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Abstract

In this diploma thesis an analysis on model-independent WIMP searches at the proposed Inter-
national Linear Collider (ILC) is presented. The ILC is an e+e− collider with a targeted centre
of mass energy of 500 GeV, which will provide polarised beams. The sensitivity on a 3σ obser-
vation is investigated in WIMP pair production processes with the associated emission of initial
state radiation (ISR), e+e− → χχγ. Mass resolutions are given for some selected WIMP can-
didates. At the current stage of the analysis only statistical errors are taken into account. The
basis of this study is a model-independent signal cross section derived from cosmological obser-
vations, valid across a broad range of models containing WIMPs. The formulation of the cross
section allows for different couplings of the WIMPs to the initial leptons. The calculations on
the sensitivity and the mass resolution are made for three different polarisation configurations,
unpolarised beams (Pe− = 0.0; Pe+ = 0.0), 80% electron polarisation (Pe− = 0.8; Pe+ = 0.0)
and additional 60% positron polarisation (Pe− = 0.8; Pe+ = 0.6). A centre of mass energy of
500 GeV is assumed throughout, while the integrated luminosities L are set to L = 500 fb−1

for the sensitivity calculation and L = 167 fb−1 for the tests on the mass resolution. With
unpolarised beams a 3σ observation should be possible for spin 1 WIMPs with masses from
90 to 225 GeV. Spin 1

2 WIMPs are observable between 120 and 215 GeV. The masses can be
resolved on the percentage level. Given expedient couplings and fully polarised beams, the
sensitivity on a signal is increased by factors from 5 to 10, and the mass resolution enhanced
significantly.

Zusammenfassung

In der vorliegenden Diplomarbeit wird eine modellunabhängige WIMP-Suche am geplanten
International Linear Collider (ILC) vorgestellt. Der ILC ist ein e+e− Beschleuniger mit ei-
ner angestrebten Schwerpunktsenergie von 500 GeV, der desweiteren polarisierte Elektronen
und Positronen bietet. Die Sensitivität auf eine 3σ-Beobachtung wird anhand des Prozesses
e+e− → χχγ, der WIMP Paarproduktion mit assoziierter Emission von initial state radiation
(ISR) untersucht. Weiterhin werden Massenauflösungen für einige ausgewählte WIMP Kandida-
ten angegeben. Im derzeitigen Stand der Analyse werden nur statistische Fehler berücksichtigt.
Grundlage dieser Studie ist ein auf kosmologischen Beobachtungen beruhender, und über einen
grossen Bereich spezifischer Modelle gültiger, modellunabhängiger Signalwirkungsquerschnitt.
Aufgrund der Modellunabhängigkeit sind die Kopplungen der WIMPs an die initialen Lep-
tonen frei wählbar. Die Sensitivitäten und Massenauflösungen werden für drei verschiedene
Polarisationseinstellungen berechnet: unpolarisierte Strahlen (Pe− = 0.0; Pe+ = 0.0), 80%-ige
Polarisation der Elektronen (Pe− = 0.8; Pe+ = 0.0) und zusätzliche 60%-ige Positronenpolarisa-
tion (Pe− = 0.8; Pe+ = 0.6). Die Schwerpunktsenergie ist durchweg auf 500 GeV angenommen,
während die integrierten Luminositäten L auf L = 500 fb−1 in der Sensitivitätsberechnung,
bzw. auf L = 167 fb−1 für die Massenauflösung gesetzt werden. Mit unpolarisierten e+ und e−

sollte eine 3σ Beobachtung für Spin 1 WIMPs mit Massen zwischen 90 und 225 GeV möglich
sein. Für Spin 1

2 WIMP erstreckt sich dieser Bereich von 120 bis 215 GeV. Die Massen können
auf dem Prozentniveau aufgelöst werden. Entsprechende günstige Kopplungen vorausgesetzt
kann durch maximale Polarisation der Elektronen und Positronen die Sensitivität um Faktoren
zwischen 5 und 10 erhöht, und die Massenauflösung signifikant verbessert werden.
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Chapter 1

Introduction

Shortly after the beginning of modern cosmology with the works of Edwin Hubble on cosmo-
logical redshifts of galaxies in the late 1920’s, another important cosmological observation has
been made. Investigations on the dynamics of the Coma cluster of galaxies by Fritz Zwicky in
the 1930’s, showed that the mass to light ratio of the cluster is about 250 in solar units, making
a compelling case for the existence of large quantities of non-luminous matter or Dark Matter
(DM). These findings are confirmed by the measurement of rotation curves for thousands of
galaxies. Early measurements of the rotation of galaxies have been conducted by Vesto Slipher
in 1914, but the first accurate determination of rotation velocities at the galactic edges was
made by Vera Rubin and Kent Ford in 1970. The observation is that stars in the outskirts
of galaxies move much too fast around the galactic centre to be gravitationally bound to it if
it were for the luminous matter alone. In recent times the analysis of the Cosmic Microwave
Background (CMB) with the COBE1 (Cosmic Background Explorer) and WMAP (Wilkinson
Microwave Anisotropy Probe) space probes give the most accurate measurement of the Dark
Matter density in the universe. In the ΛCDM2 model the best fit to the CMB data requires
that non-baryonic Dark Matter accounts for about 21% of the cosmological energy density.
Ordinary matter contributes only 4%, while the remaining 75% are due to a mysterious energy
form, so-called Dark Energy (the Λ in ΛCDM). A particularly favoured interpretation of the
Dark Matter component of the cosmological energy density is, that it consists of new heavy
particles with weak interactions, so called WIMPs (Weakly Interacting Massive Particles).
The known elementary particles and their interactions are described very successfully with the
Standard Model of particle physics (SM). The SM has been confirmed in many high precision
measurements and its predictive power manifested for example in the prediction and subsequent
discovery of the heavy gauge boson Z0 with the Gargamelle experiment at CERN [1], or of the
top quark at Fermilab [2]. Despite its success the SM suffers from certain shortcomings. The
SM CP-violation for example is not able to explain the large matter/antimatter asymmetry ob-
served in the universe, and the theory does not provide a WIMP candidate that could account
for the measured DM energy density. The only Dark Matter candidate within the SM is the
neutrino. But due to the tight limits on the neutrino masses, they can only be responsible for
a small fraction of the observed DM density. Natural WIMP candidates are however found in
SM extensions with new conserved quantum numbers. Such extensions are e.g. supersymme-
try with conserved R-parity, resulting in the neutralino χ̃0

1 or the gravitino G̃ as the Lightest
Supersymmetric Particle (LSP) or Kaluza-Klein-Theories with conserved KK-parity.

