1E(p1) are

X1̄2 := X+,1 −X−,2 − V2V 1 , V12 := V1 − V2 , V 12 := V 1 − V 2 . (3.3)

We also define X21̄ := −X1̄2.

Superfields for superconformal multiplets . The supermultiplets B̂[R1,R2] correspond to “scalar”

superfields on M . Among them, as discussed in the previous section, the ones with R1R2 = 0

are special in the sense that they satisfy certain chirality conditions. We call chiral (anti-chiral) a

superfield16 that depends only on the coordinates {X−, V } ({X+, V }). Within this terminology, the

operators B̂[0,R] are chiral while the B̂[R,0] are antichiral. More general supermultiplets can be described

as superfields on M with SL(2|1) × SL(2|1) indices which extend the familiar Lorentz indices. We

will not need to develop the dictionary between N = 3 superconformal representations and SL(2|1)×

SL(2|1)×GL(1)×GL(1) induced representations in this work and thus leave it for the future.

Remark 1. The subspace MN=2 corresponding to setting V = V = 0 is acted upon by the N =

2 superconformal group SL(4|2). The corresponding superspace is well known, see e.g. [37]. The

superfields corresponding to the N = 3 supermultiplets B̂[R1,R2] reduce to the N = 2 supermultiplet

B̂ 1
2 (R1+R2) when restricted to the superspace MN=2. The other operators in the decomposition of

B̂[R1,R2] in N = 2 supermultiplets, see (A.1), (A.2), roughly corresponds to the expansion of the

superfield in V and V . There is also a N = 1 subspace MN=1 , which is not a subspace of MN=2,

defined by setting λα, πα̇, v, v̄ to zero. A SL(4|1) × SL(2) subgroup of SL(4|3) acts on MN=1. This

observation will be useful in the derivation of the superconformal blocks in section 3.4.

Examples of two- and three-point functions. We denote superfields and supermultiplets in the

same way. Let us list some relevant examples of two- and three-point functions of B̂-operators of

increasing complexity:

〈B̂[R1,R2](1)B̂[R3,R4](2)〉 = δR1,R4
δR2,R3

(2̄1)R1 (1̄2)R2 , (3.4)

〈B̂[0,R](1)B̂[R,0](2)B̂[S,S](3)〉 = (2̄1)R−S ((2̄3)(3̄1))
S
, (3.5)

〈B̂[0,R](1)B̂[0,R](2)B̂[R1,R2](3)〉 = δR1,2R δR2,0 ((3̄1)(2̄1))
R
, (3.6)

〈B̂[R,R](1)B̂[R,R](2)B̂[R,R](3)〉 = ((2̄1)(3̄2)(1̄3))
R
PR(C) , (3.7)

16 This is not the standard terminology for chiral superfields in N -extended superspace. We hope this will not cause
any confusion to the reader.
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where we have defined

(1̄2) :=
1

sdet(X1̄2)
, C :=

(3̄1)(1̄2)(2̄3)

(2̄1)(3̄2)(1̄3)
. (3.8)

In (3.5) superspace analyticity implies that S ≤ R and that the correlation function vanishes otherwise.

Similarly, in (3.7), C is a superconformal invariant and superspace analyticity implies that PR(C) is

a polynomial of degree R in C. Since the three operators are identical, one further imposes Bose

symmetry which translates to PR(x) = xRPR(x
−1). Equation (3.7) specialized to the case R = 1

corresponds to the three-point function of the stress-tensor supermultiplet B̂[1,1] and the argument

above implies that P1(x) = const × (1 + x). This provides a quick proof of the fact that for N = 3

superconformal theories one has the relation a = c as first derived in [1].

Let us consider the three-point functions relevant for the non-chiral OPE B̂[R,0] × B̂[0,R]. A little

superspace analysis reveals that the three-point function of a chiral and an anti-chiral operator with

a generic operator takes the form

〈B̂[0,R](X−,1, V1)B̂[R,0](X+,2, V 2)O(X3, V3, V 3)〉 = (2̄1)RρO
(
X3̄1X

−1
2̄1

X2̄3

)
. (3.9)

The quantity ρO is determined uniquely up to a multiplicative constant by the requirement that (3.9)

is superconformally covariant. It is not hard to verify that one can set the coordinates V1, V 2, V3, V 3

to zero by an SL(4|3) transformation which is not part of the N = 2 superconformal group SL(4|2)

(with the embedding specified in the remark 1 above). This means that (3.9) is zero if its N = 2

reduction (i.e., the result obtained after setting Vi = V i = 0) is zero, as confirmed by the selection

rules result (3.21) that we derive later in section 3.3.

Turning to the three-point functions relevant for the chiral OPE B̂[R,0] × B̂[R,0], it is not hard to

convince oneself that they take the form

〈B̂[0,R](X−,1, V1)B̂[0,R](X−,2, V2)Õ(X3, V3, V 3)〉 = ((3̄1)(3̄2))
R
ρ̃Õ
(
X̂, V̂

)
, (3.10)

where

X̂ =
(
X−1

23̄
−X−1

13̄

)−1
, V̂ = X−1

23̄
V23 −X−1

13̄
V13 , (3.11)

and ρ̃Õ is fixed by requiring superconformal covariance of (3.10). It is important to remark that, as

opposed to (3.9), in this case one cannot set the coordinates V1, V2, V3, V 3 to zero using superconformal

transformations. However, they can be set to the values

{(X−,1, V1), (X−,2, V2), (X−,3, V3, V 3)} 7→ {(∞, 0), X̂(1, V̂ ), (0, 0, 0)} . (3.12)

The combinations X̂ and V̂ carry non trivial superconformal weights only with respect to the third

point corresponding to the operator Õ.

3.2 Superconformal Ward identities

We will now derive, along the same lines as [31, 39, 69], the superconformal Ward identities for the

four point correlation function 〈B̂[0,R]B̂[R,0]B̂[0,R]B̂[R,0]〉. Let us first introduce super-cross-ratios for

this four point function. The eigenvalues of the graded matrix

Z := X12̄ X
−1
32̄

X34̄ X
−1
14̄

, (3.13)
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are invariant and will be denoted by x1, x2, y. It is easy to convince oneself that these are the only

invariants by noticing that all fermionic coordinates in this four point function can be set to zero by

a superconformal transformation. It follows that

〈B̂[0,R](1)B̂[R,0](2̄)B̂[0,R](3)B̂[R,0](4̄)〉 = (12̄)R (34̄)R GR(x1, x2, y) , (3.14)

where GR(x1, x2, y) = GR(x2, x1, y). The form of GR(x1, x2, y) is strongly restricted by the require-

ment of superspace analyticity. Firstly, after setting all fermionic variables to zero

Z|ferm=0 =

(
x12 x

−1
32 x34 x

−1
14 0

0 y12̄y34̄

y32̄y14̄

)
, yı̄j := yi − yj − vj v̄i , (3.15)

polynomiality in the R-symmetry variables implies that GR(x1, x2, y) is a polynomial of degree R

in y−1. Secondly, one has to make sure that the fermionic coordinates can be turned on without

introducing extra singularities in the R-symmetry variables. By looking at the expansion of the

eigenvalues of (3.13) in fermions, one concludes that the absence of spurious singularities is equivalent

to the conditions

(∂x1 + ∂y)GR(x1, x2, y)
∣∣
x1=y

= 0 , (∂x2 + ∂y)GR(x1, x2, y)
∣∣
x2=y

= 0 . (3.16)

These equations imply in particular that GR(x, x2, x) = fR(x2) and GR(x1, x, x) = fR(x1). The

general solution of the Ward identities can be parametrized as

GR(x1, x2, y) =
(x−1

1 − y−1)fR(x1)− (x−1
2 − y−1)fR(x2)

x−1
1 − x−1

2

+
(
x−1
1 − y−1

) (
x−1
2 − y−1

)
HR(x1, x2, y) ,

(3.17)

where HR(x1, x2, y) is a polynomial of degree R− 2 in y−1. In particular, it is zero for the case R = 1

corresponding to a free theory. For the following analysis it is useful to introduce the variables z, z̄, w

as

x1 =
z

z − 1
, x2 =

z̄

z̄ − 1
, y =

w

w − 1
. (3.18)

This change of variable is an involution in the sense that z = x1

x1−1 and so on. They are related to the

more familiar cross ratios as

u =
x2
12x

2
34

x2
13x

2
24

= zz̄|ferm=0 , v =
x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄)|ferm=0 . (3.19)

Notice that the WI (3.16) take the same form in the new variables and that moreover

(z−1 − w−1)(z̄−1 − w−1) = (x−1
1 − y−1)(x−1

2 − y−1) , (3.20a)

(x−1
1 − y−1)f(x1)− (x−1

2 − y−1)f(x2)

x−1
1 − x−1

2

=
(z−1 − w−1)f(x1)− (z̄−1 − w−1)f(x2)

z−1 − z̄−1
, (3.20b)

for any function f(x). We refer to appendix E for an analysis of the generalized free theory solution

of the Ward identities (3.16).
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3.3 Selection rules

Non-chiral channel. The OPE in the non-chiral channel B̂[R,0] × B̂[0,R] can be obtained by using

the superconformal Ward identities just derived, together with the fact that the three-point function

〈B̂[R,0]B̂[0,R]O〉, where O is a generic operator, is non-zero only if the three-point function of the

corresponding primary states17 is non-zero by conformal and R-symmetry. The latter condition can

be derived by recalling that the fermionic coordinates in this three-point function can be set to zero

by a super-conformal transformation. A little analysis shows that

B̂[R,0] × B̂[0,R] = I +

R∑

a=1

B̂[a,a] +

∞∑

ℓ=0

[
R−1∑

a=0

Ĉ[a,a],ℓ +
R−2∑

a=0

A∆
[a,a],r=0,ℓ

]
. (3.21)

Notice that these relations are remarkably similar to the B̂R/2 × B̂R/2 OPE in the N = 2 case, see

[63]. The three upper bounds on the finite summations R,R− 1, R− 2 could be derived by imposing

that the three point function 〈B̂[R,0]B̂[0,R]O〉 is free of superspace singularities. Equivalently, it can

be derived by requiring that the associated superconformal blocks takes the form (3.17). We followed

the latter strategy as it seems more economical.

Chiral channel. The chiral channel selection rules are obtained by requiring that a given multiplet

can only contribute if it contains an operator annihilated by all the supercharges that annihilate the

highest weight of B̂[R,0], and said operator transforms in one of the representations appearing in the

tensor product of the R-symmetry representations [R, 0] × [R, 0] and with the appropriate spin to

appear in the OPE of the scalars fields we consider. We have performed this calculation for R = 2, 3

and on the base of it propose that the expression form for general R is

B̂[R,0] × B̂[R,0] = B̂[2R,0] +

R∑

a=2

B[2(R−a),a],r=4R,0 +

+

∞∑

ℓ=0

[
Ĉ[2R−2,0],( ℓ+1

2 , ℓ2 )
+

R∑

a=2

(
C

r=4R−1

[2(R−a),a−1],( ℓ+1
2 , ℓ2 )

+A∆,r=4R−2

[2(R−a),a−2],( ℓ
2 ,

ℓ
2 )

)]
. (3.22)

We have checked the above in several cases for R > 3 and superspace arguments suggest it is indeed

the correct selection rule. Note that in (3.22) the B-type multiplets have r = 4R, the C-type multiplets

r = 4R − 1 and the A-type multiplets r = 4R − 2. Moreover, if we are considering identical B̂[R,0]

then Bose symmetry further constraints the spin of the operators appearing on the right-hand-side

according to their SU(3)R representation.

3.4 Superconformal blocks

We will now derive the super-conformal blocks relevant for the expansion of the four point function

(3.14). The superconformal Ward identities alone turn out not to be sufficient to uniquely determine

all the superblocks. We resolve the leftover ambiguity by requiring that they are linear combinations

of SL(4|1) × SU(2) (N = 1) superblocks. There are two types of blocks corresponding to the two

channels (3.21) for the non-chiral OPE and (3.22) for the chiral one. The two kinds of block are closely

connected to N = 2 superconformal blocks relevant for the four-point function of B̂-type operators

and are collected in tables 2 and 3. When the kinematics is restricted to (z, z̄, w) = (z, w,w), only

17With the terminology primary state we mean the conformal × R-symmetry multiplet with the lowest value of ∆ in
the decomposition of a superconformal multiplet in conformal × R-symmetry multiplets.
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superconformal blocks corresponding to the exchange of Schur operators, defined in section 2.1.1, are

non-vanishing. Moreover they reduce to (global) superblocks for the N = 2 superconformal algebra

sl(2|1) ≃ osp(2|2).

