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New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic Scattering

1. Introduction

At present the 3-loop heavy flavor corrections form the missing link to analyze the World deep-

inelastic scattering data at next-to-next-to leading order with respect to the determination of the

unpolarized parton distribution functions (PDFs) [1], the strong coupling constant [2], and the

masses of the charm and bottom quarks [3]. These distributions and parameters form an essential

input for all precision measurements at the LHC, notably the measurement of the Higgs boson [4]

and tt̄ [5] production cross sections. Furthermore, their precise knowledge provides new unprece-

dented tests of the Standard Model and may help in this way to reveal potential deviations pointing

to new physics.

The present project is devoted to calculate the 3-loop heavy flavor Wilson coefficients at large

scales Q2
≫ m2 in analytic form. In case of the structure function F2(x,Q

2) this approximation

suffices at the 1% level for scales Q2/m2 >
∼10 [6], a region to be selected anyway in case of charm

to stay off higher twist terms [7] at this precision.

In 2009 a series of Mellin moments has been calculated for the corresponding massive operator

matrix elements (OMEs) ranging from N = 2 to N = 10...14, depending on the Wilson coefficient,

in Refs. [8] by mapping the operator matrix elements for the different moments onto massive tad-

poles, which were computed using the code MATAD [9]. These moments serve now for comparison

in the computation of the general-N results. In the time since, four out of five neutral current mas-

sive 3-loop Wilson coefficients have been calculated [10–14], along with seven out of eight massive

OMEs [10–13, 15–19]. For all processes the logarithmic 3-loop contributions are known [11]. To

perform these computations, several technical, computer-algebraic and mathematical innovations

were necessary, which are described in Refs. [20–36]. The different physics results, including

also necessary 2-loop calculations, for the neutral and charged current reactions were published in

Refs. [37–41] and recent surveys were given in [18, 42].

In this note we describe recent developments of the project. The paper is organized as fol-

lows. The basic formalism and a series of technical details of the calculation are summarized in

Section 2. In Section 3 we review the status of the calculation of the neutral current structure func-

tion F2(x,Q
2). A survey on the calculation of the 3-loop corrections to non-singlet charged and

neutral current structure functions is given in Section 4. Results on the calculation of the heavy

flavor corrections in the full region of Q2 for various polarized and unpolarized non-singlet struc-

ture functions to O(α2
s ) and associated sum rules are given in Section 5. Recent results of 3-loop

two-mass corrections are reported in Section 6, and Section 7 contains the conclusions.

2. Basic Formalism and Technical Aspects of the Calculation

As it has been outlined in Refs. [8, 11] the massive 3-loop Wilson coefficients for deep-inelastic

scattering can be represented in terms of the massless Wilson coefficients [43, 44] and massive

operator matrix elements in the asymptotic region Q2
≫ m2, if the single heavy quark case is con-

sidered. Here Q2 denotes the virtuality of the process and m the heavy quark mass. In the present

project the massive OMEs are newly computed and used in the calculation of the corresponding

massive Wilson coefficients. Furthermore, the massive OMEs describe the transition of a single

heavy flavor becoming light in the variable flavor number scheme (VFNS), cf. [11, 45]. Up to
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2-loop order the Wilson coefficients are know (semi)analytically [46]1. In the asymptotic region

analytic expressions have been derived in Refs. [6, 37].

The whole 3-loop project constitutes of a calculation of 2864 Feynman diagrams mapping to

some dozens of 104 scalar integrals. They are generated using QGRAF [48], calculating their Dirac

structure using FORM [49] and the color structure using Color [50]. Except for simpler topologies,

we use the integration by part (IBP)-reduction [51] implemented in the package Reduze 2 [52]2

to map the major part of the problem to the calculation of 687 master integrals, out of which 116

remain to be calculated. 571 master integrals can be solved by sum-structures using difference-field

theory [55–63] implemented in the package Sigma [64, 65], or other techniques, like the use of

hypergeometric functions [66], Mellin-Barnes representations [67], the method of hyperlogarithms

[33, 68], the solution of differential equations [69], and the Almkvist-Zeilberger algorithm [70],

implemented within the package MultiIntegrate [71].

They can be expressed by iterative sum-structures in N-space or iterative integrals in x-space,

i.e. in terms of harmonic polylogarithms [72], generalized harmonic polylogarithms of the Kummer-

type [28, 29], cyclotomic harmonic polylogarithms [31], or root-valued iterated integrals [30],

which all correspond to difference or differential equations that can be factorized to first order.

