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We report on progress in the calculation of 3-loop corrections to the deep-inelastic structure func-

tions from massive quarks in the asymptotic region of large momentum transfer Q2. Recently

completed results allow us to obtain the O(a3
s ) contributions to several heavy flavour Wilson

coefficients which enter both polarised and unpolarised structure functions for lepton-nucleon

scattering. In particular, we obtain the non-singlet contributions to the unpolarised structure func-

tions F2(x,Q
2) and xF3(x,Q

2) and the polarised structure function g1(x,Q
2). From these results

we also obtain the heavy flavour contributions to the Gross-Llewellyn-Smith and the Bjorken sum

rules.
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Heavy flavour corrections to DIS at 3-loop order A. Behring

1. Introduction

Deep-inelastic scattering provides a valuable way to both test the theory of quantum chromo-

dynamics (QCD) and to extract theory parameters from experiments. Among these are in particular

the strong coupling constant αs [1], the parton distribution functions (PDFs) [2 – 4] and the masses

of the charm and bottom quarks [5, 6]. To harness the full potential of the experimental data, it

is necessary to have predictions at hand for which the theoretical uncertainties keep up with the

experimental accuracy. Currently, the corrections from massive quarks are still missing for a com-

plete next-to-next-to-leading order (NNLO) analysis of the deep-inelastic scattering World data.

They can be calculated analytically at NNLO in the kinematic limit Q2 ≫ m2 [7], where Q2 is the

virtuality of the electro-weak gauge boson and m is the mass of the heavy quark. In this paper, we

report on progress in the calculation of these heavy flavour corrections.

In Section 2 we describe the framework for the heavy flavour corrections to deep-inelastic

scattering in the limit Q2 ≫m2. In this limit, the massive operator matrix elements of the light-cone

operators are the key quantities which have not been completely computed yet. Thus, we sketch the

steps involved in their calculation. Section 3 contains several applications of the results which have

been obtained so far. In particular, we illustrate the impact of the heavy flavour Wilson coefficients

on the structure function F2(x,Q2), g1(x,Q2) and xF3(x,Q2), as well as their consequences for the

polarised Bjorken sum rule and the Gross-Llewellyn-Smith sum rule. Finally, we comment on

our results for the massive operator matrix element of the non-singlet operator for transversity in

Section 4 and conclude in Section 5

2. Framework of calculation

The structure functions of deep-inelastic scattering can in general be written as convolutions of

PDFs and Wilson coefficients (cf., e.g., [8]). The Wilson coefficients carry the process-dependent

information about the particular scattering process at hand and can be calculated in perturbation the-

ory. They receive contributions from massless quarks and gluons as well as from massive quarks.

In the following, we will refer to the contributions of a single massive quark species (i.e. charm or

bottom quarks) as the heavy flavour contributions. Starting at 3-loop order, there are also contri-

butions from diagrams with two different massive quarks. Their calculation poses quite different

challenges and is discussed elsewhere [9]. The heavy flavour contributions to the structure function

F2(x,Q2), for example, can be written as [7, 10, 11]

Fh
2 (x,NF +1,Q2,m2) =

x

{

NF

∑
k=1

e2
k

[

LNS
q,2

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

⊗

[

fk(x,µ
2,NF)+ f̄k(x,µ

2,NF)
]

+
1

NF
LPS

q,2

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

⊗Σ(x,µ2,NF)

+
1

NF
LS

g,2

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

⊗G(x,µ2,NF)

]
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+ e2
Q

[

HPS
q,2

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

⊗Σ(x,µ2,NF)

+HS
g,2

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

⊗G(x,µ2,NF)

]}

. (2.1)

Here, fk, f̄k and G refer to the PDFs for quarks and anti-quarks of flavour k and the gluon PDF,

respectively. The singlet PDF combination is defined as Σ = ∑
NF
k=1( fk + f̄k) and µ2 is the factorisa-

tion scale. The number of light quark flavours is denoted by NF and ek and eQ represent the charges

of the light and heavy quarks. The heavy flavour Wilson coefficients are denoted by Li,a and Hi,a,

where the L and H distinguish the cases where the electro-weak gauge boson couples to a light or

a heavy quark, respectively, and the subscripts i and a label the initial state parton (q,g) and the

structure function under consideration. The symbol ⊗ represents the Mellin convolution, which

turns into a simple product of moments if we apply to it a Mellin transformation

M[ f ](N) =
∫ 1

0
dxxN−1 f (x) . (2.2)

This introduces the Mellin variable N, to which we will refer in several places in the following.

