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Advantages of Polarized Beams

» International Linear Collider (ILC)

» e~ et collider with polarized beams of |80%| and |30% - 60%], respectively

> Selectable polarization sign — choice of spin configuration

» Advantages:

» Sensitive to new observables (e.g. left-right-asymmetry)
> Reduction of background processes and simultaneously increase of signal processes

> Deep insights into the chiral structure of the weak-interaction
for known and unknown particle

All event rates depend linearly on the polarization!
= Has to be known as precisely as the luminosity!
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ILC Polarimetry Concept

@ spin tracking @ Yownstream
. polarimeter

@ upstream
polarimeter

collisions

1. Measurement of the time-resolved beam polarization before and after the e~ e IP
» Via laser-Compton polarimeter

Ref.:  Jenny List, Annika Vauth, and Benedikt Vormwald:
A Quartz Cherenkov Detector for Compton-Polarimetry at Future et e Colliders (https://bib-pubdbl.desy.de/record/2210564)
A Calibration System for Compton Polarimetry at et e~ Colliders{https://bib-pubdbl.desy.de/record/289025)

2. Extrapolating the beam polarization to the e~ e IP
> Via Spin Tracking
Ref.:  Moritz Beckmann, Jenny List, Annika Vauth, and Benedikt Vormwald:
Spin transport and polarimetry in the beam delivery system of the international linear collider

(http://iopscience.iop.org/article/10.1088/1748-0221/9/07/P07003/pdf}

3. Determination of the luminosity-weighed averaged polarization from collision data
» Calculating the polarization from known standard model processes

= Discussed in the following
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Determination of the Polarization from Collision Data

General strategy for the polarization determination
which yields the best precision per measurement time

» Previous Work:

» Using the information from W-pair production

Ref.: Theses Ivan Marchesini
(http://pubdb.xfel.eu/record/94888)

> Using the information from single W, ~, Z events

Ref.: Talk Graham W. Wilson
(https://agenda.linearcollider.org/event/5468/contributions/24027/)

» Current Work:
» Combining all relevant processes, including all uncertainties and their correlations
» Compensating for a non-perfect helicity reversal
» Including constraints from the polarimeter measurement
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Polarization Measurement using Collision Data
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Concept

Example Processes:
W-pair production:

e; w-

e; wt

oL =0rr = ORL =0

s-channel spin-1 particle:

er (e};)

v, Z

e (ef)

oL =0rr =10

» Calculation of the P from polarized o measurement
of well known SM-process

— Using the information of their chiral structure

» Requirement to consider a process:

> Theoretical very well known
— Reduction of theoretical uncertainties
> High absolute cross section (high rate)
— Minimizing the statistical error
> Large left-right-asymmetry
— Minimizing the influence of systematic uncertainties

> Well separable from possible BSM-effects

» Feature of the ILC:
Using 4 different polarization configuration
(— signs of the polarizations)

= Task: Providing the absolute scale calibration
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Special Case: The Modified Blondel Scheme (MBS)

» Constraints for the Modified Blondel Scheme:
> Process must fulfill: o =orgr =0

> Perfect helicity reversal: +|P| <— —|P| = |P| = const.

» Unique solution:
4 possible cross section measurements: o_4, 04—, 0—_, 044
Maximal 4 unknown quantities:  or, orL, |Pe—]|, |Pet|
» Solve for |P %
1+|P _|) (1F|P 1xlP _|) (1|P
S S YGOSR
» Modified Blondel-Scheme:
1P| = (0-++tor -0 —o4y)(FoyFor to_ —04y)
‘ (0-++tor-to —Fopy)(Foy For- -0 +o4y)
»

Uncertainties are calculated via analytic error propagation
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Unified Approach: y2-Method

» Desire for a more general approach:
> Consider any process with a polarization dependence + using several processes at once
> Compensate non-perfect helicity reversal: + ‘PR‘ — — ’PL’
» Consider a x?>-Method: Using all 4 chiral cross sections
2
) (o_data _ O_theory)
D IR DI e =
Ao?
process ++
» Compensate non-perfect helicity reversal: 4 free parameters
P, = —80%, Py = 80%, P = —30%, P = 30%,
—— —— ——— ——
left-handed e~ -beam right-handed e~ -beam left-handed et-beam right-handed et-beam
» Error determination via toy experiments
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Comparison of the Statistical Precision for Different Methods

Polarization Measurement using Collision Data
Comparison of the Statistical Precision for Different Methods
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Comparison of the Statistical Precision for Different Methods

Comparison to the Previous W-Pair Study

% error polarization for 30% e* polarization
1

Study by Ivan Marchesini: 5 T ‘ T T T
= - —e— positron polarization 30%
> Using e €+ — W+ W~ — qZ]lIJ oi: 08 —— electron polarization 80%
L i 06
» Statistical uncertainties only b
04
» Consider equal absolute polarizations (MBS) ;
02
: T T
> Including full background study Py ‘ . . . h
0 200 400 600 800 1000 1200
. Luminosity fb!
Adjustment of the current study:
» Limited to e e™ = WT W™ — qqlv
< 1F - WBS: P,
- [ - MES: P,
» Forced equal absolute polarizations o o8f ThE
L| — | pR o F |
(P =1r") CEP S N, ,
. . . 0_4’ - ‘\s - l
> Including same background estimation and N SN ]
. . .2’ -~ I~~\._ — = |
selection efficiency 0.2 N A S S
. 00 200 400 600 800 1000 1200
Comparison:
L [1/fb]