1Nobel prize in physics 2006.
2This model implies a non-zero cosmological constant Λ and non-relativistic, hence cold, Dark Matter (CDM).
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Several experiments and surveys are currently dedicated to the direct or indirect proof of Dark
Matter, e.g. cosmological observations of weak lensing effects from DM [3], low energy recoil
experiments with Ge and Si detectors (Edelweiss and CDMS [4]) and high energy searches at
colliders.
In this thesis a model-independent analysis on WIMP searches at the proposed International
Linear Collider (ILC) is presented. The (ILC) is planned to be the next e+e− collider with a
centre of mass energy of 500 GeV, upgradeable to 1 TeV. Furthermore the ILC provides beam
polarisation of up to 80% for electrons and 60% for positrons. It is designed to measure the
electro-weak sector of the SM with high precision and to be sensitive to new physics beyond the
standard model, if for example supersymmetry is realised in nature. The goal of this thesis is to
give limits for a discovery of WIMPs at the ILC and to determine the achievable mass resolution
if a DM signal is actually found. Also addressed are the influence and possible benefits from
beam polarisation on the limits and the resolution. The study is made with a full detector simu-
lation of the Large Detector Concept (LDC) and a Particle Flow based event reconstruction. In
contrast to analyses within the specific models mentioned above, a model-independent approach
is taken, which will be introduced in the next chapter. In chapter 3 a technical overview of the
ILC and the Large Detector Concept is given, followed by a description of the event simulation
and an evaluation of the current reconstruction performance in chapter 4. In chapter 5 the
obtained observation limits and mass resolutions are presented. This thesis concludes with a
summary and outlook in chapter 6.
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Chapter 2

Theoretical Context

In this chapter the cosmological observations that indicate the existence of Dark Matter are
described in more detail (sec. 2.1). The next sections 2.2 and 2.3 summarise a few Dark Matter
candidates and introduce the WIMP hypotheses for Dark Matter as a thermal relic of the early
universe. Sections 2.4 to 2.6 focus on the model-independent approach to WIMP searches at
linear colliders this analysis is based on. Finally in section 2.7 the statistical methods used in
this work are presented.

2.1 Observational Evidence for Dark Matter

Observational evidence for Dark Matter is found in the rotation curves of galaxies, in the
velocity distributions of galaxy clusters and in the Cosmic Microwave Background (CMB).
These observations are addressed in this section.
Galactic rotation curves describe the track speed v of stars around the galaxy as a function
of their radial distance r from the galactic centre. The track speeds are measured with the
doppler shift of the light emitted from the moving stars. For velocities much smaller than the
speed of light, v ≪ c, the velocity component parallel to the line of sight v|| is connected to the
observed wavelength shift through

v|| = c
λobs − λrest

λrest
, (2.1)

where λrest is the wavelength in the rest frame of the light source (the star) and λobs is the
observed wavelength. If the galactic plane of a galaxy looked at is parallel to the line of sight,
so that one sees it from the side, the light from the stars in it will be shifted to the blue where
they are advancing or to the red where they are receding from us due to their movement around
the galaxy. If the distance d to the galaxy is known a star’s radial distance r from the centre
is related to the corresponding angular distance θ through

r = θd. (2.2)

In most galaxies the luminosity and hence the luminous mass is concentrated in a comparatively
small region at the centre, the bulge. For stars with mass m in the galactic outskirts at distance r
the galaxy can be approximated by a point mass M sitting in its centre. Equating gravitational
and centrifugal forces gives
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G
Mm

r2
=

mv2

r
or v =

√

GM

r
. (2.3)

From this simple consideration v ∼ r−1/2 is expected. Measurements however show v ≈ const
indicating that the Mass M inside the galaxies increases proportional to the distance r from
the centre, M ∼ r, even in the dim regions at the edge. This invisible mass forms a dark halo
surrounding the galaxies. The radius of the dark halo of our galaxy, the Milky Way (MW),
can be estimated by looking at the velocities of the small satellite galaxies of the MW such as
the Magellanic clouds. The halo stretches out to at least 75 kiloparsecs. Using Eq. (2.3) with
v = 220 km s−1 and our galaxy’s luminosity in the B band of LMW,B = 2.3 × 1010L⊙,B, the
mass-to-light ratio of the Milky Way is estimated from this method to about

〈

M

L

〉

MW

≈ 40
M⊙

L⊙
. (2.4)

M⊙ and L⊙ are the solar mass and luminosity.
Another compelling evidence for the existence of Dark Matter in the universe was found by
Fritz Zwicky in the 1930’s with his study of the Coma cluster of galaxies. The mass of the
Coma cluster can be estimated with the use of the virial theorem applied to systems in steady
state, with a constant moment of inertia I. In this case the theorem is [5]

0 = W + 2K with W = −αGM2

rh
and K =

1

2
M
〈

v2
〉

. (2.5)

W is the potential energy of the cluster, M is the total mass of all galaxies in the cluster, rh is
the radius of a sphere centred on the cluster’s centre of mass, containing a mass of M/2 and α is
a numerical constant found to be ≈ 0.4 for clusters. K is the total kinetic energy of the galaxies
in the centre of mass system with

〈

v2
〉

= 1
M

∑

i miv
2
i , and vi and mi being the velocities and

masses of cluster galaxy i. Eq. (2.5) states that the kinetic energy of a self-gravitating system
is − 1

2 times its potential energy. With Eq. (2.5) the cluster mass can be estimated with

M =

〈

v2
〉

rh

αG
. (2.6)

Under the assumption that the velocity dispersion of the cluster’s galaxies is isotropic, the
three-dimensional mean square velocity

〈

v2
〉

is three times the one-dimensional square velocity
dispersion σ2

r along the line of sight. The velocity dispersion is found to be

σr =
〈

(vr −
〈

v2
r

〉

)
〉1/2

= 880 km s−1. (2.7)

The half mass radius rh is estimated by assuming that the mass to light ratio is constant
with radius, and so rh contains half the luminosity of the cluster. The observed luminosity
distribution indicates

rh ≈ 1.5Mpc. (2.8)

With (2.6) evaluated for the Coma cluster, its mass is estimated to MComa ≈ 2 × 1015M⊙ in
solar units. This makes the mass-to-light ratio

〈

M

L

〉

Coma

≈ 250
M⊙

L⊙
, (2.9)
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using LComa,B = 8 × 1012L⊙,B for the Coma cluster’s luminosity. A third indirect method of
determining the amount of Dark Matter is the analysis of the Cosmic Microwave Background
(CMB). The CMB, first observed by Arno Penzias and Robert Wilson in 1965, is an isotropic
radiation field from the early universe. According to the standard model of cosmology, the
universe began in an extremely hot and dense phase, the Big Bang. At t ≈ 0.1 s and temper-
atures of 3 × 1010 K, almost all baryonic matter was in the form of free neutrons and protons.
With the expansion of the universe the temperature dropped to T ≈ 109 K at roughly t = 300
s. During this period the neutrons and protons fused to deuterium and helium in a process
called Big Bang Nucleosynthesis (BBN). After the BBN, nearly all baryons were in the form
of free protons and helium nuclei. Still, the temperature of the universe was much too high
for protons and electrons to combine to electric neutral hydrogen1. The temperature dropped
below the recombination temperature of Trec = 3740 K about 300,000 years after the Big Bang.
Before that time the universe was opaque, the photons were coupled to the electrons in ther-
mal equilibrium or said differently their rate Γ of scattering from electrons was larger than the
expansion rate H2 of the universe. After that point in time the photons could travel freely
through the universe, gradually cooling down with the expansion of the universe. These pho-
tons are today observed as the CMB. The spectrum of the CMB is that of an almost ideal
isotropic blackbody with an equivalent temperature of 2.725 K [6]. Temperature fluctuations
are with δT

T = 1.1 × 10−5 extremely small. These fluctuations however present an interesting
possibility to learn about the early universe, since they present an image of the density fluc-
tuations at the time of recombination. Because of the coupling between photons and electrons
before recombination, hotter regions in the CMB correspond to denser regions in the universe
at t ≈ 300, 000 years. The recent analysis of the angular spectrum of the fluctuations measured
with high precision with the WMAP (Wilkinson Microwave Anisotropy Probe)[7] yielded the
currently most accurate determination of the normalised cosmological Dark Matter energy den-
sity to ΩDMh2 = 0.111 ± 0.006 [7, 8] where ΩDM = εDM/εcrit is the ratio of the current Dark
Matter energy density εDM and the critical energy density εcrit. The parameter h is defined
as h = H0/100. With a value of h = 0.73+0.03

−0.04 and the observational result that the energy
density in the universe is equal to the critical energy density εcrit it follows that about 20.8%
of the energy density in the universe is due to Dark Matter, while “ordinary” baryonic matter
only makes up 4% of the critical density.