The massless Wilson coefficients have been calculated up to 3-loop order [12], while the mas-

sive ones are available only semi-numerically up to 2-loop order [13].1 However, it was observed

in [7] that the heavy-flavour Wilson coefficients factorise into the massless Wilson coefficients and

massive operator matrix elements (OME) in the kinematic limit where Q2 ≫ m2. In this limit, the

heavy flavour Wilson coefficients C
asymp
i,a can be written schematically as [7]

C
asymp
i,a

(

x,NF +1,
Q2

µ2
,
m2

µ2

)

= ∑
j

C j,a

(

x,NF +1,
Q2

µ2

)

⊗Ai j,Q

(

x,NF +1,
m2

µ2

)

+O

(

m2

Q2

)

.

(2.3)

The massless Wilson coefficients Ci,a are evaluated for NF + 1 massless flavours and the massive

OMEs Ai j,Q are calculated with NF massless and one massive quark. More details on the formalism

can be found in [7, 15, 10, 11]. Below, we will frequently refer to the expansion coefficients of the

OMEs in powers of as =
αs
4π , where the coefficient of ak

s is denoted by A
(k)
i j,Q.

The massive OMEs are known analytically up to 2-loop order [7, 16, 15, 17] including linear

terms in the dimensional regulator ε = D − 4, where D is the dimensionality of space-time in

dimensional regularisation [18]. The extension of these results to 3-loop order is the topic of our

project and here we report on progress in this regard.

The massive OMEs can be extracted from calculating two-point functions with external on-

shell partons and operators, which introduce additional Feynman rules beyond those of QCD. Our

calculation follows a diagrammatic approach, where all relevant diagrams are generated using

QGRAF [19]. After inserting the Feynman rules, we simplify the colour and Dirac algebra us-

ing FORM [20] and color.h [21]. In this way, we express the diagrams in terms of roughly 105

scalar loop integrals. In order to compute those, we first reduce them to a smaller number of master

integrals using integration-by-parts relations [22, 23]. For this task we use the program Reduze 2

[24].2 A major task is then to actually calculate the master integrals. Over the years a number of

1For a precise implementation in Mellin space see [14].
2Reduze 2 uses the packages GiNaC [25] and Fermat [26].
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techniques have proven to be very useful for this task:

• Higher hypergeometric functions [27]: After deriving a Feynman parameter representation

for the loop integrals, they can sometimes be brought in a form which can be integrated

in terms of generalised hypergeometric (pFq) or Appell functions that have convergent se-

ries representations. If this is the case, we can expand them in ε and the resulting sum

representations can be simplified using the summation algorithms [28, 29] implemented in

Sigma [28, 30, 31], EvaluateMultiSums and SumProduction [32] with support

from HarmonicSums [33 – 38] for dealing with the nested sums that arise.

• Mellin-Barnes integrals [39, 40]: Even if a direct evaluation of the Feynman parameter in-

tegrals in terms of hypergeometric functions is not possible, it may still be feasible to derive

a sum representation that can be simplified using Sigma and related packages: We split

up suitably formed sums of Feynman parameters at the cost of complex contour integrals

[40, 41]. Afterwards, the Feynman parameter integrals can usually be done in terms of Beta

and Gamma functions, while the contour integrals give rise to infinite sums via the residue

theorem.

• Almkvist-Zeilberger algorithm [42, 34]: If it is possible to confine the Mellin variable N in the

integrand of the Feynman parameter integrals to only one or a small number of places, it can

be advantageous to employ the multi-variable Almkvist-Zeilberger algorithm, implemented

in the package MultiIntegrate [34]. It allows to derive recurrence relations for the

integrals which can subsequently be solved using the algorithms implemented in Sigma.

