Combined search for anomalous pseudoscalar HVV couplings in VH(H → b̅b) production and H → VV decay

The CERN Collaboration*

CERN, Switzerland

ARTICLE INFO

Article history:
Received 13 February 2016
Received in revised form 15 May 2016
Accepted 2 June 2016
Available online 7 June 2016

Keywords:
CMS
Physics
Higgs
BSM

ABSTRACT

A search for anomalous pseudoscalar couplings of the Higgs boson H to electroweak vector bosons V (= W or Z) in a sample of proton–proton collision events corresponding to an integrated luminosity of 18.9 fb⁻¹ at a center-of-mass energy of 8 TeV is presented. Events consistent with the topology of associated VH production, where the Higgs boson decays to a pair of bottom quarks and the vector boson decays leptonically, are analyzed. The consistency of data with a potential pseudoscalar contribution to the HVV interaction, expressed by the effective pseudoscalar cross section fraction f_{33}^P, is assessed by means of profile likelihood scans. Results are given for the VH channels alone and for a combined analysis of the VH and previously published H → VV channels. Under certain assumptions, $f_{33}^P > 0.0034$ is excluded at 95% confidence level in the combination. Scenarios in which these assumptions are relaxed are also considered.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The observation of a new boson [1–3] with a mass around 125 GeV and properties consistent with those of the standard model (SM) Higgs boson [4–10] has ushered in a new era of precision Higgs physics. The ATLAS and CMS Collaborations at the CERN LHC have begun a comprehensive study of the boson properties. The spin-parity of the Higgs boson has been studied in H → ZZ, Zγ*, γγ*, γγ → 4ℓ, H → WW → ℓνℓν, and H → γγ decays [11–16], where ℓ is an electron or muon. The CDF and D0 Collaborations have set limits on the p̅p → VH production cross section (with V = W or Z) at the Tevatron, for two exotic spin-parity models of the Higgs boson [17]. In all cases, the spin-parity J^{CP} of the boson has been found to be consistent with the SM prediction. Based on a study of anomalous couplings in H → ZZ → 4ℓ decays, the CMS Collaboration has excluded the hypothesis of a pure pseudoscalar spin-zero boson at 99.98% confidence level (CL), while an effective pseudoscalar cross section fraction $f_{22}^P > 0.43$ is excluded at 95% CL (assuming a positive, real valued ratio of scalar and pseudoscalar couplings) [15]. Under the same assumptions, the ATLAS Collaboration has excluded $f_{22}^P > 0.11$ at 95% CL [18].

We present here the first search for anomalous pseudoscalar HVV couplings at the LHC in the topology of associated production, VH. It will be shown that the VH channels are strong probes of the structure of the HVV interaction, with sensitivity even to small anomalous couplings. The ultimate LHC sensitivity to a potential pseudoscalar interaction in these channels is expected to greatly exceed that of H → VV [19]. Due to the highly off-shell nature of the propagator in VH production, small anomalous couplings can lead to significant modifications of cross sections and kinematic features. In particular, the propagator mass, measured by the VH invariant mass, m(VH), is highly sensitive to anomalous HVV couplings [20]. Results from the VH channels are ultimately combined with those from H → VV measurements [15]. The q̅q → VH → Vb̅b̅ and gg → H → VV processes involve the Yukawa fermion coupling Hf̅ and the same HVV coupling, assuming gluon fusion production is dominated by the top-quark loop. The dominance of the gluon fusion production mechanism of the Higgs boson at the LHC is supported by experimental measurements [4–10]. It is interesting to consider models where the ratio of the Hb̅b and Hf̅ coupling strengths in the VH and H → VV processes is not affected by the presence of anomalous contributions [21]. In such a case, it is possible to relate the cross sections of the two processes for arbitrary anomalous HVV couplings and perform a combined analysis of the VH and H → VV processes, exploiting both kinematics and the relative signal strengths of the two processes. The H → VV signal strength is relatively well measured and can provide a strong constraint on the VH signal strength. For modest values of f_{22}^P, the VH signal strength is constrained to large values. The added constraint

* E-mail address: cms-publication-committee-chair@cern.ch.

http://dx.doi.org/10.1016/j.physletb.2016.06.004

0370-2693/© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.
thereby significantly improves the sensitivity to anomalous couplings.