2.2 Dark Matter Candidates

Several interpretations of the nature of Dark Matter have been given over the years since its
discovery. The invisible matter component was thought to be non-luminous baryonic matter
in the form of interstellar and intergalactic gases or condensed objects like planets or brown
dwarfs3. The amount of baryonic matter is however constrained to only 4% of the cosmological
energy density by the CMB and the observed amounts of light elements in primordial gas clouds
together with the BBN theory. As a consequence these gases and planets can only contribute a
small fraction to ΩDM. Another intensively discussed candidate are neutrinos with a non-zero
rest mass. Although the measured neutrino oscillations show that neutrinos in fact do have a
non-zero rest mass [9], the constraints on Ωνh2 < 0.0018 [10] give an upper limit of 3h on their

1Although misleading, this process is called “recombination”.
2H is the time dependent Hubble parameter with units of km s−1 Mpc−1. H relates the recession speed v of

a distant galaxy to its distance d by Hubble’s law: v = Hd. H0 denotes the parameter’s today’s value.
3Brown dwarfs are star like objects with masses slightly below the mass needed to start hydrogen fusion.
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contribution to the cosmological energy density4.
The most favoured DM candidates are new heavy particles with cross sections of approximately
weak strength, so called WIMPS (Weakly Interacting Massive Particles). Due to their large
masses cosmological relic WIMPS should be non-relativistic, why they are often referred to as
cold Dark Matter. A very interesting feature of the WIMP hypotheses is that any extension of
the standard model with new conserved quantum numbers delivers a natural WIMP candidate.
A prominent SM extension is supersymmetry (SUSY) which postulates a bosonic superpartner
to every SM fermion and vice versa. Because of this pairing of fermions and bosons, the
superpartners have a spin difference of 1

2 to their SM partners. With conserved R-parity5 in
SUSY, the Lightest Supersymmetric Particle (LSP) is a stable WIMP candidate. In the minimal
extension of the SM, the so-called minimal supersymmetric standard model (MSSM), the LSP
is often the neutralino χ̃0

1 or the gravitino G̃. The neutralino χ̃0
1 is the lightest mass eigenstate

of the neutral Binos, Winos and Higgsinos (W̃ 0, B̃0, H̃0
d and H̃0

u) which are the superpartners
to the electro-weak gauge boson and Higgs eigenstates W 0, B0, H0

d and H0
u

6. Current MSSM
neutralino searches give a lower limit on the mass with mχ̃0

1
> 46 GeV with 95% confidence [8].

2.3 Dark Matter as a Thermal Relic

The standard assumption for the observed DM relic density is, that the WIMPs are a thermal
relic of the early universe. The argument goes as follows. It is assumed that the WIMPs were
in thermal equilibrium with the SM particles after the time of baryogenesis. Annihilation of a
WIMP pair into standard model particles X , χχ̄ → XX̄ and the inverse process XX̄ → χχ̄
happened with equal rates. The number density n of the DM particles with mass mχ is then
governed by the Boltzmann law:

n ∼ e−mχ/kT . (2.10)

Here k is the Boltzmann constant. The DM particle abundance is frozen at time tf = 1/Hf

when the thermal WIMP number density is nf and [11]

〈σv〉nf tf ∼ 1. (2.11)

Here σ is the total cross section for annihilation of a pair of WIMPs into standard model
particles, v the relative velocity between two WIMPs in their centre of mass system and 〈. . .〉
denotes thermal averaging. Eq. (2.11) says that the annihilation rate is equal to the expansion
rate H−1 of the universe. At t ≫ tf the annihilation rate is surpassed by the expansion rate and
annihilation is essentially eliminated, the WIMPs “freeze out”. After freeze-out, the co-moving7

WIMP number density remains unchanged. Their present relic density is given by [8]

Ωχh2 ≃ const
T 3

0

M3
Pl 〈σv〉 ≃ 0.1pb · c

〈σv〉 , (2.12)

with the current CMB equivalent temperature T0 and the Planck mass MPl. From Eq. (2.12) one
can see that the thermal averaged annihilation cross section can be derived from the observed

4Yet further candidates are primordial black holes. These black holes must have come into existence before
the BBN era, otherwise they would contribute to Ωbaryon.

5R-parity is defined by the multiplicative quantum number PR := (−1)3(B−L)+2S , where B and L are the
baryon and lepton numbers, S is the spin.

6The electro-weak eigenstates of the gauge bosons are W 1,2, W 0 and B0. W 1 and W 2 combine to the mass
eigenstates W±. Z0 and γ are a composition of W 0 and B0.

7Co-moving coordinates are attached to observers who are at rest relative to the CMB and the surrounding
cosmic “fluid” of galaxies. These coordinates therefore expand with the universe.
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relic density. Figure 2.1 shows the co-moving DM number density as a function of time for
different values of the thermal averaged cross section 〈σv〉. When this average increases, the
remaining relic density is lowered.

(1)

(2)

(3)

Figure 2.1: Cosmological evolution of the co-moving WIMP density. The solid line is the
equilibrium abundance, the dashed lines are the abundances after freeze-out for different values
of 〈σv〉. From [12].

2.4 A Cross Section for WIMP Pair Production with Ini-

tial State Radiation

In this section a model-independent WIMP production cross section in e+e− collisions in associ-
ation with the emission of initial state radiation (ISR) is presented. The derivation of this cross
section follows [13]. The predictions of the resulting production cross section are valid for any
SM extension containing WIMPs, such as supersymmetry (SUSY), universal extra dimensions,
little Higgs theories, etc.
For model-independence only very few assumptions on the properties of the WIMPs and their
interactions are made. So it is assumed that all existing Dark Matter is due to a single new
particle8 χ, kept stable by a new conserved quantum number, e.g. R-parity conservation in
SUSY. A pair of these WIMP candidates can annihilate directly into Standard Model particles:

χχ → XiX̄i, (2.13)

8χ and χ̄ are considered identical in the following sections.
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where Xi = l, q, g, ν... can be any SM particle. An important restriction to the WIMP inter-
actions is, that co-annihilation between WIMPs and other particles is explicitly excluded, for
example the χ̃0

1τ̃ co-annihilation is not described within this model. Given these assumptions,
the spin averaged WIMP pair annihilation cross section

σan =
∑

i

σi, (2.14)

is completely determined by the observed DM relic density (sec. 2.3). In Eq. (2.14) the sum
extends over all annihilation processes i in (2.13). Each cross section σi in (2.14) can be
expanded to:

σiv =

∞
∑

J=0

σ
(J)
i v2J or σi =

∞
∑

J=0

σ
(J)
i v2J−1, (2.15)

where i denotes the annihilation channel, v is the relative velocity9 of the colliding χ’s. Here
σ(0) receives a contribution from s-wave annihilation (J = 0) and σ(1) receives contributions
from s- and p-wave (J = 1) annihilations, and so on. Since the cosmological Dark Matter is non-
relativistic (vχ ≪ 1), their relative velocity is obtained from the classical addition of velocities,
so v = 2vχ and v ≪ 1. For low v the lowest non-vanishing term in (2.15) characterised by the
angular momentum J0 will dominate. Neglecting all other terms changes Equations (2.15) to