• Differential equations and difference equations [43, 44]: Based on the integration-by-parts

relations it is possible to derive coupled systems of differential equations for the master

integrals. We translate these into coupled systems of difference equations and uncouple them

using Zürcher’s algorithm [45], which is implemented in OreSys [46]. Once suitable initial

conditions are available (e.g. from direct calculations using other methods), the difference

equations can be solved using the package SolveCoupledSystem [47].

More details on the application of these techniques to the calculation of massive OMEs can be

found in [44, 48 – 53]. The results obtained so far for the OMEs can be expressed in terms of

nested sums. In particular harmonic sums [54], generalised harmonic sums [55, 36], cyclotomic

sums [35] and binomially weighted sums [56, 37] appear both in the intermediate steps and in the

results. These structures are related to corresponding iterated integrals [57, 55, 36, 35, 37] via an

inverse Mellin transformation. Finally, the results for the master integrals can be inserted into the

diagrams, yielding the unrenormalised expressions for the operator matrix elements.

The renormalisation procedure for the massive OMEs at O(a3
s ) was worked out in [10]. Since

we calculate matrix elements of the local light-cone operators, it comes at no surprise that their

renormalisation involves the anomalous dimensions of the operators. Using known results for the

beta function, mass anomalous dimensions and lower order OMEs, we can use the pole terms of

our 3-loop results to calculate the NF -dependent part of the anomalous dimensions.

3



Heavy flavour corrections to DIS at 3-loop order A. Behring

3. Results for structure functions

Over the course of the recent years, a number of analytic results for the operator matrix ele-

ments have been completed. In particular, the OMEs A
(3)
qg,Q [48], A

(3)
gq,Q [51], A

PS,(3)
qq,Q [48], A

PS,(3)
Qq

[58], A
NS,(3)
qq,Q [59] have been calculated. Moreover, the gluonic OME A

(3)
gg,Q is known for even val-

ues of the Mellin variable N [60]. These results allow for a numerical illustration of their impact

on the heavy flavour Wilson coefficients of different structure functions. For the structure func-

tion F2(x,Q2) there are five different Wilson coefficients (see Eq. (2.1)), each of which requires the

knowledge of the 3-loop term of one OME. Since A
(3)
Qg is not yet fully known, the Wilson coefficient

Hg,2 cannot be given yet at 3-loop order at this point. Nevertheless, we can illustrate the impact

of the remaining Wilson coefficients, supplemented by the contribution of Hg,2 up to 2-loop order

for comparison. Figure 1 shows the heavy flavour contributions to F2(x,Q2) for a fixed value of
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Figure 1: Illustration of the contributions to the structure function F2(x,Q2) from the individual

Wilson coefficients. The plot shows the values for Q2 = 100GeV2 and the scale choice µ2 = Q2

with PDFs from [2]. The charm quark mass is mc = 1.59GeV2 in the on-shell scheme [5]. The

inset enlarges the region of 0.05 ≤ x ≤ 1.

Q2 = 100GeV2. The biggest contribution comes from Hg,2. Contributions to this Wilson coefficient

start at O(as) and are the only contribution at that order. Due to this and the fact that it involves the

gluon PDF, it is quite large in the small-x region and we have scaled down the curve by a factor 20.

The second largest contribution in the small-x region is the pure-singlet Wilson coefficient HPS
q,2.

It starts at O(a2
s ) and is negative, except for very large values of x (not visible in the plot). The

large-x region is dominated by the non-singlet Wilson coefficient, which also starts at O(a2
s ) and

is negative throughout the whole x-range. Here, the even moments of the non-singlet OME A
NS,(3)
qq,Q

enter. Somewhat smaller contributions arise from the gluon- and quark-initiated singlet Wilson

coefficients LS
g,2 and LPS

q,2, which start at O(a2
s ) and O(a3

s ), respectively.