= x%-method yields better precision under
same conditions than the MBS Robert Karl | Polarimetry | 21.11,2016 | 11719



Comparison to Previous Single W,

Comparison of the Statistical Precision for Different Methods

v, Z Study

Study by Graham W. Wilson

» Using 4 Processes simultaneously:
e et — vy, e et vz

eTet s et = etvu o

e et s e oWt = e pty

» Consider equal absolute polarizations
2 Parameters: P,—, P+
» Consider deviations: 4 Parameters
L
P

R
P

—|P.x| + %(&
|Pos| + 56+

Comparison to Current analysis
» Differences:
Previous: Constraint on §: A§ < 1073

Current: direct fit of PeL:LR

parameters AP/P, £ =2ab™!
# P Previous  Current
2 P, 0.07% 0.051%
P 022%  0.21%
4 P, 0.085% 0.088%
5, 012%  0.19%
P 022%  0.23%
Sor 0.32%  0.56%

L equally distributed between o4+

Statistical precision only

> Very similar precision even without
additional constraint on §
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Combining W-Pair + Single W, Z,~

Comparison of the Statistical Precision for Different Methods

Combined vs. W-Pairs alone

» W-Pair yields only enough information
for 2 parameter fit P,—, P+

» Large improvement
— due to additional processes

» Combined: fit of 4 parameters is
possible P, P%  pL PR

= Compensation for a non-perfect helicity
reversal
Combined vs. Single Boson

» The 4 processes Single W, Single Z,
Single v yields a large analysis power

» Combined precision dominated by single
boson processes

AP/P[%]

—e— P, W-pair alone
—e— P,. W-pair alone

e
i

R

107" P

S

0 200 400 600 800 1000 1200
L [1/fb]

AP/P, L =2ab™*
single W,Z,v Combined
P, 0.088% 0.079%
O 0.19% 0.18%
P+ 0.23% 0.16%
0ot 0.56% 0.51%
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Impact of Systematic Uncertainties and their Correlations

Polarization Measurement using Collision Data

Impact of Systematic Uncertainties and their Correlations
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Impact of Systematic Uncertainties and their Correlations

Systematic Uncertainties and their Correlations

Systematic quantity related to:

Integrated luminosity £  accelerator

Selection efficiency ¢  detector
Background estimate B theory
PL_ ———— With fast helicity reversal
e ———— Without fast helicity reversal
% S~
102
10°
10 10? 10°
L[1/fb]
Remark:

A non-perfect helicity reversal has close to no
influence on the precision due to compensation
of the unified approach

> Uncertainties influenced by

> Detector calibration and alignment
> Machine performance
> etc.

= AL, Ae are time dependent

» Correlations:

> Data sets taken concurrently
> Generate correlations

= Lead to cancellation of systematic
uncertainties

= Fast helicity reversal

> Fast switch between o4+
measurements e.g. train-by-train

= Faster than changes in calibrations,
alignments, etc.
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Improvement by Constraints from Polarimeter Measurement
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Consider Polarimeter Information

@ spin tracking @ downstream
" polarimeter

@ upstream
polarimeter
1

collisions

Simplified approach: (as a first step) Implementation
» Assume polarimeter measure directly
at IP (neglect spin transport) Y= Z 72) )
» Use nominal polarimeter uncertainty
AP/P = 0.25%:
» Toy polarimeter measurement: > Pt 4 fitted Parameter
Gaus-smeared > P:f: Polarimeter measurement
> Mean: P,_ = 80%, P+ = 30% » AP: Polarimeter uncertainty
» Width: AP

Robert Karl | Polarimetry | 21.11.2016 |  17/19



Impact of the Polarimeter Constraint

o " witout polarimeter For idealized situation:
5 —e— with polarimeter
- ! H H el

10 oI » Better polarization precision,
especially for lower integrated

luminosities

T
10° - _ _
» More robust against large Poisson
\\\ . . .
it fluctuations in the cross section

10? 10° 10*
L[1/fb]

measurement

Next step: add more realism
» Spin tracking including misalignments in the BDS
> Include impact of collision effect
» Use upstream and downstream polarimeter separately
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Summary

» Polarization provides a deep insight in the chiral structure of the standard model and
beyond

= A permille-level precision of the luminosity-weighted average polarization at the IP is
required

> New unified approach combing all suitable cross sections and the polarimeter
measurement

= Higher analysis power by consider various processes
= Further improvement of precision due to polarimeter constraint
» Unified approach also compensate a non-perfect helicity reversal due to direct fit of:
L R L R
Pe*? Pe*? Pe+7 Pe+
» A fast helicity reversal improves the polarization precision due to cancellation of

systematic uncertainties
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Backup Slides
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Polarization at a e~ et Collider