This is not the case for all the remaining 116 master integrals, which depend on structures obeying

2nd order equations. Here we expect complete elliptic integrals of rational argument and related

functions to emerge, see [73]3, over which first order structures are iterated again. We currently

work on the solution of these systems.

In all these methods the solution of recurrences and the various properties of special functions

emerging in this context play a central role and have to be used algorithmically. This is made

possible by the packages Sigma [64, 65], EvaluateMultiSums and SumProduction, [77],

RhoSum [78], decoupling formalisms [79], HarmonicSums [29–31,71,80] and MultiIntegr-

ate [71].

3. Status of the 3-Loop Neutral Current Corrections

The heavy flavor contributions to the structure functions F2,L(x,Q
2) are given by

F
heavy

2,L (x,Q2) = F2,L(x,Q
2)−Fmassless

2,L (x,Q2) , (3.1)

for a single heavy quark Q and NF massless quarks

F
heavy

(2,L) (x,NF+1,Q2,m2) =

NF

∑
k=1

e2
k

{

LNS
q,(2,L)

(

x,NF +1,
Q2

m2
,
m2

µ2

)

⊗

[

fk(x,µ
2,NF)+ fk(x,µ

2,NF)
]

+
1

NF

LPS
q,(2,L)

(

x,NF +1,
Q2

m2
,
m2

µ2

)

⊗Σ(x,µ2,NF)

1For a precise implementation in Mellin space, see [47].
2The package uses the codes GiNaC [53] and Fermat [54].
3Similar structures were observed also in Refs. [74–76].
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+
1

NF

LS
g,(2,L)

(

x,NF +1,
Q2

m2
,
m2

µ2

)

⊗G(x,µ2,NF)

}

+ e2
Q

[

HPS
q,(2,L)

(

x,NF +1,
Q2

m2
,
m2

µ2

)

⊗Σ(x,µ2,NF)

+HS
g,(2,L)

(

x,NF +1,
Q2

m2
,
m2

µ2

)

⊗G(x,µ2,NF)

]

. (3.2)

Here ek and eQ denote the light and heavy quark charges, fk and G are the quarkonic and gluon

parton densities and Σ = ∑
NF

k=1 ( fk + fk̄) the singlet density, and µ denotes the factorization scale.

The five heavy flavor Wilson coefficients are given by LNS
q, ,L

PS
q ,LS

g and HPS
q ,HS

g , cf. Refs. [10–13].

In Figure 1 the present status of the 3-loop results on Fcharm
2 (x,Q2) is illustrated for Q2 =

100 GeV2 referring to the parton densities [81] and m
pole
c = 1.59 GeV. We show the different

contributions in O(αs),O(α2
s ) and O(α3

s ) using the asymptotic representation, highlighting their

behaviour at large values of x in the inset.
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Figure 1: The different known contributions to Fcharm
2 (x,Q2) by the five heavy flavor Wilson coefficients

from O(αs) (dotted lines), O(α2
s ) (dashed lines), O(α2

s ) (full lines), for m
pole
c = 1.59 GeV and the PDFs [81].

The contributions due to HS
g have been scaled down by a factor of 20 for better visibility.

The intended accuracy is O(1%) and requires all the contributions mentioned above, at least

in some part of the kinematic range. The largest contribution is due to HS
g driven by the gluon

distribution starting at O(αs). Here the calculation of the 3-loop term is underway, while all other

contributions are known already. The next largest term in the small x region is HPS
q , yielding

negative corrections there. It is followed by LS
g with smaller positive corrections at 3-loop order,

which are larger than those in 2-loop order by the same Wilson coefficient. The fourth largest

contribution is due to LPS
q and the smallest contributions are due to LNS

q , while it is largest in
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the valence region. The full knowledge of the 3-loop heavy flavor corrections to F2(x,Q
2) will

improve on presently remaining theory errors both on αs(M
2
Z) and mc [3] due to a yet approximate

treatment [82] of these corrections, based on the previous work [8, 10, 37–39].

4. 3-Loop Non-Singlet Polarized and Charged Current Corrections

The flavor non-singlet OME [12] appears in various unpolarized and polarized neutral and charged

current structure functions, combined with the different massless Wilson coefficients and helic-

ity dependent anomalous dimensions [44, 83–85]. This allows to calculate the polarized 3-loop

massive non-singlet Wilson coefficient for twist-2 part of the structure functions g1,2(x,Q
2) and

the charged current structure functions xFW+
−W−

3 (x,Q2) and FW+
−W−

1,2 (x,Q2), cf. Refs. [86–88];

for the lower order corrections see [40, 89]. Here, g2 is obtained by the Wandzura-Wilczek rela-

tion [90–93].