The non-singlet OME A
NS,(3)
qq,Q was calculated also for odd moments in [59]. This allows for

applications to other structure functions besides F2(x,Q2): In particular the non-singlet contribution

4
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Figure 2: Ratio of the heavy over the light flavour contributions to the polarised structure functions

g1(x,Q2) (left panel) and g2(x,Q2) (right panel) for different values of Q2. Here, the PDFs from

[61] were used; plots from [62].

to the polarised structure function g1(x,Q2) was explored in [62]. Figure 2 illustrates the impact of

the charm quarks on this structure function. Compared to the contributions from massless quarks

and gluons, the charm quark constitutes around +1% to 2% to -5% of the non-singlet structure

function. This is below the current experimental accuracy but may be of interest at future high-

luminosity colliders [63].

At the level of twist 2, the structure function g2(x,Q2) is also related to g1(x,Q2) by the

Wandzura-Wilczek relation [64],

g2(x,Q
2) =−g1(x,Q

2)+
∫ 1

x

dy

y
g1(y,Q

2) . (3.1)

This allows us to show also the impact of the charm quarks there. As can be seen in the right panel

of Figure 2, the heavy quark contributions are about 1% to 4% the size of the massless contribution.

The pole in the plot is due to a change of sign of glight
2 .

Another application of the non-singlet OME is the polarised Bjorken sum rule [65]. It is

defined as the difference of the first moments of g1(x,Q2) in electron-proton and electron-neutron

scattering,

∫ 1

0
dx

[

gep
1 (x,Q2)−gen

1 (x,Q2)
]

=
1

6

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

CpBj(as) , (3.2)

where gA and gV denote the axial-vector and vector decay constants. The perturbative coefficient

CpBj arises from first moment of the Wilson coefficients. For the massless contributions it has been

calculated up to O(a4
s ) [66 – 68]. Our result for the non-singlet heavy flavour Wilson coefficient

leads us to the conclusion that in the limit Q2 ≫ m2 the polarised Bjorken sum rule for NF massless

quarks and one massive quark is given completely by the massless contributions for NF +1 quarks:

The massive non-singlet OME, which could modify the sum rule compared to the completely

massless case, has a vanishing first moment due to fermion number conservation. However, away

5



Heavy flavour corrections to DIS at 3-loop order A. Behring

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10−5 10−4 10−3 10−2 10−1 1

x
F

W
+

3
+
x
F

W
−

3

x

Q2 = 20GeV
2, O(a3

s
)

Q2 = 100GeV
2, O(a3

s
)

Q2 = 1000GeV
2, O(a3

s
)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

10−5 10−4 10−3 10−2 10−1 1

(F
W

+

3
+
F

W
−

3
)h

e
a
v
y
/(
F

W
+

3
+
F

W
−

3
)l

ig
h
t

x

Q2 = 20GeV
2, O(a3

s
)

Q2 = 100GeV
2, O(a3

s
)

Q2 = 1000GeV
2, O(a3

s
)

Figure 3: Left panel: Illustration of the structure function combination xFW+−W−

3 (x,Q2) including

the contributions from a massive charm quark with a mass of mc = 1.59GeV2 in the on-shell

scheme [5]. Right panel: Ratio of the heavy quark contributions over the massless part of the same

structure function; plots from [70].

from the limit Q2 ≫ m2, the behaviour described above no longer holds and genuine heavy flavour

contributions to the polarised Bjorken sum rule arise, cf. [69].

Moreover, the same non-singlet OME enters also the charged-current structure function com-

bination

xFW+−W−

3 (x,Q2) = xFW+

3 (x,Q2)+ xFW−

3 (x,Q2) . (3.3)

For an explanation of the notation we refer to [71, 70]. This structure function receives contribu-

tions from two non-singlet Wilson coefficients: On the one hand, there is LNS
q,3, which describes

reactions in which the W boson couples to a light quark and mediates a flavour transition between

light quark species. This is analogous to the case of photon exchange, except for the flavour change.

