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Polarization Measurement using Collision Data

Concept

Example Processes:

W-pair production:
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s-channel spin-1 particle:
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f
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σLL = σRR = 0

◮ Calculation of the P from polarized σ measurement
of well known SM-process

→ Using the information of their chiral structure

◮ Requirement to consider a process:

◮ Theoretical very well known

→ Reduction of theoretical uncertainties

◮ High absolute cross section (high rate)

→ Minimizing the statistical error

◮ Large left-right-asymmetry

→ Minimizing the influence of systematic uncertainties

◮ Well separable from possible BSM-effects

◮ Feature of the ILC:
Using 4 different polarization configuration
(→ signs of the polarizations)

⇒ Task: Providing the absolute scale calibration
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Polarization Measurement using Collision Data

Special Case: The Modified Blondel Scheme (MBS)

◮ Constraints for the Modified Blondel Scheme:

◮ Process must fulfill: σLL ≡ σRR ≡ 0

◮ Perfect helicity reversal: + |P| ←→ − |P| ⇒ |P| ≡ const.

◮ Unique solution:

4 possible cross section measurements: σ−+, σ+−, σ−−, σ++

Maximal 4 unknown quantities: σLR, σRL, |Pe− | , |Pe+ |

◮ Solve for |Pe∓ |:

σ±± =
(1±|Pe− |)

2

(1∓|Pe+ |)
2

· σRL +
(1∓|Pe− |)

2

(1±|Pe+ |)
2

· σLR

◮ Modified Blondel-Scheme:

|Pe∓ | =

√

(σ−+ + σ+− − σ−− − σ++) (±σ−+ ∓ σ+− + σ−− − σ++)

(σ−+ + σ+− + σ−− + σ++) (±σ−+ ∓ σ+− − σ−− + σ++)

◮ Uncertainties are calculated via analytic error propagation
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Polarization Measurement using Collision Data

The Unified Approach: χ
2-Method

◮ Desire for a more general approach:

◮ Consider any process with a polarization dependence + using several processes at once

◮ Compensate non-perfect helicity reversal: +
∣
∣PR

∣
∣←→ −

∣
∣PL

∣
∣

◮ Consider a χ2-Method: Using all 4 chiral cross sections

χ2 =
∑

process

{
∑

±±

[(
σdata − σtheory

)2

∆σ2

]}

◮ Compensate non-perfect helicity reversal: 4 free parameters

P
−
L = −80%,

︸ ︷︷ ︸

left-handed e−-beam

P
−
R = 80%,

︸ ︷︷ ︸

right-handed e−-beam

P
+

L = −30%,
︸ ︷︷ ︸

left-handed e+-beam

P
+

R = 30%,
︸ ︷︷ ︸

right-handed e+-beam

◮ Error determination via toy experiments
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Polarization Measurement using Collision Data Comparison of the Statistical Precision for Different Methods

Comparison to Previous Single W
±, γ, Z Study

Study by Graham W. Wilson

◮ Using 4 Processes simultaneously:

e
−

e
+ → νν̄γ; e

−
e

+ → νν̄Z

e
−

e
+ → e

+νW
− → e

+νµ−ν̄

e
−

e
+ → e

−ν̄W
+ → e

−ν̄µ+ν

◮ Consider equal absolute polarizations
2 Parameters: Pe− , Pe+

◮ Consider deviations: 4 Parameters

P
L

e± = − |Pe± | + 1

2
δ±

P
R

e± = |Pe± | + 1

2
δ±

parameters ∆P/P, L = 2ab−1

# P Previous Current

2 Pe− 0.07% 0.051%

Pe+ 0.22% 0.21%

4 Pe− 0.085% 0.088%

δe− 0.12% 0.19%

Pe+ 0.22% 0.23%

δe+ 0.32% 0.56%

L equally distributed between σ±±

Statistical precision only
Comparison to Current analysis

◮ Differences:

Previous: Constraint on δ: ∆δ < 10−3

Current: direct fit of P
L,R

e±

◮ Very similar precision even without
additional constraint on δ
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Polarization Measurement using Collision Data Comparison of the Statistical Precision for Different Methods

Combining W-Pair + Single W , Z , γ

Combined vs. W-Pairs alone

◮ W-Pair yields only enough information
for 2 parameter fit Pe− , Pe+

◮ Large improvement
→ due to additional processes

◮ Combined: fit of 4 parameters is
possible PL

e− , PR

e− , PL
e+ , PR

e+

⇒ Compensation for a non-perfect helicity
reversal

Combined vs. Single Boson

◮ The 4 processes Single W ±, Single Z ,
Single γ yields a large analysis power

◮ Combined precision dominated by single
boson processes

L [1/fb]

0 200 400 600 800 1000 1200

 P
 /

 P
 [

%
]

∆

1−10

 W-pair alone-
eP

 W-pair alone+eP
 combined-

eP

 combined+eP

∆P/P, L = 2ab−1

single W , Z , γ Combined

Pe− 0.088% 0.079%

δe− 0.19% 0.18%

Pe+ 0.23% 0.16%

δe+ 0.56% 0.51%
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Polarization Measurement using Collision Data Impact of Systematic Uncertainties and their Correlations

Systematic Uncertainties and their Correlations

Systematic quantity related to:

Integrated luminosity L accelerator

Selection efficiency ε detector

Background estimate B theory

L[1/fb]

10 210 310

P
∆

3−10

2−10

L
-eP With fast helicity reversal

Without fast helicity reversal

L
-eP

Remark:

A non-perfect helicity reversal has close to no

influence on the precision due to compensation

of the unified approach

◮ Uncertainties influenced by

◮ Detector calibration and alignment

◮ Machine performance

◮ etc.