In the following, we consider only the interactions of a spin-zero boson with the W and Z bosons, for which the scattering amplitude is parameterized as

\[A(HVV) \sim \left(a_{1}^{\text{HVV}} + \frac{k_1^{\text{HVV}} q_0^{2} + k_2^{\text{HVV}} q_2^{2}}{(\Lambda^{\text{HVV}})^2} \right) m_V \epsilon_V^1 \epsilon_V^2 + a_{2}^{\text{HVV}} f^{(1)}(\mu \nu) + a_{3}^{\text{HVV}} f^{(1)}(\mu \nu), \tag{1} \]

where the \(a_{i}^{\text{HVV}} \) are arbitrary complex coupling parameters which can depend on the \(V_1 \) and \(V_2 \) squared four-momenta, \(q_0 \) and \(q_2 \): \(f^{(1)}(\mu \nu) \) is the field strength tensor of a gauge boson with momentum \(q_\mu \) and polarization vector \(\epsilon_{\nu} \), given by \(\epsilon_{\nu}^{\mu} q_{\nu}^{\nu} - \epsilon_{\nu}^{\mu} \epsilon_{\nu}^{\nu} ; \ f^{(1)}(\mu \nu) \) is the dual field strength tensor, given by \(\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} f^{(1)\rho \sigma} ; \ m_V \) is the pole mass of the vector boson; and \(\Lambda^{\text{HVV}} \) is the energy scale where phenomena not included in the SM become relevant [19].

The \(a_{1}^{\text{HVV}} \), \(k_1 \), \(k_2 \) and \(a_{2}^{\text{HVV}} \) terms represent parity-conserving interactions of a scalar, while the \(a_{3}^{\text{HVV}} \) term represents a parity-conserving interaction of a pseudoscalar. In the SM, \(a_{1}^{\text{HVV}} = 2 \), which is the only nonzero coupling at tree level. All other terms in Eq. (1) are generated within the SM by loop-induced processes at levels below current experimental sensitivity. Therefore, any evidence for these terms in the available data should be interpreted as evidence of new physics.

We search for an anomalous \(a_{3}^{\text{HVV}} \) term of the HVV interaction, assuming that the \(k_1^{\text{HVV}} \) and \(a_{2}^{\text{HVV}} \) terms are negligible. Throughout the remainder of the paper, the term “scalar interaction” will be used to describe the \(a_{1}^{\text{HVV}} \) term. The effective pseudoscalar cross section fraction for process \(j \) (WH, ZH, WW, or ZZ) is defined as

\[f_{j} = \frac{\left| a_{3}^{\text{HVV}} \right|^2 \sigma_{j}^{\text{3}}}{\left| a_{3}^{\text{HVV}} \right|^2 \sigma_{1}^{\text{3}} + \left| a_{3}^{\text{HVV}} \right|^2 \sigma_{2}^{\text{3}}}, \tag{2} \]

where \(\sigma_{j}^{\text{3}} \) is the production cross-section for process \(j \) with \(a_{1}^{\text{HVV}} = 1 \) and all other couplings assumed to be equal to zero.

A superscript is not included when making a general statement not related to a particular process. The purely scalar (pseudoscalar) case corresponds to \(f_{j} = 0 \) (\(f_{j} = 1 \)). The signal strength parameter \(\mu_{j} \) for process \(j \) can also be defined in terms of the \(a_{1}^{\text{HVV}} \) as

\[\mu_{j} = \frac{\left| a_{1}^{\text{HVV}} \right|^2 \sigma_{j}^{\text{3}} + \left| a_{3}^{\text{HVV}} \right|^2 \sigma_{2}^{\text{3}}}{\left| a_{1}^{\text{HVV}} \right|^2 \sigma_{1}^{\text{3}}} \tag{3} \]

For a given set of coupling constants, the physical observables \(f_{j} \) and \(\mu_{j} \) vary for different processes as a result of the dependence on the \(\sigma_{j}^{\text{3}} \). The \(f_{j}^{\text{ZH}} \) and \(f_{j}^{\text{WW}} \) variables are defined with respect to the ZH and WH production cross-sections in \(\sqrt{s} = 8 \) TeV pp collisions, whereas the \(f_{j}^{\text{MSSM}} \) variables are defined with respect to the cross-section times branching fraction for the corresponding pp \(\rightarrow H \rightarrow VV \) process. In the latter case, the dependence on the pp \(\rightarrow H \) cross-section cancels.

2. The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [22].

3. Analysis strategy

The analysis is based on a data sample of pp collisions corresponding to an integrated luminosity of 18.9 fb\(^{-1}\) at a center-of-mass energy of 8 TeV, collected with single-electron, single-muon, and double-electron triggers. The final states considered are \(\ell \nu j \) and \(\ell j j \) (where \(j \) represents a jet), targeting the WH and ZH signals respectively.

The trigger, object and event selection criteria, and background modeling are identical to those of Ref. [23]. Using the selected events, the two-dimensional template method described in Ref. [15] is used to determine \(f_{j} \) confidence intervals. The discriminant of the boosted decision tree (BDT) described in Ref. [23] serves as one dimension of the templates. This BDT is trained separately for the WH and ZH channels to exploit various kinematic features typical of signal and background, and the correlations among observables. The b-tagging likelihood discriminants of the jets used to construct the Higgs boson candidate, the invariant mass of the Higgs boson candidate, and the angular separation between final state leptons and jets are the most important variables in terms of background rejection. Although initially trained to separate background from a scalar Higgs boson signal, it has been demonstrated with simulated events that the BDT is also effective for signals with anomalous \(f_{j} \) values. The second dimension of the templates is \(m(VH) \). Effectively, the BDT dimension provides a background-depleted region at high values of the BDT discriminant with which to test various signal hypotheses using the \(m(VH) \) distribution.