σiv = σ
(J0)
i v2J0 and σi = σ

(J0)
i v2J0−1, (2.16)

and by inserting (2.16) in (2.14) the annihilation cross section σan becomes

σan =
∑

i

σ
(J0)
i v2J0−1. (2.17)

If the WIMP interactions are invariant under time reversal the cross sections of the processes
χχ → XiX̄i are related to the cross sections of the inverse reactions by the principle of detailed
balancing:

σ(χχ → XiX̄i)

σ(XiX̄i → χχ)
= 2

v2
X(2SX + 1)2

v2
χ(2Sχ + 1)2

, (2.18)

where the cross sections are averaged over spins. With σi = σ(χχ → XiX̄i) and considering
the non-relativistic approximation v = 2vχ in the centre of mass frame, the combination of
Eq. (2.16) and (2.18) gives

σ(XiX̄i → χχ) = 22(J0−1)κiσan

v2J0+1
χ

v2
X

(2Sχ + 1)2

(2SX + 1)2
, (2.19)

introducing the spin averaged “annihilation fraction”10 κi =
σ

(J0)
i

σan
, that gives the fraction of

WIMP pair annihilations into channel i. The square centre of mass energy can be expressed by

s = (2Eχ)2 = 4γ2
χM2

χ ⇔ v2
χ = 1 −

4M2
χ

s
, (2.20)

9c = 1 in this section.
10Note that

P

i κi = 1.

8



with γχ = (1 − v2
χ)−1/2. For relativistic initial state particles Xi (MX ≪ Mχ) their velocities

hold vX ≈ 1, which also follows from γXMX = γχMχ. Then (2.20) in (2.19) gives

σ(XiX̄i → χχ) = 22(J0−1)κiσan
(2Sχ + 1)2

(2SX + 1)2

(

1 − 4M2
χ

s

)1/2+J0

. (2.21)

Because of the weak interaction of WIMPs with ordinary matter, events described by the
differential cross section (2.21) with only two χs in the final state cannot be detected in a
collider experiment. The emission of an ISR photon would provide for a detectable process
(Fig. 2.2). In general there is no model-independent relation between the rates of the processes
e+e− → 2χ and e+e− → 2χ + γ. An exception exists if the emitted photon is nearly collinear
with the incoming electron or positron. In this case the differential cross section for the WIMP
pair production in association with an ISR photon factorises to

γ

e
−

e
+ χ̄

χ

Figure 2.2: Pseudo Feynman diagram for the process e+e− → χχ̄γ with the emission of ISR.
The ellipse expresses the model-independence of the production cross section.

dσ(e+e− → 2χ + γ)

dxd cos Θ
≈ F(x, cosΘ)σ̂(e+e− → 2χ), (2.22)

where Θ is the angle of the ISR photon with the incoming electron beam and x = 2Eγ/
√

s,
with the photon energy Eγ . In Eq. (2.22) σ̂ is the WIMP pair production cross section (2.21)
evaluated at the reduced centre of mass energy ŝ = (1 − x)s. The universal collinear factor F
in (2.22) is given by

F(x, cos Θ) =
α

π

1 + (1 − x)2

x

1

sinΘ2
. (2.23)

The final result of [13] yields from the combination of Equations (2.21), (2.22) and (2.23) with
the electron spin Se = 1

2 and the electron annihilation fraction κe:

dσ

dxd cos Θ
≈ ακeσan

16π

1 + (1 − x)2

x sin Θ2
22J0(2Sχ + 1)2

(

1 − 4M2
χ

(1 − x)s

)1/2+J0

. (2.24)

In this cross section the free parameters are the WIMP mass Mχ, the spin Sχ and the angular
momentum J0 which characterises the WIMP candidate as a s- or p-annihilator (J0 = 0 or
1). The cosmological constraints on σan are shown in the left plot of Fig. 2.3. The right plot
is a comparison between the cross sections dσ/dEγ for the process e+e− → χ0

1χ
0
1γ within the

minimal supersymmetric standard model (MSSM) and this model-independent approach. The
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MSSM parameters are chosen to provide the correct neutralino relic density. Explicitly the
parameters take the following values at the weak scale: M1 = 168 GeV, M2 = 2M1, tanβ = 10,
µ = 225 GeV and ml̃R

= 177 GeV. The remaining mass parameters are fixed to 1 TeV. The plots

are obtained for
√

s = 500 GeV, and the emitted photons have to comply with sin Θ > 0.1.
Their transversal momenta are restrained to pT,γ > 7.5 GeV. No cuts have been applied to
eliminate central photons, because collinear emission naturally dominates the signal [13]. The
compliance between both graphs is quite well, especially at the endpoint of the spectrum. At
smaller photon energies the model-independent cross section is by a factor of two larger. This
is due to the fact that the relative motion of the WIMPs becomes relativistic in this regime,
and the non-relativistic approximations made in the derivation of Eq. (2.24) break down.

model−independent

Figure 2.3: Left: Cosmological constraints on σan as a function of the WIMP mass on 2σ level.
Right: Comparison between the photon spectra from the process e+e− → 2χ0

1γ in MSSM and
from the prediction of Eq. (2.24) for a 150 GeV WIMP. Both pictures taken from [13].

2.5 Event Topologies

Signal

In view of the event signature, the theoretical WIMP production cross section Eq. (2.24) of
chapter 2.4 describes a fairly simple process (see Fig. 2.2). Of the three final state particles
only the emitted ISR photon can be observed in an experiment, since the produced WIMPs are
invisible to the detector due to their weak interaction with matter. Because of the expected
large masses of the DM particles a considerable amount of energy will be missing, even in case
of non-relativistic particles. The endpoint of the photon spectrum is defined by the WIMP
masses through:

Eγ,max =
E2

beam − M2
χ

Ebeam
, (2.25)

where Eγ,max is the maximum photon energy, Ebeam is the energy of the electron or positron
beam and Mχ is the mass of the WIMP.
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Irreducible Backgrounds

The main irreducible backgrounds are the electroweak processes e+e− → νν̄γ and e+e− →
νν̄νν̄γ. Similar to the WIMPs, the neutrinos do not interact with the matter of the detector
and therefore cannot be seen in a collider experiment. Figures 2.4 and 2.5 show some of the tree
level Feynman diagrams contributing to these processes. The emitted photon reduces the centre
of mass energy so that real instead of virtual exchange bosons can be produced. At energies well
above 100 GeV the reaction e+e− → νν̄γ is dominated by the t-channel W exchange and has a
rather large cross section in the range of pb [13]. Table 2.1 lists some values of the integrated
cross section σ at different centre of mass energies, together with the signal cross section σan

for 50 GeV p-annihilator WIMPs with spin 1 and κe = 1.

W±

γ

e− ν νe− νe−

W± γ

γ

e+ ν̄ e+ ν̄ e+ ν̄

Z0

Figure 2.4: Tree level diagrams of the process e+e− → νν̄γ.

e+

γ

ν̄

ν̄

e− Z0

Z0

ν

ν

Figure 2.5: Tree level diagram of the process e+e− → νν̄νν̄γ.