⇒ ∆L, ∆ε are time dependent

◮ Correlations:

◮ Data sets taken concurrently

◮ Generate correlations

⇒ Lead to cancellation of systematic
uncertainties

⇒ Fast helicity reversal

◮ Fast switch between σ±±

measurements e.g. train-by-train

⇒ Faster than changes in calibrations,
alignments, etc.
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Improvement by Constraints from Polarimeter Measurement

Impact of the Polarimeter Constraint

L[1/fb]

210 310 410

P
∆

3−10

2−10

L
-eP

witout polarimeter

with polarimeter
-1L = 500 fb

-1L = 4 ab

L
-eP

For idealized situation:

◮ Better polarization precision,
especially for lower integrated
luminosities

◮ More robust against large Poisson
fluctuations in the cross section
measurement

Next step: add more realism

◮ Spin tracking including misalignments in the BDS

◮ Include impact of collision effect

◮ Use upstream and downstream polarimeter separately
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Summary

Summary

◮ Polarization provides a deep insight in the chiral structure of the standard model and
beyond

⇒ A permille-level precision of the luminosity-weighted average polarization at the IP is
required

◮ New unified approach combing all suitable cross sections and the polarimeter
measurement

⇒ Higher analysis power by consider various processes

⇒ Further improvement of precision due to polarimeter constraint

◮ Unified approach also compensate a non-perfect helicity reversal due to direct fit of:

P
L

e− , P
R

e− , P
L
e+ , P

R
e+

◮ A fast helicity reversal improves the polarization precision due to cancellation of
systematic uncertainties

Robert Karl | Polarimetry | 21.11.2016 | 19/19



Backup Slides
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Polarization at a e
−

e
+ Collider

◮ Helicity is the projection of the spin vector on the direction of motion

◮ In case of massless particles, helicity is equal to chirality

◮ If Ekin ≫ E0 −→ me ≈ 0

e
−

e
+

σRR
JΦ = 0

σLL

σRL
JΦ = 1

σLR

◮ For a bunch of particles the polarization is defined as:

P :=
NR − NL

NR + NL
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Laser-Compton Polarimeters

Laser-Compton Polarimeters

Spin Tracking

Collision Data
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Spin Tracking

Laser-Compton Polarimeters

Spin Tracking

Collision Data

Robert Karl | Polarimetry | 21.11.2016 | 25/19





Spin Tracking

Systematic Polarization Uncertainty

contribution uncertainty
[
10−3

]

Beam and polarization alignment at polarimeters and IP
(∆ϑbunch = 50 µrad, ∆ϑpol = 25 mrad)

0.72

Variation in beam parameters (10 % in the emittances) 0.03

Bunch rotation to compensate the beam crossing angle < 0.01

Longitudinal precession in detector magnets 0.01

Emission of synchrotron radiation 0.005

Misalignments (10 µ) without collision effects 0.43

Total (quadratic sum) 0.85

Collision effects in absence of misalignments < 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdb1.desy.de/record/155874)
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Collision Data

Laser-Compton Polarimeters

Spin Tracking

Collision Data
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Collision Data

Polarized Cross Section

◮ Theoretical polarized cross section:

σ (Pe− , Pe+ ) =
(1−P

e− )
2

(1−P
e+ )

2
· σLL +

(1+P
e− )

2

(1+P
e+ )

2
· σRR

+
(1−P

e− )
2

(1+P
e+ )

2
· σLR +

(1+P
e− )

2

(1−P
e+ )

2
· σRL

◮ Measured polarized cross section:

σ (Pe− , Pe+ ) =
N

ε · L
=

D − 〈B〉

ε · L
;

Statistic quantity : selected data D, number of events N

Systematic quantity : background B, selection efficiency ε,

integrated luminosity L

◮ Cross section of the 4 polarization configurations

σ−− := σ (−|Pe− |, −|Pe+ |) σ++ := σ (+|Pe− |, +|Pe+ |)

σ−+ := σ (−|Pe− |, +|Pe+ |) σ+− := σ (+|Pe− |, −|Pe+ |)

Robert Karl | Polarimetry | 21.11.2016 | 29/19



Collision Data

Previous Single W
±, Z , γ Study: Leading Diagrams

Single W + Single W − Single Z

e− e−

e+ νe
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Collision Data

Consider Correlated Uncertainty

Implementing correlated uncertainty:

χ2 =
∑

process

∑

i∈±±

(
σdata

i − σtheory
i

)2

∆σ2
i

−→
∑

process

(~σdata − ~σtheory)
T Ξ−1 (~σdata − ~σtheory)

~σ :=
(
σ−+ σ+− σ−− σ++

)T

Ξ := ΞN + ΞB + Ξε + ΞL; e.g. (Ξε)
ij

= corr
(
~σε

i , ~σε

j

) ∂~σi

∂εi

∂~σj

∂εj

∆εi∆εj

Occurrence of correlated uncertainties:

◮ Fast switch between σ±±

◮ Faster than change in e.g δL

→ ∆σ±± (∆L) becomes correlated

⇒ corr
(
~σL

i , ~σL
j

)
6= 0 ∀i 6= j

Consider disadvantageous situation:

◮ ε = 0.6

◮ ∆ε/ε = 0.01

◮ ∆L/L = 0.001

→ Studying the impact of correlations
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Collision Data

Outlook

◮ Open issues

◮ Implementing fiducial cuts for all processes → correct description of all systematics

◮ Including a complete background analyses

◮ Further Improvement

◮ Consider also differential cross sections

◮ Study the possibility to use fiducial and differential cross sections simultaneously
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