Signal templates in the \(\hat{x} = \text{BDT}, m(VH) \) plane are constructed for arbitrary values of \(f_{j} \) from a linear superposition of templates representing the pure scalar \(\mathcal{P}_{0,0}(\hat{x}) \) and pseudoscalar \(\mathcal{P}_{0,-1}(\hat{x}) \) hypotheses and a template \(\mathcal{P}_{0,-1}^{\text{int}}(\hat{x}; \phi_{01}) \) that accounts for interference between the \(a_{1}^{\text{HVV}} \) and \(a_{3}^{\text{HVV}} \) terms in Eq. (1), as follows:

\[\mathcal{P}_{\text{sig}}(\hat{x}; f_{j}, \phi_{01}) = (1 - f_{j}) \mathcal{P}_{0,0}(\hat{x}) + f_{j} \mathcal{P}_{0,-1}(\hat{x}) + \sqrt{f_{j}(1 - f_{j})} \mathcal{P}_{0,-1}^{\text{int}}(\hat{x}; \phi_{01}). \tag{4} \]

The phase between the \(a_{1}^{\text{HVV}} \) and \(a_{3}^{\text{HVV}} \) couplings is represented by \(\phi_{01} \). The interference contributions to the BDT discriminant and \(m(VH) \) distributions are negligible, as verified with simulated events. Therefore the last term in Eq. (4) is ignored in the VH channels. Equation (4) is also used to parameterize the \(H \rightarrow VV \) signals. Anomalous couplings that result from loops with particles much heavier than the Higgs boson are real valued, allowing phases of 0 and \(\pi \). In the \(H \rightarrow VV \) channels, we assume \(f_{j} = 0 \). The resulting templates are used to perform profile likelihood scans [24] to assess the consistency of various signal hypotheses with the data. One-dimensional profile likelihood scans of \(f_{j} \) are performed (where \(\mu \) is profiled), as well as two-dimensional scans in the \(\mu \) versus \(f_{j} \) plane.

In order to combine channels that depend on the \(a_{1}^{\text{IZZ}} \) with those depending on the \(a_{2}^{\text{HVW}} \), some assumption on the relationship between the couplings is required, and custodial symmetry is assumed \((a_{1}^{\text{IZZ}} = a_{2}^{\text{HVW}}) \). It is further assumed that \(a_{3}^{\text{HVW}} = a_{3}^{\text{IZZ}} \).
With these assumptions, the f_{a_1} and μ values in the WH and ZH channels are related by

$$f_{a_1}^{WH} = \left[1 + \frac{1}{\Omega^{ZH,WH}} \left(\frac{1}{f_{a_1}^{ZH}} - 1 \right) \right]^{-1}$$

and

$$\mu^{WH} = \mu^{ZH} \left[1 + f_{a_1}^{ZH} \left(\Omega^{ZH,WH} - 1 \right) \right],$$

where

$$\Omega^{ZH,WH} = \frac{\sigma^{ZH}/\sigma_1^{ZH}}{\sigma_1^{WH}/\sigma_2^{WH}}.$$

The σ_1/σ_3 ratios given by the JHUGen 4.3 [19,25,26] event generator and values of Ω^{ij} are given in Tables 1 and 2, respectively. To improve the sensitivity to anomalous couplings, results from the VH channels are combined with those from $H \rightarrow VV$ [15]. We assume the signal yield in the $H \rightarrow VV$ analysis to be dominated by gluon fusion production with negligible contamination from vector boson fusion or VH production, as in Ref. [15]. Provided that the ratio of the Hbb and Htt coupling strengths is given by the SM prediction, Eq. (6) can be used to relate the signal strength in the VH and $H \rightarrow VV$ analyses, with an appropriate change of indices (replacing 'WH' with 'Z' to relate the ZZ and ZH channels, or 'ZH' with 'WW' to relate the WW and WH channels). In the combination of the WH and $H \rightarrow WW$ channels, the ratio of the signal strengths μ^{WH}/μ^{WW} increases linearly from 1 to 173 as $f_{a_1}^{WW}$ increases from 0 to 1, according to Eq. (6). The WH signal strength has been measured by CMS to be 1.1 ± 0.9 [23], and for $H \rightarrow WW$ it has been measured to be 0.76 ± 0.21 [13]. Thus, for intermediate and large values of $f_{a_1}^{WW}$ it is not possible to reconcile the expected signal yield with data in both channels simultaneously. A similar effect occurs in a combination of the ZH and $H \rightarrow ZZ$ channels, where the ratio of the signal strengths μ^{ZH}/μ^{ZZ} rises sharply as $f_{a_1}^{ZZ}$.

However, an anomalous ratio of the Hbb and Htt coupling strengths spoils the relationship in Eq. (6). We therefore perform two interpretations of the VH and $H \rightarrow VV$ combination; one interpretation in which this relationship is enforced, and one interpretation in which the signal strengths in the VH and $H \rightarrow VV$ channels are allowed to vary independently. These are referred to as the `correlated-µ' and `uncorrelated-µ' combinations, respectively.