√
s [GeV] 50 75 100 125 150 200 500
σ [pb] 0.029 0.163 38.7 14.82 7.05 3.44 2.32

σsig [pb] 0 0 0 0.02 0.07 0.21 0.61

Table 2.1: Integrated cross sections for the processes e+e− → νν̄γ and e+e− → χχγ at some
centre of mass energies

√
s. The signal cross section σsig is for 50 GeV p-annihilator WIMPs

with spin 1 and κe = 1. Values of σ calculated with NUNUGPV [14]. The photon’s energy is
constrained to 8 GeV < Eγ < 250 GeV and its angle with the beam line has to be between 15◦

and 165◦.
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For simulation of a signal, in this analysis the νν̄γ background is weighted according to the
WIMP pair production cross section, as described in sec. 5.1. The νν̄νν̄γ background is not
taken into account in this analysis. The matrix element M for this process is ∝ G2

F , its cross
section ∝ |M|2 ∼ G4

F and is therefore smaller than the neutrino pair production, whose cross
section is only ∝ G2

F .

Reducible Backgrounds

Although there are numerous final states of e+e− collisions, most of them can easily be excluded
as background to the investigated signal process because of the simplicity of the signal signa-
ture. Any event that has other final state particles than photons is excluded from the analysis.
There are however a few SM processes that can be mistaken as signal like events when not all
of the reaction products are measured and identified.

The main reducible backgrounds are the SM processes

• Electron-positron-annihilation into two photons e+e− → γγ:

This process is indistinguishable from the signal process if only one of the final state
photons is detected. In the laboratory frame of the ILC which is identical to the centre of
mass frame, the photons have opposite momenta and equal energies. An angular cut that
ensures that both photons enter the ECAL (sec. 3.2.2) in combination with an exclusion
cut on events with two photons of opposite and equal momenta reduces this background.

• Radiative Bhabha scattering e+e− → e+e−γ:

Fig. 2.6 depicts some Feynman diagrams of the first order electroweak corrections to
Bhabha scattering. Two cases can cause confusion of signal and background events. At
small angles with the beam-pipe one of the leptons might deposit energy in the electro-
magnetic calorimeter (see sec. 3.2.2), but leave no track in the tracking system and is thus
interpreted as a photon. This can be prevented by imposing an angular cut on the de-
tected photons to exclude regions not covered by the tracking system. Or, the leptons are
too forward and leave the detector through the beam-pipe. These events can be rejected
by a lower cut on pT,γ = Eγ sin Θ [13].

• Radiative muon pair production e+e− → µ+µ−γ:

This process is in first order described by the diagrams on the left of Fig. 2.6 with the
outgoing electrons and positrons replaced by muons.

Due to the obvious rejection possibilities, reducible backgrounds are not considered at the
current stage of analysis.

2.6 Beam Polarisation

The proposed ILC offers the possibility of up to 80% polarised electron and up to 60% polarised
positron beams. The polarisations Pe− and Pe+ are defined as:

Pe− =
IR − IL

IR + IL
Pe+ =

IL − IR

IR + IL
, (2.26)

where IR and IL are the intensities of right-handed (spin parallel to momentum ~p) and left-
handed (spin anti-parallel to ~p) electrons or positrons. Pe− = 1 means a 100% righthanded e−
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γ
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γ/Z0

γ/Z0

γ

Figure 2.6: First order QED corrections to Bhabha scattering. Only diagrams that include a
final state photon are shown.

polarisation and Pe+ = 1 means 100% left-handed e+ polarisation. The final state neutrinos of
the irreducible e+e− → νν̄γ background couple only to left-handed electrons and right-handed
positrons. A positive polarisation of the beams therefore reduces the number of these events.
Neglecting the contribution of the Z0 exchange, the cross section of the background process
scales with κbg := (1−Pe+)(1−Pe−). The model-independent approach of section 2.4 however
does not restrict the WIMPs to couple the same way to the incoming electrons and positrons as
the SM neutrinos. If for example the WIMPs couple to right-handed electrons only, polarisation
of the electron beam reduces the background while amplifying the signal and hence increasing
the signal to background ratio.
In case of polarisation the spin averaged annihilation fraction κe in equation (2.24) has to be
replaced with

κpol
e =

1

4
(1 + Pe−)[(1 + Pe+)κ(eR

−eL
+) + (1 − Pe+)κ(eR

−eR
+)]

+
1

4
(1 − Pe−)[(1 + Pe+)κ(eL

−eL
+) + (1 − Pe+)κ(eL

−eR
+)] (2.27)

Here the spin dependent annihilation fraction κ(eR
−eL

+) describes the strength of the WIMP
couplings to right-handed electrons and left-handed positrons. The other κ’s have to be inter-
preted in the same manner. Note that 1/4

∑

i,j=R,L κ(ei
−ej

+) = κe. In Figure 2.7 the individual
κ’s are illustrated with the relative orientations of the spins and the momenta of the incoming
leptons, the SM neutrino couplings correspond to the upper left diagram.
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e+ e−

e− e+
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κ(e−Le+
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κ(e−Re+
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L)

P

~S

~p

Figure 2.7: Definition of spin-dependent annihilation fractions. Top: Helicity conserving cou-
plings. Bottom: Helicity non-conserving couplings. The figures on the right are obtained by a
parity transformation P on the figures on the left.

2.7 Statistical Methods

Two different statistical methods are used in this study to calculate limits for 3σ observa-
tions and mass resolutions. A short description of these methods is the topic of the following
paragraphs.

2.7.1 Fractional Event Counting

The aim in a sensitivity study for a collider experiment is to decide with what statistical
certainty one of the following hypotheses is true or can be excluded:

• (A) The data consists of background and signal.

• (B) The data consists of background only.

In most cases data will be available in form of histograms, ordered by some kind of discriminating
variable, for example a particle mass or energy. To decide between hypothesis (A) and (B),
signal and background predictions s and b must be available. It is assumed that these predictions
exist in form of histograms, where the expected rates in histogram bin i are denoted by si and
bi. The predictions may be obtained from Monte Carlo studies with large statistics. The total
signal rate is defined as r =

∑

i si and the signal efficiency per bin as

ǫi =
si

r
. (2.28)

From si and bi event weights wi are computed. With the data of an experiment a weighted
sum or test statistic X is calculated from the candidates observed,

X =
∑

l

wi(l), (2.29)

where l denotes the candidate and i(l) the bin the candidate belongs to. The definition of
the weights is not unique, but they have to be such that X is monotonically increasing from
hypothesis (A) to (B). In a series of experiments the value of the test statistic X would fluctu-
ate according to a probability density function (p.d.f.) Pb(X) or Psb(X) corresponding to the
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background only and signal plus background hypotheses (Fig. 2.8). For a specific data set a
statement on the probability of (A) or (B) can be given in terms of the confidence levels CLsb

and CLb:

CLsb(W ) =

∫ W

0

Psb(X)dX, CLb(W ) =

∫ W

0

Pb(X)dX. (2.30)

Here W is the value of X evaluated for the data set. CLsb is the probability of a downward
fluctuation of X to at least W if a signal exists. If a data deficit exists, CLsb is smaller than
1/2, and one says that hypothesis (A) is ruled out with a probability 1−CLsb. The confidence
level CLb on the other hand, is the probability of an upward fluctuation of the background to
at least W . The background only hypothesis is said to be excluded with probability CLb.

Figure 2.8: Probability density functions for a test statistic X . The confidence levels CLb and
CLsb for a measurement W are indicated by the filled areas.