3.4.1 Superconformal blocks for the non-chiral channel.

On general grounds, the N = 3 superconformal blocks contributing to the four point function (3.14) in

the non-chiral channel can be written as an expansion in terms of conformal times SU(3) R-symmetry

blocks:

Gχ(z, z̄, w) =
∑

α∈Sχ

cα(χ) g∆α,ℓα(z, z̄)h[Rα,Rα](w) . (3.23)

The explicit form of the conformal blocks g∆,ℓ is given in Appendix C. The SU(3) R-symmetry blocks

take the form

h[a,a](w) =

(
2a+ 1

a+ 1

)−1

2F1(−a, a+ 2, 1, y−1) , y =
w

w − 1
, (3.24)

see Appendix C. The normalization in (3.24) is chosen so that h[a,a](w) = w−a + . . . for w → 0. The

set Sχ is determined by considering the decomposition of the N = 3 representation being exchanged

into representations of the bosonic subalgebra. This is done using supercharacters. The normalization

can be fixed by taking for instance cα(χ) = 1 for the label α corresponding to the minimum value of

∆α in the supermultiplet.

Consider the superblocks corresponding to the non-chiral OPE channel of (3.21). Concerning

the superblocks for the B̂[R,R] exchange it turns out that they are uniquely fixed by imposing the

superconformal WI on (3.23). The superblocks corresponding to the exchange of a Ĉ[R,R],ℓ on the

other hand are not uniquely fixed by the this procedure. The remaining ambiguity can be resolved

by requiring that they reduce to OSP(2|2) (this is the global part of the chiral half of the d = 2,N =

2 superconformal symmetry) superblocks when restricted to (z, z̄, w) = (z, w,w). Specifically, this

amounts to requiring

fĈ[R,R],ℓ
(z) = GĈ[R,R],ℓ

(z, w,w) = (−1)ℓ+1g2d N=2
R+ℓ+2 ( z

z−1 ) with g2d N=2
h (x) = xh

2F1(h, h, 2h+ 1, x) ,

(3.25)

where f(z) corresponds to the parametrization (3.17).18 Finally the superblocks for the exchange

of long operators A∆
[a,a],r=0,ℓ are not uniquely determined by the two conditions given above. The

leftover ambiguity can be resolved by studying the Casimir equations. However, we decide to take a

shortcut and use the knowledge of the N = 1 superblocks. The relevant superblocks, which are the

ones derived in [15, 34], are given by

GN=1
∆,ℓ (z, z̄) = (zz̄)−

1
2 g∆12=∆34=1

∆+1,ℓ (z, z̄) . (3.26)

It follows from the remark 1, that the N = 3 superblocks can be expanded in N = 1 times SU(2)

“flavor symmetry” blocks as

GN=3
A∆

[m,m],r=0,ℓ
(z, z̄, w) = d̃

(0,0)
∆,ℓ (w)GN=1

∆,ℓ (z, z̄) + d̃
(1,1)
∆,ℓ (w)GN=1

∆+1,ℓ+1(z, z̄) + · · ·+ d̃
(4,0)
∆,ℓ (w)GN=1

∆+4,ℓ(z, z̄) .

(3.27)

18To each superblock Gχ corresponds a function fχ and a function Hχ by using the parametrization (3.17).
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χ fχ Hχ

identity 1 0

B̂[m,m] g2d N=2
m (−1)m

∑m−2
k=0 GN=1

m+k+2,m−k−2 h[k,k]

Ĉ[m,m],ℓ (−1)ℓ+1 g2d N=2
m+ℓ+2 (−1)m+1

∑m−1
k=0 GN=1

m+ℓ+k+4,m+ℓ−k h[k,k]

A∆
[m,m],ℓ 0 (−1)mGN=1

∆+2,ℓ h[m,m]

Table 2. List of super-conformal blocks contributing to (3.21) in the parametrization (3.17). These expres-
sions are consistent with the decompositions of superblocks at unitarity bounds, see (3.30). We recall that the
explicit expressions for the auxiliary block entering the table are given in (3.25), (3.26) and (3.24). Notice

that for the stress tensor supermultiplets B̂[1,1], the function HB̂[1,1]
is zero.

On the right hand side, the sum runs over the terms

(∆, ℓ) , (∆ + 1, ℓ± 1) , (∆ + 2, ℓ± 2) , (∆ + 2, ℓ) , (∆ + 3, ℓ± 1) , (∆ + 4, ℓ) . (3.28)

Imposing that the form (3.23), subject to the WI, can be expanded as in (3.27), fixes the leftover am-

biguity in the N = 3 superblocks and the coefficient functions d̃
(a,b)
∆,ℓ (w) up to an overall normalization.

The solution can then be rewritten in the compact form

GN=3
A∆

[m,m],r=0,ℓ
(z, z̄, w) = (−1)m(z−1 − w−1)(z̄−1 − w−1)GN=1

∆+2,ℓ(z, z̄)h[m,m](w) . (3.29)

The simplicity of this expression will be justified in remark 2 below. This concludes the derivation of

superconformal blocks relevant for the non-chiral channel. The results are summarized in table 2.

Before turning to the discussion of the superblocks relevant for the chiral channel, we perform a

consistency check on the blocks just derived. As can be seen in table 2, short blocks can be obtained

from the long ones (3.29) at the unitarity bounds by using

GA∆=ℓ+2+2m
[m,m],r=0,ℓ

= GĈ[m,m],ℓ
+ GĈ[m+1,m+1],ℓ−1

, (3.30)

where we identify Ĉ[m,m],−1 ≡ B̂[m+1,m+1]. This is consistent with the multiplet decomposition at the

unitarity bound: A∆=ℓ+2+2m
[m,m],r=0,ℓ → Ĉ[m,m],ℓ⊕Ĉ[m+1,m+1],ℓ−1⊕”extra”, where ”extra” does not contribute

to the block.

3.4.2 Superconformal blocks for the chiral channel.

We denote the superconformal blocks contributing to this channel as G̃χ(z, z̄, w), where χ labels the

representations being exchanged from the list (3.22). As in the case of the non-chiral channel, we start

with an expansion of the superblocks in conformal times SU(3) blocks and impose the superconformal

Ward identities, (3.16). Specifically we take

G̃χ(z, z̄, w) =
∑

α∈ S̃χ

c̃α(χ) g∆α,ℓα(z, z̄) h̃[2(R−nα),nα](w) . (3.31)
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χ f̃χ H̃χ

B̂[2m,0] g2dm
∑m−2

a=0 gm+a+2,m−a−2 h
SU(2)
a

Ĉ[2m−2,0],( ℓ+1
2 , ℓ2 )

g2dm+ℓ+2

∑m−2
a=0 gm+ℓ+a+4,m+ℓ−a h

SU(2)
a

B
r=4m

[2(m−a),a],0 0 g2m+2,0 h
SU(2)
m−a

C
r=4m−1

[2(m−a),a−1],( ℓ+1
2 , ℓ2 )

0 g2m+ℓ+3,ℓ+1 h
SU(2)
m−a

A∆,r=4m−2

[2(m−a),a−2],( ℓ
2 ,

ℓ
2 )

0 g∆+3,ℓ h
SU(2)
m−a

Table 3. List of super-conformal blocks contributing to (3.22) in the parametrization (3.17). These expres-
sions are consistent with the decompositions of superblocks at unitarity bounds, see (3.35). We recall that
the explicit expression of the SL(2) and R-symmetry blocks is given in (C.4) and (3.32) respectively.

It appears, perhaps not too surprisingly, that the SU(3) R-symmetry blocks h̃[2m,n](w) in this channel

coincide with SU(2) blocks. They take the form19

h̃[2m,n](w) = hSU(2)
m (w) = (−1)m

(
2m

m

)−1

2F1(−m,m+ 1, 1, w−1) , (3.32)

where the normalization is chosen so that h̃[2m,n](w) ∼ wm for w ∼ 0. The set S̃χ is determined by

looking at the content of the representation χ using supercharacters. Using this information, all the

coefficients c̃α(χ) are then fixed by the requirement that (3.31) satisfies the superconformal WI (3.16).

With a little inspection on the solutions, one recognizes that the superblocks in this channel are

the N = 2 superconformal blocks that contribute to the four-point function of B̂N=2 supermultiplets

[30–32]. The identification is given by

G̃N=3
χ (z, z̄, w) = GN=2

p(χ) (z, z̄, w) , (3.33)

where p maps the N = 3 representations being exchanged in the chiral channel, see (3.22), to N = 2

representations as follows

p




B̂[2R,0]

Ĉ[2(R−1),0],( ℓ+1
2 , ℓ2 )

B
r=4R

[2(R−a),a],0

C
r=4R−1

[2(R−a),a−1],( ℓ+1
2 , ℓ2 )

A∆,r=4R−2

[2(R−a),a−2],( ℓ
2 ,

ℓ
2 )




=




B̂R

ĈR−1,ℓ+1

A2R
R−a,0

A2R+ℓ+1
R−a,ℓ+1

A∆+1
R−a,ℓ




. (3.34)

The resulting superblocks in the parametrization (3.17) are given in Table 3. The blocks g2dR are given

in (C.4). The equality (3.33) is of course not accidental, we will comment on its origin in the remark

below.

The unitarity bound relevant for the chiral channel is

A∆,r=4m−2

[2(m−a),a−2],( ℓ
2 ,

ℓ
2 )

∆=ℓ+2m−1
−−−−−−→ C

r=4m−2

[2(m−a),a−2],( ℓ
2 ,

ℓ
2 )

⊕ C
r=4m−1

[2(m−a),a−1],( ℓ
2 ,

ℓ−1
2 ) , (3.35)

19 One can recognize the appearance of Legendre polynomials as (−1)m2F1(−m,m+ 1, 1, w−1) = Pm( 2
w

− 1).
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where C
r=4m−1

[2(m−a),a−1],(0,− 1
2 )

= B
r=4m−1

[2(m−a),a],0. Only the underlined term contributes to the superblocks G̃,

as can be seen in table 3.

Remark 2. In [37], the authors derived superconformal partial waves for scalar four-point functions

on a super Grassmannian space Gr(m|n, 2m|2n). It is an interesting problem to generalize the anal-

ysis of [37] to the more general case of Gr(m|n,M |N). The example we just studied corresponds to

Gr(2|1, 4|3). The example of chiral superfields (in the traditional sense) for N -extended supersymme-

try corresponds to the super Grassmannian Gr(2|0, 4|N ) and the corresponding superblocks are given

in [34]. The simplicity of the results (3.29) and (3.33) and the one presented in [34] suggests a simple

unified picture.

4 The bootstrap equations

The main purpose of this section is to derive the bootstrap equations for the four-point function (3.14).

The result is given in equation (4.14) and its numerical analysis is the subject of section 5. As first

done in [20] and systematized in [19], it is convenient to divide the sum over operators being exchanged

in the OPE into two groups: the ones that survive the cohomological reduction (referred to as Schur

operators) described in section 2, and the rest. In some cases the contribution from the exchange of

Schur operators can be determined entirely in terms of the cohomologically reduced correlators, but

this is not the generic situation. In the specific case of the N = 3 four-point function (3.14), the chiral

channel contributions of Schur operators can be extracted from the reduced correlator fR(x), while

for the non-chiral channel only a component (corresponding to the R-symmetry singlet part of the

function HR in the parametrization (3.17)) can be extracted unambiguously from fR(x).

4.1 The crossing equations

As discussed in section 3.2, it follows from the superconformal WI (3.16) that the correlation function

GR defined in (3.14) can be parametrized as (3.17). We will now derive crossing relations for the

functions fR(x), HR(x1, x2, y) entering (3.17) from the crossing symmetry of GR. As expected, fR(x)

and f̃R(z) satisfy crossing equations by themselves that are solved in terms of a small number of

parameters. Once this is done, fR(x) and f̃R(z) play the role of source terms in the crossing relations

for HR(x1, x2, y), H̃R(x1, x2, y).