In Figure 2 we show the relative 3-loop corrections to gNS
1 (x,Q2) and xFW++W−

3 (x,Q2) for

typical scales Q2 using the polarized PDFs [94] and the unpolarized PDFs [81], normalizing to the

massless contributions.
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Figure 2: The relative 3-loop charm quark corrections to the polarized neutral current structure function

gNS
1 (x,Q2) using the PDFs [94] and the unpolarized charged current structure function xFW++W−

3 (x,Q2)

using the PDFs [81] for m
pole
c = 1.59 GeV as functions of x and Q2; from [86] and [87].

The 3-loop heavy flavor corrections to gNS
1 vary between +2% and −5% and those for the

charged current structure function xFW++W−

3 between +3% and −3%, compared to the light flavor

contributions. These corrections cannot be resolved in present measurements but will play a role

in high luminosity measurements at planned future colliders [95].

The asymptotic 3-loop heavy flavor corrections to the charged current structure functions

FW+
−W−

1(2) is shown in Figure 3. The relative contribution ranges from −1(−2)% to −8%, with

the largest corrections around x ∼ 0.03. The higher order terms yield positive corrections.

5. Power Corrections in the Non-Singlet Case at O(α2
s )

In the foregoing sections we have presented results calculating the massive Wilson coefficients in

the asymptotic region Q2
≫ m2. It is, however, also interesting to study the Wilson coefficients

at lower scales Q2 for data in this region and to estimate the scales at which the asymptotic rep-

resentation is valid. We investigate the non-singlet massive Wilson coefficients to O(α2
s ) for the

inclusive structure functions [41].
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Figure 3: The relative 3-loop charm quark corrections to the charged current structure functions

FW+
−W−

1(2)
(x,Q2) at Q2 = 100 GeV2 for mpole = 1.59 GeV using the PDFs of Ref. [81]; form [88].
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Figure 4: Left panel: The charm and bottom quark contributions to the polarized Bjorken sum rule as a

function of ξc = Q2/m2
c , for m

pole
c = 1.59 GeV and m

pole
b = 4.78 GeV [96]. The function CpBj describes the

flavor excitation, with CpBj = 1 one heavy quark being effectively massless. Right panel: The 2-loop charm

quark contribution to the unpolarized Bjorken sum rule; from [41].

In the tagged flavor case a similar analysis was performed in Ref. [97]4. It turns out that the

tagged flavor case does not lead to a stable description at large scales Q2, containing logarithmic

terms, which are absent in the inclusive case due to heavy flavor loop effects in diagrams with

massless final states. In the inclusive case the decoupling of heavy flavors is uniquely described.

Going to very low scales Q2 for deep-inelastic scattering logarithmic terms remain. However, the

deep-inelastic description is limited to virtualities Q2 of a certain size, say Q2 >
∼Q2

0 = 5 GeV2 and

cannot be applied below.

We show the effect of these contributions on the structure functions F1(2) in Figure 3 (dash-

dotted lines) replacing the contributions up to 2-loops by the complete results. At Q2 = 100 GeV2

the corrections do widely agree with the asymptotic result but a small difference in the large x range

still remains.

One also obtains interesting results on different sum rules for the structure functions, such as

the Adler- [98], unpolarized Bjorken- [99], polarized Bjorken- [100], and Gross-Lewellyn Smith

4For the O(α2
s ) results on the tagged contributions to the structure functions see [6, 37].
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sum rule [101]. While due to fermion number conservation the contribution to these sum rules

is free of mass effects in the asymptotic range, the last three sum rules receive heavy quark mass

effects. We have shown that the Adler sum rule does not receive any correction, also no target mass

corrections.

Figure 4 demonstrates the transition of the massive quark contributions to massless ones for

the massive 2-loop corrections of the polarized and unpolarized Bjorken sum-rule as a function

of Q2. One should note that the respective corrections enter the NF -terms of the sum rule only,

cf. [41]. The transition of this term to 1 only proceeds slowly both for charm and bottom quarks as

a function of Q2. At lower scales Q2 the corresponding contributions are even negative in case of

the polarized Bjorken sum rule due to virtual corrections, which is of importance in experimental

analyses.