The form of the weights wi can be optimised for optimal discrimination between the background
only and the signal plus background hypotheses. Several criteria exist. These are for example:

• If the data consists of background only, one would want the mean confidence level of
interpreting the data as signal and background to be low,

< CLsb >b=

∫ ∞

0

CLsb(X)PbdX, (2.31)

or, complementary, if the data consists of signal plus background the mean confidence
level of interpreting the data as background should be high,

< CLb >sb=

∫ ∞

0

CLbPsb(X)dX. (2.32)

Both mean confidence levels tell how well an experiment would do on average, because a
small < CLsb >b means that a signal can be excluded with a high probability if the data
consists of background only, while a high < CLb >sb indicates that the background only
hypothesis can be ruled out when a signal exists.
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• One could optimise the chance to find a signal that exceeds the background prediction by
a given number of standard deviations. This means minimising the probability

E [CLsb]b =

∫ Xcut

−∞

Psb(X)dX (2.33)

to a cut value Xcut =
∑

i wibi + Kσb = 〈X〉b + Kσb where 〈X〉b is the expectation value
of X for hypothesis (B) and K the wanted number of standard deviations. With K = 0
one maximises the chance that the total weight of signal and background events exceeds
the median background level. This choice is optimal for signal detection.

In the high rate limit where the p.d.f. are gaussian, the functional form of the weights wi is
found to be in all cases [15]:

wi =
Rǫi

Rǫi + bi
, (2.34)

where R is a normalisation constant that is used to adjust the maximum weight to 1, but that
also could be dropped. The parameter R has to be tuned to fulfil one of the optimisation
criteria above. In general R is proportional to the total signal rate r. The first criterion can be
satisfied with R = R = r/2, resulting in

wi =
si

si + 2bi
. (2.35)

In case of small statistics an often used test statistics is the likelihood ratio

X =
∏

i

e−(si+bi)(si + bi)
di

di!

/e−bibdi

i

di!
. (2.36)

Here di is the number of observed candidates in channel i. By taking the logarithm and
neglecting constant factors, one sees that this is equivalent to a sum of weights wi defined as

wi = ln

(

1 +
si

bi

)

. (2.37)

A comparison of the power expansion in terms of si/bi of Eq. (2.37) and twice the expansion
of (2.35) shows that both agree in the first two terms, so that they will be very similar in most
cases. In addition to the mean confidence level < CLsb >b, the mean confidence level < CLb >b

of interpreting the data as background only from a background only source is another important
figure of merit for optimising an analysis. Ideally this confidence level is 1/2. When evaluating
signal exclusion limits in a single experiment, it has become convenient to give them in terms
of the modified frequentist confidence level

CLs =
CLsb

CLb
, (2.38)

and exclude the existence of a signal with confidence 1 − CLs. This definition is useful in case
of small signal rates over known background. If for example a strong downward fluctuation
is observed such that even the background only hypothesis is called into question, the signal
hypothesis would be excluded at high confidence although the experiment is not sensitive to
it. Since 0 < CLb < 1, the modified frequentist confidence level CLs is always greater than
CLsb and the resulting exclusion limits are conservative. The mean confidence level 〈CLs〉b is
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therefore a measure of an experiments capability to exclude small signals.
Usually 3σ observations are reported in terms of 〈CLb〉sb. In a series of experiments with data
from a signal plus background source, the signal hypothesis would be accepted11 on 3σ level if
1 − 〈CLb〉sb ≤ 0.3. In this analysis however 〈CLs〉b as implemented in the TLimit-class of the
ROOT-framework [16] was used instead. This approximation is fully acceptable in view of the
other simplifications made in the analysis at its current state. The weights used by TLimit are
the likelihood weights of Eq. (2.37).

Calculation of Confidence Levels

After the choice of the test statistic the probability density functions and confidence levels
have to be calculated. In case of poisson distributed signal plus background rates, the joint
probability of finding d1 candidates in bin 1, d2 in bin 2 and so on is

P ({d1, d2, · · · }) =

n
∏

i=1

e−(si+bi)(si + bi)
di

di!
. (2.39)

With a test statistic W = X({di}) =
∑

i diwi evaluated for the observed set of candidates {di},
the confidence level CLsb(W ) for excluding the possibility of simultaneous presence of signal
and background is

CLsb(W ) = P (X ≤ W ), (2.40)

which can be written with Eq. (2.39) as

P (X ≤ W ) =
∑

X({di′})≤W

n
∏

i=1

e−(si+bi)(si + bi)
d′

i

d′i!
. (2.41)

The sum runs over all sets of {d′i} with a test statistic less than or equal to the observed
one. This sum can be evaluated with a Monte Carlo. Another efficient approximate method of
calculating this sum is presented in [17], and is explained here.
The p.d.f. for the test statistic X for a set of channels is calculated, and then iteratively
combined with additional channels by convoluting with the p.d.f. of their test statistics. For a
single channel the p.d.f. can be represented as a list of possible outcomes

(Xj
i , pj

i ). (2.42)

Xj
i is the test statistic for the ith channel with j events, and pj

i is the poisson probability of
having j events in this channel if the expected rate is (si + bi). For two channels i and i′ the
joint outcome can be represented by

(Xj
i + Xj′

i′ , pj
ip

j′

i′ ). (2.43)

From the list obtained by iteratively combining all channels together one can calculate the
confidence level by adding up probabilities associated with test statistics less than or equal to
that observed. For n channels, each with m different possible outcomes about O(nm) terms have
to be calculated and added. To limit the computation effort, a binning procedure is conducted
at each combination step. First the list is sorted by the value of the test statistics. Then bins
are introduced and filled with the possible outcomes of the test statistic X . Each bin is then

11More exactly: the signal hypothesis would not be rejected.
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assigned a new probability by summing up the probabilities of all the outcomes in it. This way
one obtains a new p.d.f. represented by a new list

(Xj , pj), (2.44)

where a representative X value12 of the jth bin is associated with a accumulated possibility
pj . This procedure is repeated iteratively until all channels are combined. Since the list is
formally infinitely long at each step, it is truncated when the total probability sum of the
outcomes exceeds a fixed quantity. Furthermore the choice of the binning should be linked to the
probabilities; fine bins should cover small probabilities, wider bins larger probabilities. When
the p.d.f. (Xb

j , pb
j) and (Xsb

j , psb
j ) for the background and signal plus background hypotheses are

obtained, the confidence level CLsb can be calculated with

CLsb =
∑

Xsb
j

≤W

psb
j , (2.45)

where the sum extends over all list entries with Xsb
j smaller than the observed value W . Also

the expected confidence level < CLsb >b and < CLs > can be computed with

< CLsb >b=

Nblist
∑

i=1



pb
i

∑

Xsb
j

≤Xb
i

psb
j



 and < CLs >b=

Nblist
∑

i=1











pb
i

∑

Xsb
j

≤Xb
i

psb
j

i
∑

j=1

pb
j











. (2.46)

Here Nblist is the number of entries in the table of the p.d.f. for the background only hypothesis.
This algorithm is used in this analysis and is implemented in the ROOT-class TLimit.