First equation. Consider the four-point function (3.14). Imposing that it is invariant upon the

exchange of points 1 ↔ 3 implies the crossing equations

GR(x1, x2, y) =

(
x1x2

y

)R

GR(x
−1
1 , x−1

2 , y−1) . (4.1)

This is due to the fact that the matrix Z, given in (3.13), transforms to its inverse up to a similarity

transform if points one and three are exchanged. In terms of the solution of the WI (3.17), the crossing

equation (4.1) implies that the single variable function fR(x) is crossing invariant by itself:

fR(x) = xR fR(x
−1) . (4.2)
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The above is a specialization of (4.1) to (x1, x2, y) = (x, y, y). Furthermore, it follows that the function

HR(x1, x2, y) satisfies the relation

(x1x2)
R+1

yR−2
HR(x

−1
1 , x−1

2 , y−1)−HR(x1, x2, y) =
y2−R

x−1
1 − x−1

2

(x2 AR(x2, y) fR(x1)− x1 ↔ x2) , (4.3)

where we have defined

AR(x, y) :=
xR−1 − yR−1

x − y
, (4.4)

which is a polynomial in x, y. The relation (4.3) has been obtained after imposing (4.2). Note that in

the special case R = 2, all the y dependence disappears from the last equation.

The function fR(x) is easily argued to be a polynomial of degree R in x as we shall see in sec-

tion 4.1.1. The crossing relation (4.2), together with the normalization fR(0) = 1, reduces the number

of independent parameters entering this function to R
2 (respectively R−1

2 ) for R even (respectively

odd).

Second equation. Next, we take again the four-point function (3.14) and after some relabeling of

the points we obtain

〈B̂[R,0](1)B̂[R,0](2)B̂[0,R](3̄)B̂[0,R](4̄)〉 =

[
(13̄) (24̄)

(
w̃

z̃ ˜̄z

)]R
G̃R(z̃, ˜̄z, w̃)

= (23̄)R (14̄)R GR(ẑ1, ẑ2, ŷ) ,

(4.5)

where we have defined

Ẑ := X23̄ X
−1
13̄

X14̄ X
−1
24̄

∼ diag(ẑ1, ẑ2, ŷ) , (4.6)

and (z̃, ˜̄z, w̃) := (1 − ẑ1, 1 − ẑ2, 1 − ŷ1). It is useful to observe that if the superspace coordinates are

V = V = 0, the cross ratios above are related to the one entering (3.14) as (z̃, ˜̄z, w̃) = (z, z̄, w) and

(ẑ1, ẑ2, ŷ) = ((1−x1)
−1, (1−x2)

−1, (1−y)−1). The first equality in (4.5) is to be understood as defining

the function20 G̃R, while the second one is a rewriting of (3.14). The function G̃R satisfies the same

superconformal Ward identities as GR. We thus parametrize it as in (3.17) with the functions fR and

HR replaced by f̃ and H̃R and the variables x1, x2, y replaced by z̃, ˜̄z, w̃. An immediate consequence

of (4.5) is

G̃R(z, z̄, w) =

(
( z
1−z )(

z̄
1−z̄ )

( w
1−w )

)R

GR(1− z, 1− z̄, 1− w) . (4.7)

Note, since the z̃, ˜̄z, w̃ are dummy variables, we have renamed them in (4.7) as (z̃, ˜̄z, w̃) → (z, z̄, w).

As for the crossing equation (4.1), the relation (4.7) implies a relation for the single variable function

f̃R:

f̃R(z) =

(
z

1− z

)R

fR(1− z) , (4.8)

while for the H̃ function we get

(−1)R
(x1x2)

R+1

yR−2
HR(1− z, 1− z̄, 1− w)− H̃R(z, z̄, w) =

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1
(4.9)

20 The strange prefactor is the natural supersymmetric completion of (x2
12x

2
34)

−R.
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where AR(x, y) was defined in (4.4) and we remind that in (3.18) we set (x1, x2, y) = ( z
z−1 ,

z̄
z̄−1 ,

w
w−1 ).

As for the first crossing equation (4.3), the dependence on w disappears from (4.9) for R = 2.

Third equation. Bose symmetry under the exchange 1 ↔ 2 for G̃R implies the relation

G̃R(z, z̄, w) = (−1)RG̃R(
z

z−1 ,
z̄

z̄−1 ,
w

w−1 ) . (4.10)

Using the identities (3.20), one recognizes that (4.10) implies that

f̃R(z) = (−1)Rf̃R(
z

z−1 ) , H̃R(z, z̄, w) = (−1)RH̃R(
z

z−1 ,
z̄

z̄−1 ,
w

w−1 ) , (4.11)

It should be noticed that the first equation in (4.11) follows from (4.2) and (4.8).

4.1.1 Determination of the function fR(x)

The cohomological reduction of the correlator (3.14), which in superspace corresponds to a specializa-

tion of the superspace coordinates in (3.2) to X = diag(z, y, y), V = (θ, 0, 0)T and V = (θ̄, 0, 0), gives

the holomorphic correlator

〈W(z−,1, θ1)W̄(z+,2, θ̄2)W(z−,3, θ3)W̄(z+,4, θ̄4)〉 =
fR(x)

(z12̄z34̄)R
, x =

z12̄z34̄
z32̄z14̄

, (4.12)

where z± = z ± 1
2θθ̄ and z12̄ = z1,− − z2,+ + θ1θ̄2. For the following discussion we set the fermionic

coordinates θ = θ̄ = 0. We can view the correlator above as a meromorphic function of z1, whose poles

correspond to singular terms in the OPE of W(1) with the remaining operators. The chiral OPE is

non-singular, so there is no pole when z1 ∼ z3 (corresponding to x ∼ 1). The singularity for z1 ∼ z2
(corresponding to x ∼ 0), on the other hand, is already taken care of by the prefactor in the right

hand side of (4.12). Finally, for z1 ∼ z4 (corresponding to x ∼ ∞) we have fR(x) ∼ xR. There is no

other singularity so fR(x) is a polynomial of degree R in x, that we normalize as fR(1) = 1, subject

to the crossing relation (4.2). It is thus fixed in terms of
⌊
R
2

⌋
constants. The small x expansion of

the correlator takes the form fR(x) = 1+ R2

4c4d
x+ . . . where c4d ≡ c is the central charge21 of the four

dimensional theory. For R = 1 the crossing relation (4.2) implies that f1(x) = 1 + x, this forces the

central charge to take the value c4d = 1
4 which corresponds to N = 4 SYM with gauge group U(1).

The case R = 3 was already given in (2.23) with the identification (2.5). The derivation of this result

is standard, see e.g., [70].

4.1.2 The bootstrap equations

We will now turn the relations (4.3), (4.9), (4.11) into a system of bootstrap equations ready for the

numerical analysis. We assume that the function fR(x) is known. We proceed as follows

• The first step is to expand the correlation functions GR and G̃R entering (4.1) (4.7), (4.10) in

the superconformal blocks derived in section 3.4. From this, the block decomposition for the

functions HR, H̃R appearing in (4.3), (4.9), (4.11) follows using the results collected in tables 2

and 3.

• The next step is to split the sum over the exchanged operators into a summation over the Schur

operators

B̂[R,R] , Ĉ[R,R],ℓ , B̂[2R,0] , Ĉ
[2R−2,0](

ℓ+1
2 ,

ℓ
2 )

, (4.13)

21If the subscript is omitted, it is understood that c = c4d.
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and the remaining operators.22 We remind that they are the only ones in the OPEs (3.21) and

(3.22) that contribute to the chiral algebra, see (2.6) and the following.

• The third step is to re-sum the contribution of Schur operators to the HR and H̃R functions,

denoted as HR,short and H̃R,short in the following. (We sometimes omit the index R and write

just Hshort and H̃short.) We deal with these functions in section 4.2 and our final results are

given in (4.24) and (4.29).

It is important to keep in mind that, in general, knowledge of the function fR(x) alone is not sufficient

to determine HR,short unambiguously, in contrast with the chiral channel function H̃R,short, which

is fixed in terms of fR(x). This is due to the fact that different N = 3 supermultiplets give the

same contribution, in the sense of holomorphic blocks, to the functions fR(x) and f̃R(x). As we will

see in section 4.2, assuming the absence of supermultiplets that contains conserved currents,23 the

function H̃R,short and the component of HR,short in the R-symmetry singlet channel can be extracted

unambiguously from the knowledge of fR(x).

Summary of the result. Following the procedure that we just outlined one arrives at the bootstrap

equations:

∑

χ∈ B̂[R,0]×B̂[0,R]|A

|λχ|
2




Fχ

+Fb
−,χ

−Fb
+,χ


 +

∑′

χ∈ B̂[R,0]×B̂[R,0]|A,C,B

|λ̃χ|
2




0

F̃−,χ

F̃+,χ


 =



F

(0)
short

F
(−)
short

F
(+)
short


 . (4.14)

We now have to make several remarks in order to explain our notation.

a) We have defined the functions

Fχ =
[(1− z)(1− z̄)]

R+1

(1− w)R−2
Hχ(z, z̄, w)− (−1)R

[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]
, (4.15)

Fb

±,χ =
[(1− z)(1− z̄)]

R+1

(1− w)R−2
Hχ(

z
z−1 ,

z̄
z̄−1 ,

w
w−1 )±

[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]
, (4.16)

F̃±,χ =
[(1− z)(1− z̄)]

R+1

(1− w)R−2
H̃χ(z, z̄, w)±

[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]
. (4.17)

The explicit form of the functions Hχ, H̃χ is given in tables 2 and 3 for each representation χ.

b) The functions F
(0,±)
short receive contributions from two sources. The first one comes from the right

hand side of (4.3), (4.9) and contains the function fR explicitly. The second one corresponds to

the contribution of Schur operators to the left hand side of (4.3), (4.9). Specifically, we have

F
(0,±)
short = F

(0,±)
short [f ]−F

(0,±)
short [Hshort, H̃short] , (4.18)

with the explicit form of F
(0,±)
short [f ] and F

(0,±)
short [Hshort, H̃short] given in appendix D.1.

c) The precise range of summation in (4.14) is specified by the selection rules (3.21) and (3.22),

where we only take the operators that are not of Schur type, i.e., A in the non-chiral channel

22 This bisection does not coincide in general with the separation between long and short operators, as can be seen in
the chiral channel.

23These are expected to be absent in interaction theories [61, 62].
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and A,B, C in the chiral one. The prime in the second sum
∑′

indicates that the parity of

the spin label ℓ of the exchanged operator is fixed in terms of its R-symmetry representation.

Specifically even spins appear only for irreps in the sym([R, 0]⊗ [R, 0]) while odd spins for irreps

in antisym([R, 0]⊗ [R, 0]). This follows from (4.11) and the braiding relations (C.8) of individual

blocks.

d) The second and third equations in (4.14) are obtained respectively from the antisymmetrization

and symmetrization of the superconformal block expansion of (4.9) with respect to the exchange

(z, z̄, w) ↔ (1−z, 1− z̄, 1−w). An important remark, relevant for the numerical implementation,

is that the arguments of four dimensional superconformal and R-symmetry blocks entering (4.16),

namely ( z
z−1 ,

z̄
z̄−1 ,

w
w−1 ) and their inverses, can be traded for (z, z̄, w) and (1 − z, 1 − z̄, 1 − w)

using the braiding properties of the conformal blocks (C.8). This fact justifies the use of the

suffix b to denote “braided” in (4.16).

e) Finally, as customary, the identification |λχ|
2 =

∑
O|χ(O)=χ |λO|

2 is understood. By χ(O) we

mean the representation χ in which the operator O transforms.

4.2 Contribution of Schur operators

We have defined in the above section the functions HR,short and H̃R,short as the contribution from the

exchange of Schur operators (in the relevant channel) to the HR and H̃R functions entering (4.3) and

(4.9). We will now discuss to which extent the functions HR,short and H̃R,short can be extracted from

the knowledge of fR(x), or more generally, from the knowledge of the chiral algebra.