![Fig. 1. Feynman diagrams representing gluon-initiated ZH production via a quark triangle (top) and box (bottom) loop.](image)

4. Simulation

Simulated $qg \rightarrow VH$ signal events are generated for pure scalar and pseudoscalar hypotheses with the leading-order (LO) event generator JHUGen, and assuming a mass $m_H = 125.6$ GeV. The simulated event sample is reweighted based on the vector boson p_T to include corrections up to next-to-next-to-LO and next-to-LO (NLO) in the QCD and electroweak (EW) couplings respectively [27–31]. These corrections are derived for a scalar Higgs boson, and applied to both scalar and pseudoscalar simulated event samples.

The $gg \rightarrow ZH$ process includes diagrams with quark triangle and box loops, as shown in Fig. 1. These diagrams interfere destructively with one another [32]. The box diagram contains no HVV vertex. The triangle diagram does, but is unaffected by the a_4^{HVV} term in Eq. (1). The triangle diagram mediated by a CP-odd HVV interaction is completely anti-symmetric under the reversal of the direction of loop momentum flow; the diagrams with opposite loop momentum flow therefore perfectly cancel one another. As the a_4^{HZZ} coupling varies within a profile likelihood scan, the box contribution remains fixed while the triangle contribution and the interference must be varied accordingly. This is accomplished by reweighting the simulated $gg \rightarrow ZH$ event sample to have the correct m (VH) distribution at the generator level, including interference effects. This reweighting is based on results obtained with the VBFNLO event generator [32,33], modified for this analysis to allow variation of the HFF and HZZ coupling strengths.

Simulated background event samples are generated with a variety of event generators. Diboson, W+jets, Z+jets, and t\bar{t} samples are generated with MadGraph 5.1 [34], while POWHEG 1.0 [35] is used to generate single top quark samples, as well as the gluon-initiated contribution to ZH production ($gg \rightarrow ZH$). The HERWIG++ 2.5 [36] generator is used along with alternative matrix element generators to produce additional simulated background samples to assess the systematic uncertainty related to event simulation accuracy, as described in Section 6.

The PYTHIA 6.4 [37] and HERWIG++ generators are used to simulate parton showering and hadronization. Detector simulation is performed with GEANT4 [38]. Uncorrelated proton–proton collisions occurring in the same bunch crossing as the signal event (pileup) are overlayed on top of the hard interaction, in accord with the distribution observed. Corrections are applied to the simulation in order to account for differences in object reconstruction efficiencies and resolutions with respect to the data.

Control regions in data are defined in Ref. [23], from which normalization scale factors for the dominant backgrounds are derived. A simultaneous fit to data across control regions is performed to extract the scale factors, which are applied here. The shape of the W (V) boson transverse momentum p_T distribution is corrected in the simulated t$(V+jets)$ event sample, based on a fit to data in a background-enriched control region.
5. Object and event selection

All objects are reconstructed using a particle-flow (PF) approach [39,40]. Among all reconstructed primary vertices satisfying basic quality criteria, the vertex with the largest value of $\sum p_T^2$ is selected. Electrons are reconstructed from inner detector tracks matched to calorimeter superclusters, and selected with a multivariate identification algorithm [41]. Electrons are required to have $p_T > 30$ GeV and pseudorapidity $|\eta| < 2.5$, with a veto applied to the barrel-endcap transition region ($1.44 < |\eta| < 1.57$) where electron reconstruction is sub-optimal. Muons are reconstructed from inner detector tracks matched to tracks reconstructed in the muon system, and selected with a cut-based identification algorithm [42]. Muons are required to have $p_T > 20$ GeV and $|\eta| < 2.4$. Both electrons and muons are required to be well isolated from other reconstructed objects. Jets are reconstructed using the anti-k_T algorithm [43], with a distance parameter of 0.5, from the reconstructed objects, after removing charged objects with a trajectory inconsistent with production at the primary vertex. Additionally, the energy contribution from neutral pileup activity is subtracted with an area-based approach [44]. Jets are tagged as originating from the fragmentation and hadronization of bottom quarks with the combined secondary vertex (CSV) algorithm [45], which exploits both the track impact parameter and secondary vertex information. Missing transverse energy E_{T}^{miss} is reconstructed as the negative vector p_T sum of all reconstructed objects.