6. 3-Loop Two-Mass Corrections in the Asymptotic Region

Starting at 3-loop order the massive Wilson coefficients contain Feynman diagrams in which two

internal massive fermion lines are present leading to contributions of charm and bottom in indi-

vidual terms, which cannot be separated. Due to this the variable flavor number scheme presented

in [11, 45] is no longer applicable in the strict sense, but needs to be generalized. As m2
b/m2

c ∼ 10,

one possibility for large scales Q2
≫ m2

c ,m
2
b consists in decoupling both heavy quarks together.

The corresponding variable flavor number scheme has been worked out in Ref. [102] and requires

to obtain as well the two-mass contributions to the different OMEs at 3-loop order. Their moments

N = 2,4,6 have already been calculated [102, 103] projecting them to massive tadpoles and using

the package Q2e [104]. In the two-mass case the renormalization of the OMEs, given in the single

mass case in [8], has to be extended. Furthermore, the 2-mass OMEs ANS
qq,Q, A

NS,TR
qq,Q and Agq,Q have

been calculated for general mass assignment analytically and the calculation of APS
Qq is underway.

In case of the OME Agg,Q all scalar topologies have been calculated. Here new classes of iterative

integrals do emerge, which can be handled with the package HarmonicSums.m by now. While

an expansion in the mass ratio m2
c/m2

b is possible for fixed moments, it turns out not to be possible

for a general Mellin variable N, thus requiring the complete calculation.

7. Conclusions

After having calculated a set of 3-loop moments for all massive OMEs contributing to the massive

3-loop Wilson coefficients in the asymptotic region Q2
≫ m2 in 2009 [8], progress has been made

in the calculation of the general N results of these Wilson coefficients. All logarithmic contribu-

tions are known [11] and the Wilson coefficients LNS
q, ,L

PS
q ,LS

g and HPS
q have been calculated along

with the OMEs appearing as the transition matrix elements in the variable flavor number scheme

at 3-loop order, cf. [10–13]. In case of the charged current structure functions and the non-singlet

contribution to the polarized structure functions g1(2)(x,Q
2) a series of 3-loop Wilson coefficients

have been calculated [86–88], completing the 2-loop charged current programme [40, 89] before.

Recently, the non-singlet O(α2
s ) corrections have been completed for the most important inclusive

polarized and unpolarized neutral and charged current structure functions and the sum rules asso-

ciated to them in the whole range Q2 relevant for deep-inelastic scattering [41]. It has been shown
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that the process of a heavy quark becoming effectively massless at high scales proceeds slowly,

which should be considered in the matching in the different schemes being used in data analysis

currently. Clearly, the matching at m2
Q = Q2 is unfortunate since a heavy quark’s velocity is not

ultra-relativistic there.

At 3-loop order two-heavy-mass Feynman diagrams contribute to the OMEs. This requires

a different renormalization compared to that of the single-heavy-mass case and leads to a change

of the associated variable flavor number scheme since these terms are neither charm nor bottom

contributions. One may, however, design a variable flavor number scheme in decoupling both

contributions together. Beyond a series of moments also the general N contributions have been

computed in some cases [102].

We have devised an algorithm to calculate massive Feynman diagrams containing local oper-

ator insertions, mapping the differential equations obtained from the IBP-relations into systems of

difference equations, which are solved automatically [34, 35]. This algorithm factorizes the cor-

responding problem to first order structures as far as possible and into potential remaining terms,

which cannot be factorized neither in N- nor x-space. If the latter terms are not present, we receive

an iterative sum or integral solution of the corresponding physical problem starting from differen-

tial equations in whatever basis and obtaining the emerging letter-representation of the contributing

alphabet in an automatic manner together with a proof certificate. In this way we automatically de-

tect non-factorizing contributions uniquely. They need a further separate treatment to obtain the

solution.

In the present project various new mathematical structures have been found for Feynman-

integrals in general. While at the time of 1998 the harmonic sums yielded a sufficient system-

atic representation for massless 2-loop problems [20, 21], the present massive 3-loop problems

require Kummer-iterated integrals [28, 29], cyclotomic iterated integrals [31], root-valued iterated

integrals [30], and further generalizations to elliptic and 2F1-valued non-iterative letters in other-

wise iterative integrals [73]. This list of structures will be growing further addressing processes

at even higher loops and with more scales. The packages Sigma, EvaluateMultiSums,

SumProduction, RhoSum, HarmonicSums and MultiIntegrate [29–31,64,65,71,77–

80] were significantly extended or newly created in the project and are already in partly use in a

series of other projects.

Presently we work on the completion of A
(3)
Qg , in which new mathematical structures appear,

the solution of which has to be automated.
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