Non-chiral channel. Consider the expansion of the function fR(x) in holomorphic N = 2 (global

OSP(2|2)) blocks as

fR(x) = 1 +

∞∑

h=1

b
(R)
h g2d N=2

h (x) . (4.19)

The function fR(x) is a polynomial in x and the monomials xn, n > 0 can be expanded in holomorphic

N = 2 blocks as in (D.4). Using the result given in table 2 and the selection rules (3.21), it is clear

that in general one cannot reconstruct the four-dimensional OPE coefficients corresponding to Schur

operators (4.13) from the knowledge of the expansion (4.19). This is best illustrated by looking at the

examples

R = 1 : b
(1)
1 = |λB̂

1 |
2 , b

(1)
h>1 = (−1)h+1|λĈ

0,h−2|
2 ,

R = 2 : b
(2)
1 = |λB̂

1 |
2 , b

(2)
2 = |λB̂

2 |
2 , b

(2)
h>2 = (−1)h|λĈ

1,h−3|
2 , (4.20)

R = 3 : b
(3)
1 = |λB̂

1 |
2 , b

(3)
2 = |λB̂

2 |
2 , b

(3)
3 = |λB̂

3 |
2 − |λĈ

1,0|
2 , b

(3)
h>3 = (−1)h(|λĈ

1,h−3|
2 − |λĈ

2,h−4|
2) ,

and so on. Above we used the compact notation λB̂
m ≡ λ

(R)

B̂[m,m]
and λĈ

m,ℓ ≡ λ
(R)

Ĉ[m,m],ℓ
. Of course, λ’s

from different rows (i.e., for different values of R) in (4.20) are not the same, even though this is not

captured by the notation. The general pattern is quite simple and one finds

b
(R)
1≤h≤R = |λB̂

h |
2 −

h−2∑

a=1

(−1)h−a |λĈ
a,h−a−2|

2 , b
(R)
h>R = −

R−1∑

a=1

(−1)h−a |λĈ
a,h−a−2|

2 . (4.21)

Notice that compared to the results that can be obtained from table 2 and the selection rules

(3.21), we omitted by hand the supermultiplets Ĉ[0,0],ℓ for external fields with R ≥ 2, because they are
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the supermultiplets that contain higher spin conserved currents. The latter are included only in the

free field case R = 1. For R ≥ 2 they are allowed by the selection rules (3.21), but we want to demand

that they are absent since we want to focus on interacting theories. We remark further that the OPE

coefficient

b
(R)
1 = |λ

(R)

B̂[1,1]
|2 =

R2

4c4d
, (4.22)

see discussion in section 4.1.1, corresponding to the exchange of the stress-tensor supermultiplet B̂[1,1]

can be extracted unambiguously, as can be seen in (4.20).

It follows from the above considerations, and under the assumption that no higher spin conserved

current is present, that also |λB̂
2 |

2 can be extracted without ambiguity. In general the four dimensional

OPE coefficients cannot be extracted uniquely from the expansion (4.19). As discussed in section 2.1.3

and section 5.3.2 using the knowledge of the chiral algebra and some extra assumptions one can find,

in the case R = 3, only two allowed values for λ
(3)

B̂[3,3]
and λ

(3)

Ĉ[1,1],0
.

Let us now investigate the structure of HR,short. By definition, we have

HR,short :=

R∑

a=2

|λB̂[a,a]
|2 HB̂[a,a]

+

R−1∑

a=1

∞∑

ℓ=0

|λĈ[a,a],ℓ
|2 HĈ[a,a],ℓ

(4.23)

which we can express in terms of the blocks h[a,a](w) and GN=1
∆,ℓ (z, z̄) given in (3.24), (3.26) as

HR,short(x1, x2, y) =
∞∑

h=2

(−1)h b
(R)
h GN=1

h+2,h−2(z, z̄)

−





−h[0,0](w)
∑∞

n=0 |λ
(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 2

h[1,1](w)
∑∞

n=0 |λ
(R)

Ĉ[2,2],n−1
|2 GN=1

n+6,n(z, z̄)− h[0,0](w)
∑∞

n=0 |λ
(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 3
∑R−2

t=0 h[t,t](w)C
(R)
t (z, z̄) , general R

.

(4.24)

In (4.23) the first summation starts from h = 2, since HB̂[1,1]
= 0. In writing this equation we allowed

for higher spin currents to have a non-vanishing OPE coefficient, such that it becomes clear how they

would contribute to the crossing equations. Looking at table 2 we see that if higher spin currents are

present they contribute exactly the same way as the R-symmetry singlet long multiplet at the unitarity

bound ∆ = ℓ+2. Of course for an interacting theory we want to set |λ
(R)

Ĉ[0,0],n
|2 = 0. As claimed above,

after setting the higher spin currents to zero, only the part of HR,short in the R-symmetry singlet

channel is completely fixed in terms of the function fR(x). The explicit expression for the function

C
(R)
t (z, z̄) is easily worked out, but will not be relevant here. We finally remark that the summation

of the first term in (4.24) can be done explicitly for any R as first done in [20]. See appendix D.2 for

details.

Example: For R = 2, we find

f2(x) = 1 + c−1x+ x2 = 1 +

∞∑

h=1

b
(2)
h g2d N=2

h (x) , (4.25)

– 26 –



where from (4.20) we take, |λB̂[1,1]
|2 = b

(2)
1 = c−1, |λB̂[2,2]

|2 = b
(2)
2 = 1− 1

3c and

|λĈ[1,1],ℓ
|2 = (−1)ℓ+1b

(2)
ℓ+3 =

(ℓ+ 2)(4)ℓ+1

22ℓ+2
(
5
2

)
ℓ+1

−
Γ(ℓ+ 4)

22ℓ+5
(
1
2

)
ℓ+3

c−1 . (4.26)

Note that if higher spin currents are present the above identification of OPE coefficients with bh cannot

be made for h > 1.

Chiral channel. In the chiral channel, we expand the function f̃R, related to fR by (4.8), in N = 2

holomorphic blocks, which in this channel coincide with ordinary SL(2) blocks, see (C.4). Specifically

f̃R(z) =
∞∑

h=R
h+R even

b̃
(R)
h g2dh (z) , (4.27)

where we note that the sum starts from h = R, which is due to the fact that the relevant OPE is non

singular. Moreover, the index h has the same parity as R as follows from the braiding relations of

individual blocks (C.10) together with (4.11). By looking at the selection rules in this channel given

in (3.22), and after a quick look at table 3, one concludes that

b̃
(R)
R =

∣∣λ̃B̂[2R,0]

∣∣2 , b̃
(R)
R+1 = 0 , b̃

(R)
ℓ+R+2 =

∣∣λ̃Ĉ[2R−2,0],((ℓ+1)/2,ℓ/2)

∣∣2 , (4.28)

where ℓ ≥ 0. Notice that in this channel we can reconstruct the four dimensional OPE coefficients of

Schur operator completely in terms of the OPE coefficients of the cohomologically reduced problem.

We can thus uniquely determine the contribution of these operators to H̃R:

H̃R,short = b̃
(R)
R H̃B̂[2R,0]

+

∞∑

n=0

b̃
(R)
R+2n+2 H̃Ĉ

[2(R−1),0],(n+1
2
,n)

. (4.29)

The summation of this expression is straightforward and similar to the one done in appendix D.2. The

final result is given by

H̃R,short(z, z̄, w) =
f̃R(z̄) γR(z, w)− (z ↔ z̄)

z−1 − z̄−1
, (4.30)

where we have defined the kinematic factor.

γR(z, w) =

R−2∑

a=0

k2a+2(z)h
SU(2)
a (w) , (4.31)

with kβ(z) and h
SU(2)
a (w) given in (C.2) and (3.32) respectively.

Having thus obtained in this section explicit expressions forHR,short and H̃R,short, we can explicitly

compute the functions F
(0,±)
short entering the crossing equations (4.14). See appendix D.1 for more details.
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4.3 Explicit form of the bootstrap equations for R = 2, 3

We will now show the explicit form of the (4.14) in the cases R = 2, 3. In order to do so, it is convenient

to define the combinations of conformal blocks

F±,∆,ℓ := [(1− z)(1− z̄)]
R+1

(zz̄)−
1
2 g1,1∆+3,ℓ(z, z̄)± [(z, z̄) ↔ (1− z, 1− z̄)] ,

F
b

±,∆,ℓ := (−1)ℓ [(1− z)(1− z̄)]
R+2

(zz̄)−
1
2 g−1,1

∆+3,ℓ(z, z̄)± [(z, z̄) ↔ (1− z, 1− z̄)] ,

F̃±,∆,ℓ := [(1− z)(1− z̄)]
R+1

g0,0∆+3,ℓ(z, z̄)± [(z, z̄) ↔ (1− z, 1− z̄)] .

(4.32)

compare to (4.15), (4.16), (4.17). As before, we suppressed the index R from the notation. Its value

should be clear from the context.

Multiplet χ fχ(x) Hχ(z, z̄)

Identity g2d N=2
0 (x) = 1 0

B̂[1,1] g2d N=2
1 (x) 0

Ĉ[0,0],ℓ (−1)ℓ+1g2d N=2
ℓ+2 (x) 0

B̂[2,2] g2d N=2
2 (x) GN=1

4,0 = (zz̄)−
1
2 g1,15,0(z, z̄)

Ĉ[1,1],ℓ (−1)ℓ+1g2d N=2
ℓ+3 (x) GN=1

ℓ+5,ℓ+1 = (zz̄)−
1
2 g1,1ℓ+6,ℓ+1(z, z̄)

A∆>ℓ+2
[0,0],ℓ 0 GN=1

∆+2,ℓ = (zz̄)−
1
2 g1,1∆+3,ℓ(z, z̄)

Table 4. This table shows the contributions of the various N = 3 multiplets appearing in the non-chiral OPE
(3.21) for R = 2 to the functions fχ(x1) and Hχ(z, z̄). The multiplets Ĉ[0,0],ℓ contain conserved currents of

spin larger than two, and must be set to zero if we want an interacting theory [61, 62]. We remind that B̂[1,1] is
the stress-tensor multiplet. When the long multiplet A∆>ℓ+2

[0,0],ℓ hits the unitarity bound ∆ = ℓ+2 it decomposes

in a Ĉ[0,0],ℓ and a Ĉ[1,1],ℓ−1, where Ĉ[1,1],−1 = B̂[2,2]. Note that while long multiplets arbitrarily close to the
unitarity bound mimic higher spin conserved currents, they do not mimic the stress tensor. In particular, this
ensures that we can fix the central charge completely.

The case R = 2. The bootstrap equations (4.14) in this case are independent of the R-symmetry

variables w. Using the R = 2 specializations of the tables 2 and 3, namely table 4 and 5, we obtain

∑

∆>ℓ+2

|λ∆,ℓ|
2




F−,∆,ℓ

+Fb

−,∆,ℓ

−Fb

+,∆,ℓ


+

∑

∆>ℓ+3
ℓ even

|λ̃∆,ℓ|
2




0

F̃−,∆,ℓ

F̃+,∆,ℓ


 =



F
(0)
short

F
(−)
short

F
(+)
short


 , (4.33)

The case R = 3. In this situation, in order to write down the bootstrap equations (4.14) in compo-

nents we need to fix a basis in the space of R-symmetry polynomials. There is a natural choice which
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Multiplet χ f̃χ(z) H̃χ(z, z̄)

B̂[4,0] g2d2 (z) g4,0(z, z̄)

Ĉ
[2,0],(

ℓ+1
2 ,

ℓ
2 )

g2d4+ℓ(z) gℓ+6,ℓ+2(z, z̄)

B̄[0,2],r=8,(0,0) 0 g6,0(z, z̄)

C̄
[0,1],r=7,(

ℓ+1
2 ,

ℓ
2 )

0 gℓ+7,ℓ+1(z, z̄)

A∆>3+ℓ
[0,0],r=6,ℓ 0 g∆+2,ℓ(z, z̄)

Table 5. This table shows the contributions of the various N = 3 multiplets appearing in the chiral OPE
(3.22) for R = 2 to the functions f̃χ(z) and H̃χ(z, z̄). Note that at the unitarity bound (see (3.35)) of the
long multiplet we find two types (for ℓ = 0 and ℓ 6= 0) of short multiplets which do not contribute to the
chiral algebra, namely B̄[0,2],r=8,(0,0) and C̄

[0,1],r=7,(
ℓ+1
2

,
ℓ
2
)
. When considering identical B̂[2,0] operators Bose

symmetry requires ℓ to be even for A∆>3+ℓ

[0,0],r=6,ℓ and odd for C̄
[0,1],r=7,(

ℓ+1
2

,
ℓ
2
)
.

follows by noticing that

(1− w)FA∆,r=0
[0,0],ℓ

= + 1
2 (1− y−1)F+,∆,ℓ +

1
2 (1 + y−1)F−,∆,ℓ ,

(1− w)FA∆,r=0
[1,1],ℓ

= − 2
3 (1− y−1)F+,∆,ℓ +

1
3 (1 + y−1)F−,∆,ℓ ,

Fb

±,A∆,r=0
[0,0],ℓ

= + 1
2

(
1

1−w + 1
w

)
F
b

±,∆,ℓ +
1
2

(
1

1−w − 1
w

)
F
b

∓,∆,ℓ ,

Fb

±,A∆,r=0
[1,1],ℓ

= + 5
6

(
1

1−w + 1
w

)
F
b

±,∆,ℓ −
1
6

(
1

1−w − 1
w

)
F
b

∓,∆,ℓ ,

F̃±,A∆,r=10
[0,1],ℓ

= + 1
2

(
1

1−w + 1
w

)
F̃±,∆,ℓ +

1
2

(
1

1−w − 1
w

)
F̃∓,∆,ℓ ,

F̃±,A∆,r=10
[2,0],ℓ

= + 3
4

(
1

1−w + 1
w

)
F̃±,∆,ℓ −

1
4

(
1

1−w − 1
w

)
F̃∓,∆,ℓ .