2.7.2 Method of Least Squares

The method of least squares is used for parameter estimation, especially for the mass mea-
surement. Given is a set of measurements y(xi) for which gaussian errors are assumed, and
an assumption y(x|λ) of the functional relation between y and x depending on a parameter λ.
The task is to find the value of the parameter λ for which the data is described best by the
function y(x|λ). This problem can be solved with the maximum likelihood method [18]. With
the gaussian errors assumed each measurement y(xi) is distributed around the parameterised
value y(xi|λ) according to

f(y(xi)|λ) ∼ exp

(

− (y(xi) − y(xi|λ))2

2σ2

)

. (2.47)

The likelihood function is then defined as

L(λ) =
∏

i

f(y(xi|λ)). (2.48)

The best choice for the parameter λ will maximise the Likelihood function and thus its loga-
rithm. So solving

d lnL(λ)

dλ
= 0 ⇔ d

dλ

(

−1

2

∑

i

(y(xi) − y(xi|λ))2

σ2

)

= 0 (2.49)

12e.g. the bin center.
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delivers the best estimate λ̂. Maximising lnL is equivalent to minimising the “chi squared”

function χ2 :=
∑

i
(y(xi)−y(xi|λ))2

σ2 . When minimising χ2, this method is called “method of least

squares”. Usually the boundaries for a 1σ deviation of the parameter λ from the estimate λ̂ are
defined by the parameter values where χ2 deviates by one from the minimum χ2

min. When the
likelihood is gaussian-shaped, this definition conforms to the conventional standard deviation
of the gauss distribution. A modified version of this method is used to decide whether two data
sets are drawn from the same underlying distribution or not, or, more precisely, whether both
data sets can be consistent with a single distribution function. Both data sets are considered
to exist in form of histograms with equal bin sizes and as a function of the same parameter.
The number of entries in bin i are denoted by ni and mi, and the total of number of entries
are N =

∑

i ni and M =
∑

i mi respectively. The variances in each bin are estimated with the
poisson variances, so σni

=
√

ni. The χ2 function is then

χ2 =
∑

i

(ni − mi)
2

σ2
ni

+ σ2
mi

=
∑

i

(ni − mi)
2

ni + mi
. (2.50)

If M 6= N the histograms have to be normalised to each other:

χ2 =
∑

i

(
√

M/Nni −
√

N/Mmi)
2

ni + mi
. (2.51)

In case of weighted histograms a simple modification has to be applied [19]. Now the sum
of weights in bin i of histogram 1 and 2 are w1,i and w2,i. Furthermore the total weights
are W1 =

∑

i w1,i and W2 =
∑

i w2,i. If both distributions are consistent one can say that
there exist probabilities pi such that the expectation values in bin i of histogram 1 (or 2) are
given by W1pi (or W2pi). The weights w1,i are random variables approximated with a normal
distribution N (W1pi; σ

2
1,i). The maximum likelihood estimator for pi is

p̂i =
w1,iW1/s2

1,i + w2,iW2/s2
2,i

W 2
1 /s2

1,i + W 2
1 /s2

1,i

. (2.52)

Here s2
1,i is the sum of squares of weights in bin i that is an estimator for the variance σ2

1,i. The

χ2 function becomes now:

χ2 =
∑

i

(w1,i − W1p̂i)
2

s2
1,i

+
∑

i

(w2,i − W2p̂i)
2

s2
2,i

. =
∑

i

(W1w2,i − W2w1,i)
2

W 2
1 s2

2,i + W 2
2 s2

1,i

(2.53)

When a distribution is compared with a series of other distributions that depend on a parameter
λ, the χ2 value can be plotted as a function of λ. The definitions of the best fit λ̂ and its error
are the same as for the parameter estimation with the method of least squares.
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Chapter 3

The International Linear Collider

The International Linear Collider (ILC) is planned to be the next generation experiment in
high energy physics. In contrast to the Large Hadron Collider (LHC) where protons collide
from autumn 2007 onward, the ILC will be an e+e− machine. In storage rings, such as the
LHC, the achievable centre of mass energy is limited by the energy loss of the charged particles
due to synchrotron radiation. The loss ∆E per circulation is

∆E ∼
(

E0

m0c2

)4
1

R
, (3.1)

where E0 and m0 are the particle’s energy and rest mass and R is the radius of the storage
ring. For electrons the radiation loss in a storage ring with radius R0 is about 1013 times higher
than for protons at the same energy. Therefore the ILC will be a linear collider, which does
not suffer from this problem. In linear colliders, the centre of mass energy is eventually limited
by the length of the acceleration line and the gradients of the cavities. The ILC is designed for
reaching centre of mass energies of 500 GeV, about one order of magnitude lower than the 14
TeV of the LHC1. However without the strong QCD background that the LHC has to deal with,
the ILC allows high precision measurements of the electro-weak physics sector, and so the ILC
will be complementary to the LHC, hopefully giving insight to new physics beyond the standard
model (BSM). As a linear collider the ILC consists of two linac arms aligned face-to-face and
each about 11.4 km in length (see Fig. 3.1). Electrons and positrons are accelerated in these
linacs and led to two interaction regions in the middle of the accelerator where the reaction
products are collected with two detectors.

3.1 The Accelerator

The baseline layout of the main linac is shown in Fig. 3.1 [20]. Polarised electrons are created by
illuminating a GaAs/GaAsP gas cathode with a Ti:Sapphire drive laser. The electrons from this
source are accelerated and injected at 5 GeV into the e− damping ring (DR), to reduce beam
emittance. Emittance reduction is achieved by radiation damping, i.e. alternating the emission
of synchrotron radiation in bending fields and acceleration in RF cavities [21]. The damping
rings circumference is approximately 6.7 km. After leaving the damping ring, the electrons are
transported to the low energy side of the electron linac, in which they are accelerated to 250
GeV. One possibility for positron production is an undulator based source. At electron energies

1In the pp collisions at the LHC only the qq or gg centre of mass energy is effectively available.
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Figure 3.1: ILC baseline layout.

of about 150 GeV the electrons pass a 100 m long helical undulator, which provides circularly
polarised photons. These photons produce electron positron pairs in an Ti-alloy target. The
polarised positrons from this process are collected and put in the positron damping ring, and
after that injected into the main linac. On average 1.5 positrons per electron are produced.
The electron and positron sources are designed for beam polarisations of Pe− = 80% for the
electron and Pe+ = 60% for the positron beam.
For threshold scans, the overall design allows for the centre of mass energy ECM to be tuned
from 90 to 500 GeV, or even up to ECM = 1 TeV if the option of an energy upgrade is made
use of after the first years of running. Table 3.1 lists the parameter bounds as stated in [20].
Within these bounds five reference points are defined:

• Nominal set: Serves as reference to the other sets.

• Low bunch charge: Reduction in bunch charge by a factor of two.

• Large σ∗
y: Increased vertical beam size.

• Low Power: Reduced number of bunches nb by a factor of two.

• High Luminosity: smaller IP beam size and shorter bunches.

The first four sets give a luminosity of L = 2 × 1034cm−2s−1, while the high luminosity option
has L = 5 × 1034cm−2s−1.
The interaction between the highly collimated high energy electron and positron bunches leads
to two coupled effects, disruption and “beam strahlung” [22]. The leptons from one bunch
(electron or positron) see the electromagnetic field from the collected charge of the oncoming
bunches. The disruption effect is associated with the bending of the trajectory of the particle
under the influence of this electromagnetic field and the beam strahlung effect is associated with
the radiation loss of the particle energies induced by the bending of the trajectory. Typical
disruption angles at the ILC will be in the order of 10 mrad. The beam strahlung photons are
very collinear and have predominantly small energies at the MeV scale. These effects are not
taken into account in this study.

3.2 The Detector

There are currently four detector designs in development. The SiD (Silicon Detector) uses
a silicon tracker, while the other three layouts, GLD (Global Large Detector), LDC (Large
Detector Concept) and the 4th concept gather the tracking information with a TPC (Time
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parameter minimal nominal maximal
Bunch charge N 1 2 2 ×1010

Number of bunches nb 1330 2820 5640
Linac bunch interval tb 154 308 461 ns

Bunch length σz 150 300 500 µm
Beam size at IP (σ∗

x;σ∗
y) (553;5) nm

Table 3.1: ILC baseline parameters.

Projection Chamber). Further differences between the four concepts comprise the strength of
the magnetic field and the calorimeter technology. The detector model LDC01Sc of the LDC
layout, which is simulated for this analysis, will be described in short in the next paragraphs.
The depiction will focus on the tracking and calorimetric systems. A three dimensional sketch
of the LDC can be seen in Figure 3.2.