Events are categorized based on the flavour and number of charged leptons into four channels. Events with two same-flavour, opposite-sign electrons (muons) are assigned to the $Z \rightarrow ee$ ($Z \rightarrow \mu\mu$) channel. Events with one electron (muon) and large E_{T}^{miss} are assigned to the $W \rightarrow e\nu$ ($W \rightarrow \mu\nu$) channel. In the $W \rightarrow e\nu$ ($Z \rightarrow \ell\ell$) channels, Higgs boson candidates are constructed from the pair of jets (referred to as j_1 and j_2) with the largest vector p_T sum among jets with $p_T > 30$ (20) GeV and $|\eta| < 2.5$. The Z boson candidates are constructed from lepton pairs whose invariant mass is consistent with the Z boson mass. The W boson candidates are constructed by combining the momentum of the identified lepton with the event E_{T}^{miss}, and calculating the neutrino momentum along the beam axis based on a W boson mass constraint. To suppress contributions from QCD multijet events, in the $W \rightarrow e\nu$ channels the magnitude of the E_{T}^{miss} vector must exceed 45 GeV and it must be separated in direction from the charged lepton by less than $\pi/2$ radians in azimuth. In addition, the Higgs boson candidate p_T must exceed 100 GeV.

The analysis sensitivity is increased further by categorizing events into medium- and high-boost regions based on the p_T of the vector boson candidate. The bulk of the sensitivity comes from the high-boost region. These regions are later combined statistically. In the $W \rightarrow e\nu$ channels, the medium- and high-boost regions are defined by $120 < p_T(W) < 180$ GeV and $p_T(W) > 180$ GeV, respectively. In the $Z \rightarrow \ell\ell$ channels, the regions are instead defined by $50 < p_T(Z) < 100$ GeV and $p_T(Z) > 100$ GeV. The low-boost region described in Ref. [23] is not included because of its negligible sensitivity to anomalous couplings. Requirements on the Higgs boson candidate mass and the b-tagging likelihood discriminants of the jets used to construct the Higgs boson candidate are also applied. The selection criteria are summarized in Table 3.

The expected scalar, pseudoscalar, and total background templates for the high-boost $W \rightarrow e\nu$ channel are shown in Fig. 2. One-dimensional projections of the templates for the high-boost $W \rightarrow \mu\nu$ and $Z \rightarrow ee$ channels onto the $m(VH)$ axis are shown in Fig. 3. The discrimination power of $m(VH)$ for the scalar and pseudoscalar hypotheses can be seen clearly; the pseudoscalar hypothesis tends to produce larger values of $m(VH)$ than the scalar hypothesis.

6. Systematic uncertainties

A variety of sources of uncertainty are considered in this analysis. These include the energy scale, energy resolution, and reconstruction efficiencies of the relevant physics objects; integrated luminosity determination; cross section and background normalization scale factor uncertainties; and the accuracy and finite size of the simulated event samples. The treatment of most uncertainties is identical to that of Ref. [23], with the exceptions discussed below. All uncertainties are summarized in Table 4.

Uncertainties are assigned to both the scalar and pseudoscalar signal yields, related to the calculation of higher-order QCD and EW corrections. In the pseudoscalar case, the uncertainty in the NLO EW corrections is taken to be the size of the corrections for a scalar Higgs boson. A slight mismodeling of the $m(VH)$ distribution is observed in a sideband of the medium-boost regions with values of the BDT discriminant less than -0.3. This sideband has negligible signal content. The ratio of data to the background prediction has an approximately constant, positive slope. As a result, an additional $m(VH)$ modeling systematic uncertainty is included, which allows for a linear correction of the background model. The size of this uncertainty is taken as twice the ratio of data to prediction, as fitted by a linear function in $m(VH)$.

Table 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>$W \rightarrow \ell\nu$</th>
<th>$Z \rightarrow \ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(j_1)$ [GeV]</td>
<td>> 30</td>
<td>> 20</td>
</tr>
<tr>
<td>$p_T(j_2)$ [GeV]</td>
<td>> 30</td>
<td>> 20</td>
</tr>
</tbody>
</table>
| max($\text{CSV}(j_1), \text{CSV}(j_2))$ | > 0.40 | > 0.50 (0.244)
| min($\text{CSV}(j_1), \text{CSV}(j_2))$ | > 0.40 | > 0.244 |
| $p_T(H)$ [GeV] | > 100 | - |
| $m(H)$ [GeV] | < 250 | 40–250 (< 250) |
| $p_T(V)$ [GeV] | 130–180 (> 180) | 50–100 (> 100) |
| E_{T}^{miss} [GeV] | > 45 | - |
| $\Delta \Phi(E_{T}^{\text{miss}}, \ell)$ | $< \pi/2$ | - |

Table 4

Summary of the sources of systematic uncertainty on the background and signal yields. The size of the uncertainties that only affect normalizations are given. Uncertainties that also affect the shapes are implemented with template morphing, a smooth vertical interpolation between the nominal shape and systematic shape variations.