(4.34)

The equations for B and C in the chiral channel follow from the last two at the unitarity bound. Let

us go back to the bootstrap equations (4.14) specialized to the case R = 3. Using the relations above,
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the equations (4.14) are easily recognized to be equivalent to

∑

∆>ℓ+2

|λ0,∆,ℓ|
2




+ 1
2 F−,∆,ℓ

+ 1
2 F+,∆,ℓ

+ 1
2 F

b

−,∆,ℓ

+ 1
2 F

b

+,∆,ℓ

− 1
2 F

b

+,∆,ℓ

− 1
2 F

b

−,∆,ℓ




+
∑

∆>ℓ+4

|λ1,∆,ℓ|
2




+ 1
3 F−,∆,ℓ

− 2
3 F+,∆,ℓ

+ 5
6 F

b

−,∆,ℓ

− 1
6 F

b

+,∆,ℓ

− 5
6 F

b

+,∆,ℓ

+ 1
6 F

b

−,∆,ℓ




+

+
∑

∆>ℓ+5
ℓ even

|λ̃0,∆,ℓ|
2




0

0

+ 1
2 F̃−,∆,ℓ

+ 1
2 F̃+,∆,ℓ

+ 1
2 F̃+,∆,ℓ

+ 1
2 F̃−,∆,ℓ




+
∑

∆>ℓ+5
ℓ odd

|λ̃1,∆,ℓ|
2




0

0

+ 3
4 F̃−,∆,ℓ

− 1
4 F̃+,∆,ℓ

+ 3
4 F̃+,∆,ℓ

− 1
4 F̃−,∆,ℓ




= ~Fshort .

(4.35)

The explicit expression for ~Fshort follows from the expressions collected in appendix D.1. Since it is

rather long, we will not present it here. As a consistency check, we verified that the bootstrap equations

above are satisfied with positive coefficients for the cases of free U(1) N = 4 SYM (considered a special

N = 3 theory) and for the generalized free theory discussed in appendix E.

Multiplet χ fχ(x) Hχ(z, z̄, w)

Identity g2d N=2
0 (z) = 1 0

B̂[1,1] g2d N=2
1 (z) 0

B̂[2,2] g2d N=2
2 (z) GN=1

4,0 (z, z̄)

B̂[3,3] g2d N=2
3 (z) −GN=1

5,1 (z, z̄)− GN=1
4,0 (z, z̄)h[1,1](w)

Ĉ[0,0],ℓ (−1)ℓ+1g2d N=2
ℓ+2 (z) 0

Ĉ[1,1],ℓ (−1)ℓ+1g2d N=2
ℓ+3 (z) GN=1

ℓ+5,ℓ+1(z, z̄)

Ĉ[2,2],ℓ (−1)ℓ+1g2d N=2
ℓ+4 (z) −GN=1

ℓ+6,ℓ+2(z, z̄)−GN=1
ℓ+7,ℓ+1(z, z̄)h[1,1](w)

A∆>ℓ+2
[0,0],ℓ 0 GN=1

∆+2,ℓ(z, z̄)

A∆>ℓ+4
[1,1],ℓ 0 −GN=1

∆+2,ℓ(z, z̄)h[1,1](w)

Table 6. This table shows the contributions of the various N = 3 multiplets appearing in the non-chiral OPE
(3.21) for R = 3 to the functions fχ(x) and Hχ(z, z̄, w). Note that we can make the following identification

Ĉ[k,k],ℓ=−1 = B̂[k+1,k+1]. In the text we will take the latter to be a special case of the first.

5 Numerical results

Our goal is to chart out the allowed parameter space of N = 3 theories, and also to “zoom in” to

particular solutions of the crossing equations that correspond to pure N = 3 SCFTs. Since theories

with N = 4 are also N = 3 theories, we expect solutions corresponding to these theories to make an
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Multiplet χ f̃χ(z) H̃χ(z, z̄, w)

B̂[6,0] g2d3 (z) g5,1(z, z̄) + g6,0(z, z̄)h
SU(2)
1 (w)

Ĉ
[4,0],(

ℓ+1
2 ,

ℓ
2 )

g2dℓ+5(z) gℓ+7,ℓ+3(z, z̄) + g8+ℓ,2+ℓ(z, z̄)h
SU(2)
1 (w)

B
r=12

[2,2],0 0 g8,0(z, z̄)h
SU(2)
1 (w)

B
r=12

[0,3],0 0 g8,0(z, z̄)

C
r=11

[2,1],(
ℓ+1
2 ,

ℓ
2 )

0 gℓ+9,ℓ+1(z, z̄)h
SU(2)
1 (w)

C
r=11

[0,2],(
ℓ+1
2 ,

ℓ
2 )

0 gℓ+9,ℓ+1(z, z̄)

A∆>ℓ+5,r=10
[2,0],ℓ 0 g∆+3,ℓ(z, z̄)h

SU(2)
1 (w)

A∆>ℓ+5,r=10
[0,1],ℓ 0 g∆+3,ℓ(z, z̄)

Table 7. This table shows the contributions of the various N = 3 multiplets appearing in the chiral OPE
(3.22) for R = 3 to the functions f̃χ(z) and H̃χ(z, z̄, w). Since we are interested in the correlation functions
of identical operators, Bose symmetry under the exchange of the two identical operators forbids the multiplet

B
r=12
[0,3],0 from appearing and restricts the ℓ to be even for Ar=10

[2,0],ℓ, C
r=11

[0,2],(
ℓ+1
2

,
ℓ
2
)

and Ĉ
[4,0],(

ℓ+1
2

,
ℓ
2
)
, and odd for

Ar=10
[0,1],ℓ and C

r=11

[2,1],(
ℓ+1
2

,
ℓ
2
)
.

appearance, and we must find ways to exclude them from the analysis. In this section we take a first

step towards this, focusing most of our attention on N = 3 SCFTs with a Coulomb branch operator

of dimension three. We should point out however that, just as we cannot impose the symmetry to be

only N = 3, we can also not impose this Coulomb branch operator to be a generator.24

We start by considering the multiplet containing a Coulomb branch operator of dimension two,

which we recall also contains extra supercharges. In the remainder of the section we then focus on

obtaining numerical bounds valid for any theory with a Coulomb branch operator of dimension three,

and various values of the central charge. Towards the end we will input knowledge of the specific chiral

algebra that is conjectured [10] to correspond to the simplest known N = 3 SCFT in an attempt to

zoom in to this particular solution.

5.1 Numerical methods

The crossing equations written in (4.14) are too complicated to study exactly, beyond focusing on

special limits, or protected subsectors, like we did in section 2. Therefore we proceed to analyze these

equations using the, by now standard, numerical techniques pioneered in [14] (see e.g. [71, 72] for

reviews).

Very schematically, we have a system of crossing equations (three (4.33) and six (4.34) for the

B̂[2,0] and B̂[3,0] respectively) of the form

∑

Oi

|λOi |
2~VOi(z, z̄) =

~Vfixed(z, z̄) . (5.1)

24One could imagine setting up a mixed correlator system where the multiplets containing the extra supercharges, or
the candidate generators for which our operator could be a composite are exchanged.
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We use the SDPB solver of [73], and rule out assumptions on the spectrum {Oi} of local operators

and their OPE coefficients |λOi
|2 (CFT data), by considering linear functionals

~Φ =

n+m6Λ∑

n,m=0

~Φm,n∂
m
z ∂n

z̄ |z=z̄=
1
2
, (5.2)

acting on the crossing equations. In the crossing equation (4.33) and (4.34) we will be taking derivatives

∂m
z ∂n

z̄ of F±,F
b
±, F̃± and from their symmetry properties under z → 1− z, z̄ → 1− z̄ we see that only

even (odd) derivatives of F+,F
b
+, F̃+ (Fb

−,F
b
−, F̃−) survive.

25

The numerical bounds will be obtained for different values of the cutoff Λ, which effectively

means we are considering a truncation of the Taylor series expansion of the crossing equations around

z = z̄ = 1
2 . We rule out assumptions on the CFT data by proving that they are inconsistent with the

truncated system of crossing equations at order Λ . Therefore, for each cutoff we find valid bounds,

that will improve as we send Λ → ∞. We refer to reader to the by now extensive literature on these

numerical techniques, e.g. [16, 73], for all the other technical details and approximations needed for

the numerical bootstrap.

5.2 The case R = 2

As a warm up, we begin by considering external operators B̂[2,0], B̂[0,2], which contain the extra

supercharges allowing for an enhancement to N = 4. Because we expect to recover N = 4 SYM, for

this correlator we will only bound the minimal allowed central charge c as a consistency check. We

recall that the OPE selection rules in this case are given by

B̂[2,0] × B̂[0,2] = I + B̂[1,1] + B̂[2,2] +

∞∑

ℓ=0

[
Ĉ[0,0],ℓ + Ĉ[1,1],ℓ +A∆

[0,0],r=0,ℓ

]
, (5.3)

B̂[2,0] × B̂[2,0] = B̂[4,0] + B[0,2],r=8,0 +

∞∑

ℓ=0

[
Ĉ[2,0],( ℓ+1

2 , ℓ2 )
+ C

r=7

[0,1],( ℓ+1
2 , ℓ2 )

+A∆,r=6

[0,0],( ℓ
2 ,

ℓ
2 )

]
, (5.4)

with each multiplet contributing with a superblock as given in tables 4 and 5, with a positive OPE

coefficient squared, and the crossing equations are given in (4.33). To obtain central charge bounds,

we allow for all operators consistent with unitarity that have not been fixed by the chiral algebra. In

the chiral channel this amounts to allowing all long operators consistent with unitarity, together with

the short multiplets which sit at the long unitarity bound (which are not Schur operators). In the

non-chiral channel the OPE coefficient of B̂[1,1] is fixed unambiguously from the chiral algebra, and

brings in the dependence on the central charge. For the remaining Schur operators one is left with

ambiguities in solving for this operators from the chiral algebra four-point function. We were able to

fix universally the OPE coefficients of Ĉ[1,1],ℓ and B̂[2,2] in terms of those of the Ĉ[0,0],ℓ multiplets. These

last multiplets contain conserved currents of spin greater than two, and are expected to be absent in

interacting theories [61, 62] thereby resolving the ambiguity. Nevertheless, as shown in (4.24), the

contribution of multiplets containing higher spin currents is identical to that of long multiplets at

the unitarity bound, and thus, by allowing for long multiplets to have a dimension arbitrarily close

to the unitarity bound, we allow for these currents to appear with arbitrary coefficient. Therefore,

we do not truly exclude free theories in the bootstrap, and we should expect to recover the solution

corresponding to U(1) N = 4 SYM theory.

25As usual the equations are antisymmetric in z ↔ z̄ and so we only need derivatives with m < n.
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strongest bound one could possible hope to find corresponds to the central charge U(1) N = 4 SYM

(c = 1
4 ).

In figure 2 we show the minimal allowed central charge as a function of Λ−1, the inverse of the

number of derivatives. However, extrapolation for infinitely many derivatives this time does not seem

to converge to the value of the U(1) N = 4, which is c = 1
4 = 0.25.27 Since the central charge is smaller

than that of the free N = 4 theory one might suspect the solution to this set of crossing equations

saturating the central charge bound does not correspond to a physical SCFT, and could imagine a

mixed correlator system, e.g., adding the stress tensor multiplet, would improve on this.

5.3.2 Bounding OPE coefficients

Apart from the central charge, there are other OPE coefficients of physical interest, which were not

fixed analytically and can be bounded numerically. An important point to emphasize in what follows

is that the N = 3 stress-tensor multiplet B̂[1,1] cannot recombine to form a long multiplet, unlike

the N = 2 stress-tensor multiplet. This has the important consequence that, when we add the stress

tensor multiplet with a particular coefficient, we are truly fixing the central charge to a particular

value. In comparison, in N = 2 theories this was only accomplished when one imposed a gap in a

particular channel, preventing those long multiplets to hit the unitarity bound and mimic the stress

tensor. Therefore, in what follows we will bound the OPE coefficients as a function of the central

charge, which we allow to vary in the range 1
4 6 c 6 ∞. The lower end of the interval corresponds

to the central charge of U(1) N = 4 SYM, although interacting theories should have higher central

charges. In particular there is an analytic lower bound for interacting N = 2 SCFTs of c > 11
30 ≈ 0.37

[46], and since any N = 3 SCFT is also an N = 2 theory this provides a lower bound on N = 3

interacting SCFTs. Furthermore it can be shown, by considering the N = 3 stress tensor four-point

function in the chiral algebra, that any interacting N > 3 SCFT must obey c > 13
24 ≈ 0.54 [75]. These

two bounds will be depicted as vertical dashed lines in all the numerical results. In the limit c → ∞

the stress tensor decouples and we expect, as happened in all known cases, that the numerical bounds

converge to the values of generalized free field theory (i.e. the four-point function is given just by a

sum of disconnected pieces).