> Helicity is the projection of the spin vector on the direction of motion
> In case of massless particles, helicity is equal to chirality
> If Bxin>FEy — mex0

e et
ORR — 2N = J 0
@:

OLL ~—, ——

ORL -, —
Jo =1

OLR (=> <<=

» For a bunch of particles the polarization is defined as:

__ Ne—Ng

Nr + Np
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Laser-Compton Polarimeters
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Laser-Compton Polarimeters

Magnetic chicane of the upstream polarimeters » Compton scattering of the
T T beam with a polarized Laser
Dipole Dipole
» O(10%) particles per bunch
i e (2- 1010) are scattered
LLaser IP 550 G.;V"‘~'.,-' L &
ciiosdicaer > Magnetic chicane:
™ g energy spectrum
2aemt | = spatial distribution

total length: ~75 m

» Energy spectrum measurement:
= Counting the scattered particles at different positions

» Design of the magnetic Chicane:

» Laser-bunch interaction point moves with beam energy
— position of the Compton edge stays the same

> Orbit of the non-scattered particles is unaffected by the magnetic chicane
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Differential Compton Cross Section

i
i

Energy dependence:

5 i
2
5 40 i d Y2 104
E | oo T (ac + AP - be); yoi=1-—
< i dyc To E
5 3.0
£
§ e~ Polarization: P; Laser Polarization: A
2.0
DarkBlue: AP = +1
o Cyan: AP =-1
oot Calculating P; of the i-th channel with
Energy of the Compton-scattered electrons [GeV] asym metry A'L.y ana|ysing power Hz
Ei+AJ2
N~ — N* I -1 d
Ay = ————ty L= ——; Iz-i = / —dUC dyc
Ny +N; 1 +1, L Py
B—A/2
NT .= #ecompton for AP = £1;  E; : energy of i-th channel; A : energy width
Ay
= AP, = 0 = P=(P)
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Spin Tracking
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Spin Precession

B @ » Polarimeters are 1.65 km and 150 m away from [P

— Particles propagate through magnets

— Magnets influence the spin, as well

— Described by Thomas precession

A4
=
fiesl)
I
=
I
jan)

S':—mi,y((l—ka'y)éL)xg

4

Effects from focusing and defocusing can cancel

» For a series of quadrupole magnets
P described by the angular divergence 6,

£(0:) = |Plmax - cos (1 + a7) - 0,)
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Systematic Polarization Uncertainty

contribution uncertainty[lO’g]

Beam and polarization alignment at polarimeters and IP 0.72
(ABbunch = 50 prad, Adpe = 25 mrad)

Variation in beam parameters (10 % in the emittances) 0.03
Bunch rotation to compensate the beam crossing angle < 0.01
Longitudinal precession in detector magnets 0.01
Emission of synchrotron radiation 0.005
Misalignments (10 p) without collision effects 0.43
Total (quadratic sum) 0.85
Collision effects in absence of misalignments < 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdbl.desy.de/record/155874)
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Collision Data
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Polarized Cross Section

» Theoretical polarized cross section:

0 (P—,P+) = —(1_};67) —(1_5”) cow + —(I-HQDF) —(1+§“’+) - ORR
1—-P ) (1+P 1+P ) (1-pP
SO 03n) () 0or)

» Measured polarized cross section:

N D—- (B
U(Pe*7Pe+):n:E.—<£>;

Statistic quantity:  selected data D, number of events N
Systematic quantity:  background B, selection efficiency ¢,
integrated luminosity £
» Cross section of the 4 polarization configurations

o—— ::U(_|Pe_|>_|Pe+|) O++ ::U(+|Pe_|ﬂ+|Pe+|)
0—+ ::U(_|Pe—|7+|Pe+|) 04— ::U(+|Pe—|7_|Pe+|)
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Previous Single W, Z, ~ Study: Leading Diagrams

Single W Single W~ Single Z
et Ve et et Ve
wt wt
wt Z
Y w~—
e e” e” e” Ve
Single v
Y et Ve
et Y
Ve wt et Ve
A
W
e Ve
e~ Ve e~ Ve

obert Karl olarimet: DES/Y
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Consider Correlated Uncertainty

Implementing correlated uncertainty:

th
data __ ot eory)

-y 3 )

— Z (5:data - &theory)T E_l (6data - Etheory)

process i€ ++ process
. T
g = (G'_+ 04— g_— O'++)
- = - - - — _e\ 00; 05
E:=Eny+Ep+Z.+Er; eg (E:),; = corr (az, of) 6‘52 6‘&j Ag;Ag;
Occurrence of correlated uncertainties: Consider disadvantageous situation:
> Fast switch between o++ » e=0.6
» Faster than change in e.g 6L » Ag/e =0.01
— Aoc++ (AL) becomes correlated » AL/L = 0.001
= corr (‘71 » 05 ) #0 Vi#j — Studying the impact of correlations
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Outlook

» Open issues

> Implementing fiducial cuts for all processes — correct description of all systematics

> Including a complete background analyses

> Further Improvement

» Consider also differential cross sections

> Study the possibility to use fiducial and differential cross sections simultaneously
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