<table>
<thead>
<tr>
<th>Source</th>
<th>Pre-fit uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>2.6%</td>
</tr>
<tr>
<td>Lepton reconstruction and trigger efficiency</td>
<td>3% per ℓ</td>
</tr>
<tr>
<td>Missing transverse energy scale and resolution</td>
<td>3%</td>
</tr>
<tr>
<td>Signal and background cross section (scale)</td>
<td>4–5%</td>
</tr>
<tr>
<td>Signal and background parton distribution functions</td>
<td>1%</td>
</tr>
<tr>
<td>$0^+ (0^0)$ EW/QCD signal corrections</td>
<td>2%/5% (10%/5%)</td>
</tr>
<tr>
<td>$\ell\ell$ and V+ jets data-driven scale factors</td>
<td>10%</td>
</tr>
<tr>
<td>Single top quark cross section</td>
<td>15%</td>
</tr>
<tr>
<td>Diboson cross section</td>
<td>15%</td>
</tr>
<tr>
<td>gg $\rightarrow ZH$ cross section</td>
<td>$+3%$</td>
</tr>
</tbody>
</table>

Normalizations + shape uncertainties

- Jet energy scale: $\pm 1\sigma$
- Jet energy resolution: $\pm 1\sigma$
- b tagging efficiency: $\pm 1\sigma$
- b tagging mistag rate: $\pm 1\sigma$
- Simulated event statistics: $\pm 1\sigma$
- Event simulation accuracy (V+jet+s and $t\bar{t}$): Alternate event simulation $m(VH)$ modeling: $\pm 2 \times$ fitted slope
Results of one-dimensional profile likelihood scans in the VH channels are shown in Fig. 4, in terms of f_{3H}^2. Throughout the paper, expected results are derived from an Asimov data set [46] for a pure scalar Higgs boson with $\mu = 1$. This dataset represents the expectation for an SM Higgs boson in the asymptotic limit of large statistics. The combined VH scan assumes $\sigma_{WW}^H = \sigma_{ZZ}^H$.

The expected $-2\Delta \ln L$ values reach a plateau above $f_{3H}^2 \approx 0.3$, as a result of the small σ_1/σ_3 values in the VH channels. Even for modest values of f_{3H}^2, the total signal cross section, and therefore the $m(VH)$ shape, is dominated by the pseudoscalar contribution. Increasing f_{3H}^2 further has little impact on the $m(VH)$ shape, and therefore the likelihood.

Based on the available data, the VH channels alone do not have sufficient sensitivity to derive any constraint on f_{3H} at 95% CL. Although there is some discrepancy between the expected and observed scans, all observed results are consistent with the SM prediction of $f_{3H} = 0$. This discrepancy is driven by a modest excess (deficit) at high (low) values of $m(VH)$ in a selected number of background-depleted bins in the high-boost $Z \rightarrow \mu\nu$ and $W \rightarrow \mu\nu$ channels, which is consistent with the SM prediction within statistical and systematic uncertainties.

Results from the VH channels are combined with results from the $H \rightarrow VV$ channels [15], with and without assuming the SM...
the top of Fig. 6. A slight improvement over the constraint from the H → VV channels alone is observed, with $f_{\alpha_1}^{ZZ} > 0.25$ excluded at 95% CL.

Correlated-μ combinations of the VH and H → VV channels are performed as well, which are based on the assumption of the SM ratio of the Hbb and Hτc coupling strengths. This assumption fixes the relationship between the signal strengths in the VH and H → VV channels. As a result of the relatively well measured signal strengths in the H → VV channels, for intermediate and large values of f_{α_1} the signal strengths in the VH channels are constrained to large values, and such a signal cannot be accommodated by the data. The results are shown in the bottom of Fig. 6. Relative to the f_{α_1} exclusion obtained from the H → VV channels alone, the results obtained here are significantly stronger, with $f_{\alpha_1}^{ZZ} > 0.0034$ excluded at 95% CL in the full combination of all channels.

The future power of the VH channels at probing small anomalous HVV couplings is demonstrated on the right side of Figs. 5 and 6. Although the expected exclusion of anomalous couplings in these channels is only at the ~68% CL level with the current 8 TeV dataset, the −2Δln L values increase sharply for small, non-zero values of $f_{\alpha_1}^{ZZ}$ and reach a plateau at $f_{\alpha_1}^{ZZ} = 0.05$. With the inclusion of $\sqrt{s} = 13$ TeV collision data from the ongoing LHC run, the shape of these −2Δln L distributions will not change significantly, but the plateau will reach larger values of −2Δln L. As soon as the exclusion of a pure pseudoscalar becomes possible, it will be possible to exclude small values of $f_{\alpha_1}^{ZZ}$ as well.

Results of two-dimensional profile likelihood scans in the μ^{VH} versus $f_{\alpha_1}^{VH}$ plane based on a combination of VH and ZZ channels are shown in Fig. 7. Smaller μ^{VH} values are preferred with increasing $f_{\alpha_1}^{VH}$, as a result of increasing signal efficiency, due to the harder $m(VH)$ distribution of a potential pseudoscalar signal compared to that of a scalar. The minimum of the −2Δln L values corresponds to $\mu^{VH} = 1.11$ and $f_{\alpha_1}^{VH} = 0.22$.