The Schur operator B̂[3,3]

A particularly interesting operator to consider is the B̂[3,3] appearing in the non-chiral channel. Despite

being captured by the two-dimensional chiral algebra of [40], is not possible to fix it universally from the

chiral algebra the four-point function of 〈WW̄WW̄〉, due to the ambiguities described in 4.2. Making

assumptions about what particular chiral algebra corresponds to the 4d theory we are interested in

studying, one can try to resolve this ambiguity, as done in section 2.1.3, which gave two seemingly

consistent possibilities to the value of this OPE coefficient as a function of the central charge. However,

we will first take an agnostic viewpoint, and ask what numerical constraints crossing symmetry and

unitarity place on the squared OPE coefficient of this operator (|λB̂[3,3]
|2). These are shown in figure 3

as a function of the inverse of the central charge.

Since this operator is protected, we can start by comparing the value of the bound to the well

known N = 4 solutions. We extracted the OPE coefficient of this multiplet from the four-point

function of N = 4 half-BPS operators in the [0, 3, 0] representation of SU(4)R given in [37], after

projecting the N = 4 multiplets to the particular N = 3 multiplet we are considering. It turns out to

have a constant value of one, irrespective of the central charge of the theory. We depicted this as a red

27Similar results were also observed in the case of chiral correlators in N = 2 theories [19, 74].
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is
∣∣λB̂[3,3]

∣∣2 ≤ 1. In fact, our numerical results appear consistent with the upper bound converging

to one for c = 15
12 . Therefore, to be able to reach the known nontrivial N = 3 with c = 15

12 we must

go inside these bounds, and fix the OPE coefficient of B̂[3,3] to a value that is incompatible with the

N = 4 solution to the crossing equation; we will do this at the end of this section.

We now turn to the chiral algebra constructed in 2.1.2, with the goal of understanding the higher

rank versions of the aforementioned theory. Recall that in doing so, we assumed the chiral algebra of

the higher rank theories to be generated solely by the Higgs branch generators, the stress tensor, and

an additional dimension three operator. Under this assumption, we were able to construct a closed

subalgebra of all of these chiral algebras, which is associative for generic values of c. In that setting we

can attempt to compute |λB̂[3,3]
|2, and there were two options consistent with the large central charge

behavior of the generalized free field theory and unitarity, given in (2.25) and (2.27), which are plotted

as green curves in figure 3. Equation (2.27) is the one that does not go through the expected value for

c = 15
12 , but that we kept for arbitrary values of c. If our assumptions are correct, then we see that the

value of |λB̂[3,3]
|2 lies well inside the numerical bounds, and is weaker than that of N = 4 SYM. This

is not necessarily a downside, as one of our goals must be to determine ways to exclude the N = 4

solutions to our crossing equations, and this provides such a way. By imposing the value of the OPE

coefficient corresponding to (2.25) or (2.27) we are sure to exclude N = 4 from our analysis. We will

come back to this point at the end of this section.

Note that both (2.25) and (2.27) diverge at c = 13
24 , which corresponds to the analytic central

charge bound obtained in [75], following from the fact that the norm of one of the candidate B̂[3,3]

operators is going to zero. We note that the chiral algebra in 2.1.2 was constructed with a generic

central charge in mind and care was not given to possible null states arising at specific values of the

central charge. It is not clear that the solution we have is consistent for c = 13
24 , as null states are

expected to decouple.

It is also worth noting the interesting interplay between analytical and numerical results. The

analytical OPE coefficient is only consistent with the (current) numerical bounds for 1/c . 1.33−1.36

depending on which curve one takes. This provides a lower bound c & 0.74−0.75 on the central charge

of any N = 3 SCFT with a dimension three Coulomb branch operator (B̂[3,0]) of which the chiral

algebra presented in 2.1.2 is a closed subalgebra, improving over the analytical bound c > 13
24 ≈ 0.54

of [75]. On the other hand, this bound is lower than the one obtained using the sum-rule of [76, 77]

for a rank one theory with a generator of dimension three, namely c > 15
12 . Although there are known

cases where this sum rule does not hold (see [3, 9]), they correspond to theories obtained by gauging

discrete symmetries, so this bound could be valid for theories which are not of this type.29

The multiplets B̄[2,2] and C̄
[0,2],(

1
2 ,0)

Next we turn our attention to the short multiplets in the chiral OPE that sit at the unitarity bound of

the long multiplets, and are not captured by the chiral algebra. It follows that the best we can do is to

bootstrap them numerically. As representatives, we show the upper bounds on the OPE coefficients

squared of the multiplets B̄[2,2] and C̄
[0,2],(

1
2 ,0)

in figure 4. Again we focus on the region of central

charges larger than that of U(1) N = 4 SYM.

We show in figure 4 the value of these OPE coefficients in the case of the generalized free field

theory, and of the U(1) N = 4 SYM as the two red dots at c−1 = 0 and c−1 = 4 respectively. The

convergence of our numerical results is rather slow and one cannot conclude if they will converge for

29See [9] for a proposed correction of this formula to hold also in the case of discretely gauged theories.
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Similarly, we can repeat this analysis for the central charges of the higher rank theories and we find

that, at fixed |λB̂[3,3]
|2, if the central charge is (increased) decreased the bound seems to get (stronger)

weaker (not shown). Due to the dependence of (2.25) and (2.27) on c the upper bound on ∆[1,1] does

not change that significantly.

6 Conclusions

In this paper we have initiated the N = 3 superconformal bootstrap program with two goals in mind.

First, to constrain the space of four-dimensional N = 3 SCFTs, and second, to focus on specific

examples of N = 3 theories with the hope of obtaining information about their spectrum. In order to

zoom in on the known N = 3 SCFTs we relied on a combination of numerical bootstrap results and

analytical results from two-dimensional chiral algebras, with particular emphasis on the “minimal”

N = 3 SCFT, and its higher-rank versions. We approached these theories from the point of view of

the Coulomb branch, focusing mostly on a half-BPS operator of dimension three, which is the only

Coulomb branch generator of the “minimal” N = 3 SCFT, and which is also present in its higher-rank

versions.

A basic requirement for any bootstrap study is the conformal block expansion of the four-point

function. Writing the four-point function of N = 3 half-BPS operators in superspace we noticed that

there are no nilpotent invariants, allowing us to concentrate on superconformal primaries without any

loss of information. Demanding the absence of singularities when turning on the fermionic coordinates

places strong restrictions on the form of the four-point function, giving rise to the Ward identities.

However, the WI are not enough to completely fix the superblock (unlike the cases of N = 2 and

N = 4 half-BPS superblocks [31, 32]). In order to fix the superblocks associated to short multiplets,

we used information coming from the 2d chiral algebra, while for long blocks we leveraged knowledge

of N = 1 blocks. In the end, we wrote the solution for the long blocks in an elegant way, in terms of

a single N = 1 conformal block with shifted arguments.

The existence of a protected subsector captured by the 2d chiral algebra allowed us to solve

the crossing equations for this subsector exactly. In turn, we were able to fix the OPE coefficients

of certain short operators universally, i.e., without needing to specify a particular four-dimensional

theory. However, some operators appear indistinguishable at the level of the chiral algebra, leading to

ambiguities in fixing the corresponding OPE coefficients. Some of these ambiguities can be resolved

by knowledge of the specific chiral algebra associated to the N = 3 theory in question, but this is not

always the case.

An important question is what can be said about the chiral algebras associated to a given N = 3

SCFT. To that end, we determined which N = 3 superconformal multiplets are captured by the 2d

chiral algebra, and some of their general properties, which could allow distinguishing between the

aforementioned operators. Taking advantage of the chiral algebra conjectured to correspond to the

“minimal” SCFT [10], we were able to compute the OPE coefficient |λB̂[3,3]
|2. Moreover, we proposed,

under certain assumptions, a closed subsector for the higher-rank versions of this theory, and used it

to compute |λB̂[3,3]
|2 in this case.

To go beyond this protected subsector, or even to distinguish between operators appearing iden-

tically in the chiral algebra, we had to resort to numerical techniques. The numerical bootstrap then

provided constraints on the spectrum of unprotected long operators, and on the OPE coefficients of

various short operators. For the particular OPE coefficient |λB̂[3,3]
|2 that we were able to fix from the

chiral algebra, we compared the general numerical results valid for any N = 3 SCFT, with the ones
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of the specific theories captured by the chiral algebra that we constructed. This comparison provided

a numerical lower bound on the central charge for theories captured by our chiral algebra.

A natural limitation of any N = 3 bootstrap program, as it was also for the N = 2 bootstrap,

is that theories with more supersymmetry will generically be solutions of the crossing equations we

consider. In order to restrict to pure N = 3 SCFTs, one would have to exclude the presence of

superconformal multiplets containing the currents allowing for this enhancement. However, the mul-

tiplets that are physically relevant for the study of these theories (for example the ones considered in

[19, 46, 74] in the N = 2 case) usually do not allow for the multiplets containing the extra supercur-

rents to be exchanged in their OPEs, and therefore we cannot set them to zero. To overcome this

limitation we fed, into the numerical bootstrap, information arising from the chiral algebras of pure

N = 3 SCFTs, namely, the OPE coefficient |λB̂[3,3]
|2. This allowed us explore inside the numerical

bounds, and zoom in on the N = 3 solutions with this particular value of the OPE coefficient. By

fixing the central charge to that of the “minimal” N = 3 theory, and fixing the OPE coefficient ac-

cordingly, it is plausible that this theory sits at the bound of figure 7, although currently there is no

evidence this has to be the case, and we would have to provide more information (such as adding stress

tensors as external operators). Nevertheless, the ambiguity in fixing OPE coefficients turned out to

be crucial in excluding the N = 4 solution to the crossing equations. For the higher rank versions,

one would have to also consider the four-point functions of the additional Coulomb branch operator,

which is a natural next step in the N = 3 bootstrap, along with the study of stress tensor four-point

functions.
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A Unitary representations of the N = 3 superconformal algebra

We summarize the unitary representations of the four-dimensional N = 3 superconformal algebra,

which fall in the classifications of [55–57] and which were recently discussed with emphasis on N = 3

theories in [1, 58, 59]. We list the possible representations in table 8. The first column lists the name

the we give to the representation, inspired by the conventions of [60], while the second one uses the

notation of [58]. The third column list the quantum numbers of the highest weight conformal primary,

denoted by (j, ̄)∆[R1,R2],r
, where (j, ̄) ∈ N0

2 × N0

2 are the double of the left/right spins,32 ∆ ∈ R is

the conformal dimension, (R1, R2) ∈ N0 × N0 are the Dynkin labels of SU(3) and r ∈ R is the U(1)

R-charge. We follow the rN=3 charge conventions of [58], while for the N = 2 R-charges we follow the

conventions of Dolan and Osborn [60]. Lastly, we make two remarks:

32An irreducible representation of label (j, ̄) has dimension (2j + 1)(2̄+ 1).
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Name Name in [58] Primary Conditions

A∆
[R1,R2],r,(j,̄)

LL̄ (j, ̄)∆[R1,R2],r

∆ > 2 + 2j + 2
3
(2R1 +R2)−

r
6

∆ > 2 + 2̄+ 2
3
(R1 + 2R2) +

r
6

B[R1,R2],r,̄ B1L̄ (0, ̄)
2
3 (2R1+R2)−

r
6

[R1,R2],r
−6̄+ 2(R1 −R2)− 6 > r

B̄[R1,R2],r,j LB̄1 (j, 0)
2
3 (R1+2R2)+

r
6

[R1,R2],r
6j + 2(R1 −R2) + 6 < r

B̂[R1,R2] B1B̄1 (0, 0)R1+R2

[R1,R2],2(R1−R2)

C[R1,R2],r,(j,̄) A1L̄ (j, ̄)
2+2j+ 2

3 (2R1+R2)−
r
6

[R1,R2],r
6(j − ̄) + 2(R1 −R2) > r

C[R1,R2],r,(j,̄) LĀ1 (j, ̄)
2+2̄+ 2

3 (R1+2R2)+
r
6

[R1,R2],r
6(j − ̄) + 2(R1 −R2) < r

Ĉ[R1,R2],(j,̄) A1Ā1 (j, ̄)2+j+̄+R1+R2

[R1,R2],6(j−̄)+2(R1−R2)

D[R1,R2],̄ B1Ā1 (0, ̄)1+̄+R1+R2

[R1,R2],2(R1−R2)−6−6̄

D[R1,R2],j A1B̄1 (j, 0)1+j+R1+R2

[R1,R2],2(R1−R2)+6+6j

Table 8. We list here the unitary representations of N = 3 with the name that we give them in the present
article accompanied by the one that they have in [58], which was based on the type of shortening condition
that they obey. The third column shows the charges of the superconformal primary in the representation,
while the fourth one lists the conditions that the charges have to obey. The A2, respectively Ā2 shortening
cases are obtained by putting j = 0, respectively ̄ = 0. This changes the null states drastically, but not our
labels.