On the other hand, there is HNS
q,3 , which describes flavour excitation reactions (e.g. s → c). Here,

the W boson couples to a heavy quark. This part has no analogy in the photon-mediated case. The

impact of both Wilson coefficients on xFW+−W−

3 (x,Q2) is illustrated in Figure 3. The size of the

heavy quark contribution is again of the order of about 3%. Also in the charged current sector, there

is a sum rule arising from the first moment of the structure functions: The Gross-Llewellyn-Smith

sum rule [72] is given by

∫ 1

0
dx

[

F ν̄ p
3 (x,Q2)+Fν p

3 (x,Q2)
]

= 6CGLS(as) . (3.4)

The massless QCD corrections to CGLS are again known to O(a4
s ) [66, 73, 74] and the situation

in the heavy quark sector is similar to the polarised case: Due to the vanishing first moment of

ANS
qq,Q, the influence of the heavy quark in the asymptotic region Q2 ≫ m2 reduces to incrementing

the number of massless flavours (NF → NF +1). For the power corrections in m2/Q2 up to 2-loop

order, we refer to [69].

6



Heavy flavour corrections to DIS at 3-loop order A. Behring

4. Operator matrix element for transversity

The non-singlet results discussed so far involve the flavour non-singlet vector or axial-vector

operators. A very similar calculation can be performed for the non-singlet tensor operator

OTR,NS,µµ1...µN
q,r (z) = iN−1S

[

ψ̄(z)σ µµ1Dµ2 . . .DµN
λr

2
ψ(z)

]

− trace terms , (4.1)

where Dµ is the covariant derivative, ψ is the quark field operator, λr denotes the Gell-Mann ma-

trices of SU(3)flavour, σ µν = i
2
(γµγν − γνγµ) and S[. . . ] denotes the symmetrisation of the Lorentz

indices.

The operator in Eq. (4.1) is related to the transversity distribution ∆T fk which appears in the

transversity structure function h1(x,Q2) [75]. It can be measured in semi-inclusive deep-inelastic

scattering [76] and polarised Drell-Yan processes [77]. The massive OME of this operator is de-

noted by A
NS,TR,(3)
qq,Q and involves the same diagrams as the vector non-singlet operator A

NS,(3)
qq,Q . Of

course, different Feynman rules and a different projector have to be used, but the required master

integrals turn out to be the same. Our calculation allows to extract the NF -dependent parts of the

anomalous dimensions of the transversity operator up to 3-loop order. The result for the anomalous

dimensions and the complete OME A
NS,TR,(3)
qq,Q are given in [59]. In principle the heavy flavour Wil-

son coefficients could be constructed in a similar fashion as for the other structure functions, but at

this point the light flavour Wilson coefficients have not been calculated to a sufficient order yet.

5. Conclusions

Up to now, seven out of eight 3-loop massive operator matrix elements have been calculated

analytically for general values of the Mellin variable N. Here, we discussed both the framework

of calculation as well as a selected number of applications. The analytic calculation of the re-

quired 3-loop master integrals with additional local operator insertions led to the development and

improvement of computer-algebraic and mathematical methods and tools. The packages Sigma,

HarmonicSums, EvaluateMultiSums, SumProduction and SolveCoupledSystem

both enabled the calculation and have benefited greatly from the challenges posed by the tasks

arising from the project.

The largest contribution to the heavy flavour corrections to the structure function F2(x,Q2) is

expected to come from the Wilson coefficient HS
g,2, which is not yet known due to the missing OME

A
(3)
Qg . Nonetheless, a first impression of the impact of the heavy flavour corrections can be seen

from our illustrations in Section 3. We also discussed the influence of the massive OME A
NS,(3)
qq,Q on

the non-singlet polarised and charged-current structure functions g1(x,Q2) and xF3(x,Q2), which

is of the order of a few percent in both cases. Due to the vanishing first moment of the non-

singlet OME, the polarised Bjorken and Gross-Llewellyn-Smith sum rules are only modified by

shifting NF to NF +1 if compared to the purely massless case with NF quark flavours in the region

Q2 ≫ m2. Finally, we also calculated the massive OME for the non-singlet transversity operator,

which enabled us to obtain the NF -dependent parts of the 3-loop anomalous dimension of this

operator.
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