Finally, we allow for the modification of the a_3^{VH} couplings by a momentum-dependent form factor [19], given by
\[
\left(1 + \frac{q^2}{\Lambda^2}\right)^2 \left(1 + \frac{q^2}{\Lambda^2}\right)^2 \right)^{-1},
\]

where Λ represents a scale of new physics at which the a_3^{VH} coupling can no longer be treated as a constant. Unlike earlier results in H → VV [15] where the vector boson q^2 is restricted to ≤ 100 GeV, in VH production much larger values are accessible. This fact is responsible for much of the sensitivity of this analysis, but also necessitates the consideration of form factor effects. Profile likelihood scans based on a combination of the WH and ZZ channels for various values of Λ are shown in Fig. 8.

Table 5

A summary of the locations of the minimum −2Δln L values in one-dimensional f_{α_1} profile likelihood scans. Parentheses contain 68% CL intervals, and brackets contain 95% CL intervals. The ranges are truncated at the physical boundaries 0 < f_{α_1} < 1. The results of combinations which involve both VH and H → VV channels are given with and without assuming the SM ratio of the coupling strengths of the Higgs boson to top and bottom quarks.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Parameter</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH</td>
<td>$f_{\alpha_1}^{VH}$</td>
<td>[0, 0.64]</td>
<td>[0, 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.22 (0.029, 1)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>Correlated-μ combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH + H → WW</td>
<td>$f_{\alpha_1}^{WW}$</td>
<td>[0, 0.0012]</td>
<td>[0, 0.0027]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0026 (0.00082, 0.0053)</td>
<td>[0, 0.0098]</td>
</tr>
<tr>
<td>ZH + H → ZZ</td>
<td>$f_{\alpha_1}^{ZZ}$</td>
<td>[0, 0.0014]</td>
<td>[0, 0.0034]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0011 (0, 0.0029)</td>
<td>[0, 0.0056]</td>
</tr>
<tr>
<td>VH + H → VV</td>
<td>$f_{\alpha_1}^{VV}$</td>
<td>[0, 0.00050]</td>
<td>[0, 0.0011]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0012 (0.00047, 0.0021)</td>
<td>[0, 0.0034]</td>
</tr>
<tr>
<td>Uncorrelated-μ combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH + H → WW</td>
<td>$f_{\alpha_1}^{WW}$</td>
<td>[0, 1]</td>
<td>[0, 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00088 (0, 0.21)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>ZH + H → ZZ</td>
<td>$f_{\alpha_1}^{ZZ}$</td>
<td>[0, 0.21]</td>
<td>[0, 0.66]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0067 (0, 0.16)</td>
<td>[0, 0.44]</td>
</tr>
<tr>
<td>VH + H → VV</td>
<td>$f_{\alpha_1}^{VV}$</td>
<td>[0, 0.0062]</td>
<td>[0, 0.44]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0010 (0.00011, 0.0043)</td>
<td>[0, 0.25]</td>
</tr>
</tbody>
</table>
Fig. 5. Results of profile likelihood scans for the VH and VV channels, plus their combination. The dotted (solid) lines show the expected (observed) $-2\Delta \ln L$ value as a function of f_{a3}. The full range of f_{a3} is shown on the left, with the low f_{a3} region highlighted on the right. Horizontal dashed lines represent the 68%, 95%, and 99% CL.

For $\Lambda \lesssim 10$ TeV, a potential momentum-dependent form factor has a negligible impact on the analysis. But for smaller values of Λ, the tail of the $m(VH)$ distribution is diminished, and along with it the sensitivity to anomalous couplings. However, even for Λ values as small as 1 TeV, the VH channels maintain significant sensitivity.

8. Summary

A search has been performed for anomalous pseudoscalar HVV interactions in $\sqrt{s} = 8$ TeV pp data collected with the CMS detector. This is the first study of such interactions at the LHC in associated VH production. The results based on the VH channels are combined statistically with those from a previously published study of $H \rightarrow VV$ decays, which assumes the signal yield is dominated by gluon fusion production of the Higgs boson. Channels sensitive to the HWW and HZZ interaction are combined assuming equality of the couplings of the Higgs boson to W and Z bosons.

A leading order scalar a_1^{HVV} and pseudoscalar a_3^{HVV} coupling with a relative phase of 0 are considered, while all other potential tensor structures are neglected. The a_1^{HVV} and a_3^{HVV} couplings are first treated as constants, but later modified to allow potential momentum-dependent form factor effects in VH production. Profile-likelihood scans are used to assess the consistency of the data with various effective pseudoscalar cross section fractions, f_{a3}.

The VH channels alone do not currently have sufficient sensitivity to constrain the f_{a3} at 95% CL. However, f_{a3}^{ZZ} can be constrained to the sub-percent level in a combination of VH and H → VV channels, when assuming the standard model ratio of the coupling strengths of the Higgs boson to top and bottom quarks. Under this assumption, and ignoring form factor effects, $f_{a3}^{ZZ} > 0.0034$ is excluded at 95% CL in the combination of all channels.
Fig. 6. Results of profile likelihood scans for the VH and VV channels, as well as their combination. The dotted (solid) lines show the expected (observed) $-2\Delta \ln L$ value as a function of f_{a_3}. The full range of f_{a_3} is shown on the left, with the low f_{a_3} region highlighted on the right. The bottom plots contain the results of correlated-µ scans. Horizontal dashed lines represent the 68%, 95%, and 99% CL. In the legend, VH refers to the combination of the WH and ZH channels, and VV refers to the combination of the $H \to WW$ and $H \to ZZ$ channels.