• When dealing with symmetric-traceless representations, we shall label the spins by j = ̄ = ℓ
2 ,

and by an abuse of notation we will replace the two spin labels (j, ̄) by ℓ in these cases. For

example, we have A∆
[R1,R2],r,ℓ

≡ A∆

[R1,R2],r,(
ℓ
2 ,

ℓ
2 )
.

• If the r label is zero, we will often omit it. Furthermore, in order to keep some equations compact,

we will freely write it up or down, e.g. A∆
[R1,R2],r,ℓ

≡ A∆,r
[R1,R2],ℓ

.

A.1 Decomposition in N = 2 multiplets

Since N = 3 representations are probably less familiar to most readers than N = 2 representations,

we give a few examples of how N = 3 multiplets decompose in N = 2 multiplets. In doing so we

pick an N = 2 subalgebra of the N = 3, and therefore the SU(3)R × U(1)r R-symmetry of the latter

decomposes in SU(2)RN=2
× U(1)rN=2

× U(1)f , where the first two factors are the R-symmetry of

the N = 2 superconformal algebra, and the last corresponds, from the N = 2 point of view, to a

global symmetry. Therefore when viewed as N = 2 theories, all N = 3 theories have a U(1)f flavor

symmetry, and we will keep this flavor grading when decomposing N = 3 representations in N = 2.

We follow the conventions of [10] for the definition of the flavor charges. We note that we follow the

naming conventions of Dolan and Osborn [60] for the representations of N = 2, which are summarized

for instance in Appendix A of [19]. While the interpretation of most of these multiplets might be

obscure, the following have a natural physical interpretation33

• Ĉ0,(0,0) is the stress tensor multiplet of an N = 2 SCFT, containing in addition to the stress

tensor, the SU(2)RN=2
and U(1)rN=2

currents,

33For a more detailed description see, e.g., section 2 of [19]
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• BR are closely related to the Higgs branch of the theory, in particular the B̂1 multiplet contains

conserved currents of spin one, associated to flavor currents of the theory,

• Er,(0,0) are N = 2 chiral operators, and are related to the Coulomb branch of the theory,

• D 1
2 ,(0,0)

(and conjugate) which are additional supercurrent multiplets,

• Ĉ0,(j>0,̄>0) contain conserved currents of spin greater than two, which signal free theories [61, 62].

In addition, the multiplets dubbed “Schur” operators in [40], that is the ones captured by the two-

dimensional chiral algebra reviewed in section 2, also play an important role. These are B̂R, DR(0,̄),

DR(j,0) and ĈR(j,̄), giving rise to two-dimensional sl(2) primaries of scaling dimension R, R + ̄ + 1,

R+ j + 1 and R+ j + ̄+ 2 respectively. The N = 3 multiplets that contain such operators are listed

in equations (2.6)-(2.13), together with their decomposition in N = 2, but where we omitted any

N = 2 multiplets not containing Schur operators. Below we present a few examples of the complete

N = 2 decomposition. These decompositions are obtained by computing the characters of the N = 3

multiplets of table 8, following the method described in appendix C of [79], and re-writing it in terms

of characters of N = 2 representations, which can be obtained from the tables of [60].

The stress tensor multiplet decomposes in the expected way, containing only Schur multiplets

B̂[1,1] = B̂1 ⊕ u−1
f D 1

2 ,(0,0)
⊕ ufD 1

2 ,(0,0)
⊕ Ĉ0,(0,0) . (A.1)

Also of particular importance are the half-BPS multiplets, related to the Coulomb branch of N = 3

theories. Their full decomposition is given by

B̂[R1,0] = u−R1

f B̂R1
2

⊕ u−R1+1
f DR1−1

2 ,(0,0)
⊕

(
R1−2⊕

a=1

u−R1+a+1
f BR1−a−1

2 ,−a−1,(0,0)

)
⊕ E−R1,(0,0) (A.2)

and similarly for the conjugate multiplet. An interesting question to ask is, apart from the above

B̂[R1,0] and conjugate, which N = 3 multiplets contain N = 2 Coulomb branch operators. An obvious

place to look would be to consider N = 3 chiral operators, which decompose as

B[0,0],r,0 =

2⊕

a=0

u
a−

r
3

f E− 1
2 (a+

r
3 ),(

1
2a(2−a),0) , (A.3)

and their conjugates. Note that the above decomposition contains “exotic” N = 2 Er,(j,0) operators

with spin j > 0, which do not seem to occur in known N = 2 SCFTs (see [80] for a discussion).

Similarly in [1] the question of whichN = 3 operators could contain operators whose vevs parametrized

the Coulomb branch was addressed. The authors of [1] argue that the only type of such multiplets are

B̂[R1,0] and conjugates, since the B[0,0],r,0 multiplet would not be consistent with the three different

N = 2 subalgebras N = 3 contains.

We finish this appendix with the the example of the decomposition of a generic long N = 3

multiplet. Considering a multiplet whose highest weight transforms in the symmetric traceless repre-

sentation for simplicity, A∆
[R1,R2],r,ℓ

, there appears to be a simple prescription for the decomposition

into N = 2 multiplets, which we have checked in a variety of cases. Namely, we first decompose

the SU(3) × U(1) representation ([R1, R2], r) of the superconformal primary of the N = 3 multiplet

in representations of SU(2)RN=2
× U(1)rN=2

× U(1)f . Let {(R′, r′, F )} be the list of representations

appearing in that decomposition. To each such representation, we associate an N = 2 multiplet
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A∆
R′,r′,ℓ, graded by the corresponding U(1)f charge (uf )

F . Finally, in the decomposition of the N = 3

multiplet, each of these N = 2 multiplets will be accompanied by the following list of long multiplets:

(uf )
F
(
A∆+1

R′,r′−1,( ℓ
2 ,

ℓ
2 )
u2
f + u−2

f A∆+1
R′,r′+1,( ℓ

2 ,
ℓ
2 )

+ u−1
f A

∆+ 1
2

R′,r′+ 1
2 ,(

ℓ
2 ,

ℓ+1
2 )

+ u−1
f A

∆+ 1
2

R′,r′+ 1
2 ,(

ℓ
2 ,

ℓ−1
2 )

+ u−1
f A

∆+ 3
2

R′,r′+ 1
2 ,(

ℓ+1
2 , ℓ2 )

+ u−1
f A

∆+ 3
2

R′,r′+ 1
2 ,(

ℓ−1
2 , ℓ2 )

+A
∆+ 3

2

R′,r′− 1
2 ,(

ℓ
2 ,

ℓ+1
2 )

uf +A
∆+ 3

2

R′,r′− 1
2 ,(

ℓ
2 ,

ℓ−1
2 )

uf

+A
∆+ 1

2

R′,r′− 1
2 ,(

ℓ+1
2 , ℓ2 )

uf +A
∆+ 1

2

R′,r′− 1
2 ,(

ℓ−1
2 , ℓ2 )

uf +A∆+2
R′,r′,( ℓ

2 ,
ℓ
2 )

+A∆+1

R′,r′,( ℓ+1
2 , ℓ+1

2 )
+A∆+1

R′,r′,( ℓ+1
2 , ℓ−1

2 )

+A∆+1

R′,r′,( ℓ−1
2 , ℓ+1

2 )
+A∆+1

R′,r′,( ℓ−1
2 , ℓ−1

2 )

)
.

(A.4)

B OPEs of the chiral algebra

In this appendix we collect the OPEs corresponding to the chiral algebra constructed in section 2.1.2,

with generators given by (2.22). Here we show all the OPE coefficients already fixed to the values

dictated by the Jacobi identities. These computations were performed using the Mathematica package

SOPEN2defs of [67] and we follow their conventions. In what follows we take a product of operators

O1O2 · · · On−1On to mean the normal ordered product (O1(O2(· · · (On−1On) ))).

Since all generators, with the exception of the stress tensor multiplet, are super Virasoro primaries,

the OPE of a generator O of dimension ∆O and U(1)f charge fO with the stress-tensor current J is

fixed to be

J (Z1)O(Z2) ∼
∆Oθ12θ̄12O

Z2
12

+
−fOO − θ12DO + θ̄12D̄O + θ12θ̄12∂O

Z12
. (B.1)

The stress tensor multiplet has the standard self-OPE given in (2.18), while the OPEs W(Z1)W(Z2)

and W̄(Z1)W̄(Z2) are regular. The W(Z1)W̄(Z2) OPE is given in a general form in (2.20) where the

sum is taken to run over all uncharged generators, composites and/or (super)derivatives thereof. The

coefficients λOh
in (2.20) are completely fixed by the Jacobi identities to

λ1 = −
c2d
9

, λJ = 1 , λJJ = −
4

c2d − 1
, λDD̄J =

c2d − 9

6(c2d − 1)
, λJ ′ =

1

2
,

λU = −
4(5c2d + 27)

β(c2d − 9)(c2d − 1)
,

(B.2)

where β is related to the norm of U . The remaining non-trivial OPEs were found to be

W(Z1)U(Z2) ∼ −
β(c2d − 9)(c2d + 15)θ12θ̄12W

2(5c2d + 27)Z3
12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12JW − 2(c2d − 9)θ12DW − (c2d − 27)θ12θ̄12W
′ − 6(c2d − 9)W

Z2
12

+
β

12(5c2d + 27)

6(c2d + 63)θ12JDW + 54(c2d − 1)θ12WDJ − (c2d − 9)(c2d + 39)θ12DW ′

Z12

+
β(c2d + 15)

6(5c2d + 27)

18JW − (c2d − 27)W ′

Z12
, (B.3)
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and

W̄(Z1)U(Z2) ∼
β(c2d − 9)(c2d + 15)

2(5c2d + 27)

θ12θ̄12W̄

Z3
12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12J W̄ − 2(c2d − 9)θ̄12D̄W̄ + (c2d − 27)θ12θ̄12W̄
′ − 6(c2d − 9)W̄

Z2
12

−
β

12(5c2d + 27)

6(c2d + 63)θ̄12J D̄W̄ + 54(c2d − 1)θ̄12W̄D̄J (c2d − 9)(c2d + 39)θ̄12D̄W̄ ′

Z12

−
β(c2d + 15)

6(5c2d + 27)

18J W̄ + (c2d − 27)W̄ ′

Z12
, (B.4)

with the most complicated one being

U(Z1)U(Z2) ∼ −
(c2d − 9)2(c2d − 1)(c2d + 15)β2

72(5c2d + 27)2
c2d + 6J θ12θ̄12

Z4
12

+
β2(c2d − 9)2(c2d − 1)(c2d + 15)

12(5c2d + 27)2
−θ̄12D̄J + θ12DJ − θ12θ̄12J

′

Z3
12

+
1

Z2
12

(
β2DD̄J ′θ12θ̄12(c2d − 9)3

8(5c2d + 27)2
+

c2d(c2d + 15)β2DD̄J (c2d − 9)2

36(5c2d + 27)2
+

(c2d + 15)β2JJ (c2d − 9)2

12(5c2d + 27)2

+
(c2d + 15)(2c2d − 3)β2DJ ′θ12(c2d − 9)2

36(5c2d + 27)2
+

(c2d + 15)β2JDJ θ12(c2d − 9)2

12(5c2d + 27)2
+

(c2d + 15)β2J D̄J θ̄12(c2d − 9)2

12(5c2d + 27)2

+
(c2d − 21)β2JDD̄J θ12θ̄12(c2d − 9)2

6(5c2d + 27)2
−

β2DJ D̄J θ12θ̄12(c2d − 9)2

8(5c2d + 27)
−

(c2d + 15)(2c2d − 3)β2D̄J ′θ̄12(c2d − 9)2

36(5c2d + 27)2

+
(c2d + 63)β2JJJ θ12θ̄12(c2d − 9)

2(5c2d + 27)2
−

27(c2d − 1)β2JJ ′θ12θ̄12(c2d − 9)

2(5c2d + 27)2
−

27(c2d − 1)2β2WW̄θ12θ̄12(c2d − 9)

8(5c2d + 27)2

−

(
c32d − 11c22d − 105c2d + 243

)
β2θ12θ̄12J

′′(c2d − 9)

24(5c2d + 27)2
−

1

6
(c2d + 3)Uβ −

1

12
(c2d + 3)βDUθ12

+

(
c22d − 8c2d + 135

)
βDD̄Uθ12θ̄12

8(5c2d + 27)
−

(7c2d − 135)βJUθ12θ̄12
2(5c2d + 27)

−
27(c2d − 1)βθ12θ̄12U

′

4(5c2d + 27)
−

1

12
(c2d + 3)βD̄U θ̄12

)

+
1

Z12

(
β2J ′DD̄J θ12θ̄12(c2d − 9)3

6(5c2d + 27)2
+

c2d(c2d + 15)β2DD̄J ′(c2d − 9)2

72(5c2d + 27)2
+

(c2d + 15)β2JJ ′(c2d − 9)2

12(5c2d + 27)2

+
(c2d − 33)β2JDJ ′θ12(c2d − 9)2

24(5c2d + 27)2
+

(c2d − 33)β2J D̄J ′θ̄12(c2d − 9)2

24(5c2d + 27)2
+

3(c2d − 1)β2D̄JDD̄J θ̄12(c2d − 9)2

16(5c2d + 27)2

+
(c2d − 33)β2JDD̄J ′θ12θ̄12(c2d − 9)2

12(5c2d + 27)2
+

β2D̄J ′DJ θ12θ̄12(c2d − 9)2

12(5c2d + 27)

+
(c2d − 1)(2c2d + 15)β2θ12 (DJ ′)

′
(c2d − 9)2

96(5c2d + 27)2
−

β2DJ ′D̄J θ12θ̄12(c2d − 9)2

12(5c2d + 27)

−
3(c2d − 1)β2DJDD̄J θ12(c2d − 9)2

16(5c2d + 27)2
−

(c2d − 1)(2c2d + 15)β2θ̄12
(
D̄J ′

)′
(c2d − 9)2

96(5c2d + 27)2

+
9(c2d − 1)2β2W̄DWθ12(c2d − 9)

8(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′DJ θ12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJ D̄J θ̄12(c2d − 9)

2(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′D̄J θ̄12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJJ ′θ12θ̄12(c2d − 9)

(5c2d + 27)2
−

4βUJ ′θ12θ̄12(c2d − 9)

5c2d + 27
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−
(c2d + 63)β2JJDJ θ12(c2d − 9)

2(5c2d + 27)2
−

9(c2d − 1)2β2WW̄ ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2

−
9(c2d − 1)2β2W̄W ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2
−

9(c2d − 1)2β2WD̄W̄ θ̄12(c2d − 9)

8(5c2d + 27)2

−
(c2d + 3)

(
c22d − 41c2d + 72

)
β2θ12θ̄12J

(3)(c2d − 9)

72(5c2d + 27)2
+

9(c2d − 1)βUDJ θ12

2(5c2d + 27)

+
(c2d + 63)βJ D̄U θ̄12

2(5c2d + 27)
+

(
c22d − 3c2d + 162

)
βDD̄U ′θ12θ̄12

12(5c2d + 27)
−

(c2d − 1)(c2d + 27)βD̄U ′θ̄12

4(5c2d + 27)

−
1

2
βDJ D̄Uθ12θ̄12 +

1

2
βDUD̄J θ12θ̄12 −

1

12
(c2d + 3)βU ′ −

1

4
βθ12θ̄12U

′′ −
(c2d + 63)βJDUθ12

2(5c2d + 27)

−
9(c2d − 1)βUD̄J θ̄12

2(5c2d + 27)
−

3(c2d − 33)βJU ′θ12θ̄12

2(5c2d + 27)
−

(c2d − 1)(c2d + 27)βDU ′θ12

4(5c2d + 27)

)
. (B.5)

C Some blockology

In this appendix we gather our conventions for the conformal and R-symmetry blocks as well as some

of their most important properties.

Conformal blocks. Regarding the four dimensional (bosonic) conformal blocks, we adopt the

conventions

g∆12,∆34

∆,ℓ (z, z̄) =
zz̄

z − z̄

(
k∆12,∆34

∆+ℓ (z) k∆12,∆34

∆−ℓ−2 (z̄)− (z ↔ z̄)
)
, (C.1)

ka,bβ (x) = x
β
2 2F1(

β−a
2 , β+b

2 , β, x) . (C.2)

We also set kβ(x) := k0,0β (x) and g∆,ℓ(z, z̄) := g0,0∆,ℓ(z, z̄).

The 4d, N = 1 superblocks derived in [15, 34] can be expressed very simply through the usual

conformal blocks. Specifically, one has

GN=1
∆,ℓ (z, z̄) = (zz̄)−

1
2 g∆12=∆34=1

∆+1,ℓ (z, z̄) . (C.3)

In two dimensions, we have the (bosonic) conformal blocks

g2dh (z) = zh 2F1(h, h, 2h, z) , (C.4)

while the OSP(2|2) superblocks are

g2d N=2
h (x) = xh

2F1(h, h, 2h+ 1, x) . (C.5)

We remind that as usual the variables are related via x = z
z−1 .

R-symmetry blocks. The SU(3) blocks for the non-chiral channel of section 3.4.1 are

h[m,m](w) =

(
2m+ 1

m+ 1

)−1

2F1(−m,m+ 2, 1, y−1) , y =
w

w − 1
. (C.6)
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For the chiral channel of section 3.4.2, we find that in our normalization, the SU(3) blocks are

identical to SU(2) R-symmetry blocks:

h̃[2m,n](w) = hSU(2)
m (w) = (−1)m

(
2m

m

)−1

2F1(−m,m+ 1, 1, w−1) . (C.7)

In particular, they are independent of the label n.

Braiding. We recall the conformal/ R-symmetry blocks obey various useful braiding relations. The

most important ones for us are

((1− z)(1− z̄))
−

∆34
2 g−∆12,∆34

∆,ℓ

(
z

z−1 ,
z̄

z̄−1

)
= (−1)ℓg∆12,∆34

∆,ℓ (z, z̄) . (C.8)

for the 4d conformal blocks and

hSU(2)
m (w) = (−1)m hSU(2)

m ( w
w−1 ) , (C.9)

for the SU(2) R-symmetry ones. In particular (C.8) implies that g∆,ℓ

(
z

z−1 ,
z̄

z̄−1

)
= (−1)ℓg∆,ℓ(z, z̄).

The holomorphic blocks (C.4) satisfy

g2dh (z) = (−1)h g2dh ( z
z−1 ) . (C.10)

D Crossing equations

In this appendix we collect some bulky equations used in the crossing equations (4.14) and summarize

the computation used in section 4.2 for the function HR,short.

D.1 Explicit expressions for F
(0,±)
short

Here we collect the expressions for F
(0,±)
short that we need in the crossing equations (4.14). Using the

definition (4.4) for the function AR, we write

F
(0)
short[f ] = −

[(1− z)(1− z̄)]
R+1

(1− w)R−2

y2−R

x−1
1 − x−1

2

(x2 AR(x2, y) fR(x1)− x1 ↔ x2) ,

F
(0)
short[Hshort, H̃short] =

[(1− z)(1− z̄)]
R+1

(1− w)R−2
HR,short(z, z̄, w)

− (−1)R
[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]
,

(D.1)
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for F
(0)
short and

F
(±)
short[f ] = −

{
[(z − 1)(z̄ − 1)]

R+1

(w − 1)R−2

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1

±
[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]}
,

F
(±)
short[Hshort, H̃short] = (−1)R

{
[(1− z)(1− z̄)]

R+1

(1− w)R−2
H̃R,short(z, z̄, w)

±
[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]}

∓

{
[(1− z)(1− z̄)]

R+1

(1− w)R−2
HR,short(

z
z−1 ,

z̄
z̄−1 ,

w
w−1 )

±
[
(z, z̄, w) ↔ (1− z, 1− z̄, 1− w)

]}
,

(D.2)

for F
(±)
short.

D.2 Summation for Hshort

Given the function fR(x) in the parametrization (3.17) of a four point function (3.14), one can associate

a contribution to the function H, called Hshort[f ], corresponding to the exchange of the short operators

which survive the cohomological truncation. The goal of this appendix is to explicitly perform the

summations in the first term in (4.24). This can be done for two reasons:

1. The coefficients b
(R)
h in the expansion (4.19) can be easily determined in terms of a finite number

of parameters. This follows from the fact that fR(x) is a polynomial of degree R that satisfy the

crossing property fR(x) = xRfR(x
−1).

2. Each block entering the first sum in (4.24) has the form

Gd=4,N=1
h+4,h =

th(z)s(z̄)− th(z̄)s(z)

z − z̄
, s(t) = −2(t+ log(1− t)) , (D.3)

where th(z) = th+3
2F1(h+ 2, h+ 3, 2h+ 5, t).

Each monomial term in fR(x), except for x
0 = 1, can be expanded in superblocks as

xn =

∞∑

h=n

b̂n,h g
2d N=2
h ( x

x−1 ) , b̂n,h = −4n−hh
(2n)h−n(1− h)n−1

Γ(n+ 1)(n+ 1
2 )h−n

. (D.4)

It follows that the part of HR,short in the R-symmetry singlet channel is

Hsinglet
R,short[x

n] :=

∞∑

h=n

b̂n,h G
d=4,N=1
h+4,h (z, z̄) =

zn+1s(z̄)− z̄n+1s(z)

z − z̄
, n ≥ 0 , (D.5)
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and Hsinglet
R,short[1] = 0. Above Hsinglet

R,short is considered as a linear map. In the cases relevant for R = 2, 3

(recall that HR=1 = 0), the only solution of the crossing symmetry conditions are

f2(x) = 1 + c−1x+ x2 , f3(x) = (1 + x)(1 + γ(c)x+ x2)

= 1 + (1 + γ(c))x+ (1 + γ(c))x2 + x3 ,
(D.6)

with γ(c) = 9
4c − 1 and c = c4d . It follows from (D.5) that

Hsinglet
R,short(z, z̄) =

t̂(R)(x1)ŝ(x2)− t̂(R)(x2)ŝ(x1)

x1 − x2
,

t̂(R)(x) = x(fR(x)− 1) , ŝ( z
z−1 ) =

s(z)

1− z
,

(D.7)

with a now familiar identification (x1, x2) = ( z
z−1 ,

z̄
z̄−1 ). In the cases R = 2, 3, the function t̂(R)(x)

takes the form

t̂(R=2)(x) = x2

(
x+

1

c

)
, t̂(R=3)(x) = x2

(
x2 +

9

4 c
(1 + x)

)
. (D.8)

E Generalized free theory example

In this appendix we present a solution to the Ward identities (3.16) and to the crossing equations of

section 4.1. This solution is commonly referred to as generalized free theory. It reads

Ggft
R (x1, x2, y) = 1 +

(
x1x2

y

)R

, (E.1)

from which we can extract by setting x2 = y the expression fgft
R (x) = 1+xR. Furthermore, via (3.17),

we get

Hgft
R (x1, x2, y) =

x1x2

[
xR
1 x

R
2 y

2−R(x1 − x2)− yxR
1 x2(x1 − y) + yx1x

R
2 (x2 − y)

]

(x1 − x2)(x1 − y)(x2 − y)
. (E.2)

In particular, we have for small R the expressions

Hgft
2 (x1, x2, y) = (x1x2)

2 ,

Hgft
3 (x1, x2, y) = (x1x2)

2(x1 + x2) +
(x1x2)

3

y

= (x1x2)
2
[
(x1 + x2 +

1
3x1x2)− x1x2 h[1,1](w)

]
,

(E.3)

with h[1,1](w) given in (C.6) with y = w
w−1 . The block expansion of fR(x) for the generalized free

theory is explicitly given by

fR(x) = 1 +

∞∑

h=R

bgftR,h g
2d N=2
h (x) , bgftR,h = −4R−hh

(2R)h−R(1− h)R−1

Γ(R+ 1)(R+ 1
2 )h−R

. (E.4)

Note (and compare with the discussion around (4.20)) that in the generalized free theory example we

have b
(R)
h<R = 0. In particular, there is no stress-tensor being exchanged.
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