Acknowledgements

We would like to thank Christoph Englert, Matthew McCullough, and Michael Spannowsky for providing calculations of $gg \to ZH$ kinematics with non-SM couplings. We especially thank Christoph for his help in understanding the symmetry considerations at work in this process.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAAD (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MESHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); STFC (UK); NSF (USA); and agency agencies in the USA.
Fig. 7: Expected (left) and observed (right) two-dimensional profile likelihood scans based on a combination of the WH and ZH channels in the f_{ZH}^2 versus μ_{ZH} plane. The colour coding represents $-2\Delta\ln L$ calculated with respect to the global minimum. The scan minimum is indicated by a white dot. The 68% and 95% CL contours at $-2\Delta\ln L = 2.30$ and 5.99, respectively, are shown. The observed result includes upper and lower bounds while the expected result contains only upper bounds, as the expected result is consistent with $f_{ZH}^2 = 0$ at 68% CL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8: Results of expected (left) and observed (right) f_{ZH}^2 scans based on a combination of the WH and ZH channels, with various scales of new physics Λ. The coloured lines show the $-2\Delta\ln L$ value as a function of f_{ZH}^2. The horizontal dashed line represents the 68% CL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Centre (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompop Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez
National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, G.H. Hammad
Université de Mons, Mons, Belgium

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

S. Ahuja a, C.A. Bernardes b, A. De Souza Santos b, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, C.S. Moon a, B.F. Novaes a, Sandra S. Padula a, D. Romero Abad, J.C. Ruiz Vargas

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoystova, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic

Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger, M. Finger Jr.

Charles University, Prague, Czech Republic

Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, J. Pekkanen, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

J. Talvitie, T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili

Georgian Technical University, Tbilisi, Georgia

Z. Tsamalaidze

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

National and Kapodistrian University of Athens, Athens, Greece

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulssalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research, Mumbai, India

S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, S. Sharma

Indian Institute of Science Education and Research (IISER), Pune, India

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, M. Khazad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy
Universitá di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy
Universitá di Bologna, Bologna, Italy

G. Cappello, M. Chiorboli, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Catania, Catania, Italy
Universitá di Catania, Catania, Italy

G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliani

INFN Sezione di Firenze, Firenze, Italy
Universitá di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Laboratori Nazionali di Frascati, Frascati, Italy

V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Genova, Genova, Italy
Universitá di Genova, Genova, Italy

INFN Sezione di Milano-Bicocca, Milano, Italy
Universitá di Milano-Bicocca, Milano, Italy
P. Azzi a,2, N. Bacchetta a, L. Benato a,2, D. Bisello a, A. Boletti a, A. Branca a, R. Carlin a, P. Checchia a, M. Dall’Osso a,b,2, T. Dorigo a, U. Dosselli a, F. Fanzago a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a, K. Kanishchev a,c, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a, J. Pazzini a,b,2, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, M. Zanetti, P. Zotto a,b, A. Zucchetta a,b,2, G. Zumerle a,b

a INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
c Università di Trento, Trento, Italy

A. Braghieri a, A. Magnani a,b, P. Montagna a,b, S.P. Ratti a,b, V. Re a, C. Riccardi a,b, P. Salvini a, I. Vai a,b, P. Vitulo a,b

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

c Università del Piemonte Orientale, Novara, Italy

V. Candelise a,b, M. Casarsa a, F. Cossutti a, G. Della Ricca a,b, B. Gobbo a, C. La Licata a,b, M. Marone a,b, A. Schizzi a,b, A. Zanetti a

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

A. Kropivnitskaya, S.K. Nam

Kangwon National University, Chuncheon, Republic of Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son
Kyungpook National University, Daegu, Republic of Korea

J.A. Brochero Cifuentes, H. Kim, T.J. Kim
Chonbuk National University, Jeonja, Republic of Korea

S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

Korea University, Seoul, Republic of Korea

H.D. Yoo
Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea

Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu
Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis, J. Vaitkus
Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

G. Brona, K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G.Mesyats, S.V. Rusakov

P.N. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, P. Cirkovic, J. Milosevic, V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Bogazici University, Istanbul, Turkey

A. Cakir, K. Cankocak, S. Sen, F.I. Vardarli

Istanbul Technical University, Istanbul, Turkey

B. Grynyov

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Brunel University, Uxbridge, United Kingdom

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA
N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

M. Foerster, G. Riley, K. Rose, S. Spanier, K. Thapa

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

University of Wisconsin–Madison, Madison, WI, USA

† Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
4 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
5 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
6 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
7 Also at Universidade Estadual de Campinas, Campinas, Brazil.