Figure 3.2: Three dimensional drawing of the Large Detector Concept

The detector design is optimised to make reconstruction of every particle in an event, both
charged and neutral, possible [23]. For this kind of full event reconstruction spatial separation
of particles is more important than the precise measurement of the particles’ parameters. This
need is especially reflected in the design of the calorimetric systems where the spatial resolution
is achieved with a very high granularity.
The LDC01Sc detector consists of the following subsystems [23] (see Fig. 3.3 and 3.4):

• a pixel vertex detector (VTX) as the innermost subsystem around the interaction point
(IP).

• a system of silicon strips (SIT) bridging the gap between the VTX and the TPC. In
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the forward direction pixilated silicon discs (FTD) extend the tracking coverage to small
angles.

• a large gas filled time projection chamber (TPC), the main tracking device.

• a Si-W electromagnetic calorimeter (ECAL) with cell sizes of 5 × 5 mm2.

• a Fe-scintillator hadronic calorimeter (HCAL) with cell sizes of 3 × 3 cm2.

• a large volume superconducting coil designed for creating a longitudinal B-field of 4 Tesla.

• an iron yoke, returning the magnetic flux. It also serves as a muon detector through the
instrumentation with a number of layers of tracking detectors.

Figure 3.3: Schematic drawing of the innermost detector region. Distances are given in mil-
limetres.

3.2.1 The Tracking System

The main component of the tracking system is the TPC. The TPC is a large gas2 filled cylin-
drical volume immersed in the magnetic field of the superconducting coil. Charged particles
entering the TPC follow a curved path due to the B-field and ionise the gas along their trail.
An electric field applied to the TPC endplates accelerates the primary electrons towards the
endplates. In front of the TPC endplates the signal is amplified by GEMs (Gas Electron Mul-
tipliers) or Micromegas and the charge is then collected on pads mounted on the endplates.
In combination with the timing information which is precise to 2 ns, the tracks of the charged
particles can be reconstructed from the collected charges. The momentum resolution aimed
at in the TPC is δ(1/pt) ≈ 10−4/(GeV/c). The combined tracking system of TPC, VTX and
SIT provides track reconstruction down to polar angles of cosΘ = 0.91 (Θ = 24◦). This an-
gular region is fully covered by all 5 VTX layers and both of the SIT layers (Fig. 3.5). For
smaller angles with 0.97 < cosΘ < 0.993 (6.8◦ < Θ < 14◦) tracks are only reconstructed in the
FTD (Forward Track Detector). The intermediate region is partially covered by each of these
detectors. The track reconstruction efficiency of the full system is better than 99% for polar
angles with cosΘ < 0.9, decreasing to 92% at cosΘ = 0.95 where track reconstruction becomes
dependent on pattern recognition in the FTD. The TPC alone provides track reconstruction
efficiencies of 98% down to angles given by cosΘ = 0.91.

3.2.2 The Calorimeter System

The calorimetric system of the LDC is fully dispersed in the coil and has an electromagnetic
(ECAL) and a hadronic (HCAL) component. Electromagnetic particles, electrons and photons

2Several gas mixtures are under investigation, e.g. Ar(93%)CH4(5%)CO2(2%), so-called “TDR”gas.
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Figure 3.4: Schematic drawing of the LDC01Sc detector. Distances are given in millimetres.

are detected in the ECAL, hadronic showers are measured in the HCAL. A schematic drawing
of the calorimetric system is given in Fig. 3.6.

ECAL

The ECAL is optimised for the measurement of photons and electrons, and for the separation
of photon showers from hadronic showers. Following the cylindrical symmetry imposed by the
beams, the ECAL has as an approximation an octagonal shape. It is divided up into a barrel
region around the IP and two endcaps. Including endcaps the ECAL covers polar angles with
| cosΘ| < 0.99. Because of the large ratio of interaction to radiation lengths tungsten has
been chosen for the absorbing material. The choice for the active detector are silicon diodes.
Absorber and active material are arranged in alternating layers of tungsten plates and silicon
strip detectors with a very fine segmentation of 5× 5 mm2. In the current design of the LDC01
model the inner 20 absorber layers have a thickness of 2.1 mm followed by 10 layers with 4.2
mm, while the LDC00 consists of 30 layers with 1.4 mm and 10 layers with 4.2 mm. Fig. 3.7(a)
shows the fractional energy resolution for both the models LDC01 and LDC00. The results are
based on simulated photons with Θ = π/2, using the GEANT 4.8.0 [24] and Mokka 5.5 [25]
software. In case of the LDC01 an energy resolution of 14.4%/

√

E(GeV ) + 0.5% is observed.
The raw detector response (i.e. the sum of the deposited energy) as a function of the polar angle
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Figure 3.5: The acceptance of the tracker subsystem as function of the polar angle Θ. The
acceptance is given in terms of the number of effective layers, or in case of the TPC, as the
fraction of effective layers. The total number of layers in the TPC is 200.

Θ has been simulated for 10 GeV photons. The response is highly uniform for | cosΘ| < 0.75.
At cosΘ = 0.8, in the transition region between barrel and endcaps, the response drops about
10% and recovers in the endcap region (cosΘ > 0.8) to a level of 5% below the barrel region
(see Fig. 3.7(b)). The spatial resolution for photons has been estimated to 0.9 mm/

√

(E/GeV)

and the angular resolution to 55 mrad/
√

(E/GeV).

HCAL

The ECAL is enveloped in the second calorimetric system, the HCAL. The HCAL is designed
to measure the energy of charged and neutral hadrons. It also should fully contain the hadronic
showers, and have a high enough granularity to resolve the showers’ substructures. Like the
ECAL the HCAL consists of a barrel and two endcap regions. Two different designs are currently
under investigation. The first one is a scintillator tile HCAL, the second a gaseous digital HCAL.
Here the first option is described. The absorber material in both cases is iron (stainless steel),
but the active medium of the tile HCAL is made of 3× 3 cm2 scintillator tiles. The scintillator
tiles are read out with silicon photo-sensors (SiPMs). The HCAL has only one basic layer
structure, consisting of 20 mm thick absorber plates and 6.5 mm gaps in which the scintillator
plates are inserted. The barrel has a maximum of 38 layers, the maximum number of layers for
the endcap is 53. The goal for the achievable energy resolution for single hadronic showers in
the combined electromagnetic and hadronic calorimetric system is σE/E ≈ 35%/

√

E/(GeV).
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Figure 3.6: Structure of the calorimetric system. Distances are given in millimetres.

(a) Fractional energy resolution for the LDC01
and LDC00, simulated for photons with Θ = π/2.

(b) Raw detector response (in arbitrary units) as
function of polar angle for 10 GeV photons.

Figure 3.7: Fractional energy resolution and raw detector response for the ECAL of the
LDC01Sc.
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Chapter 4

Simulation and Reconstruction

In chapter 2.4 the theoretical description of a model-independent WIMP pair production cross
section with the emission of ISR was given. In this analysis the signal is simulated by weighting
the main irreducible background process, the neutrino pair production with a hard scattering
photon (see sec. 2.5). The generated background sample contains two additional ISR photons.
The weighting procedure (sec. 5.1) allows to cover the whole WIMP parameter space of couplings
to the initial state leptons, masses, spins etc. with only one Monte Carlo production, reducing
computation time spent for detector simulation considerably.
Sections 4.1 and 4.2 address the generation of the νν̄γ(γγ) background and the simulation
of the detector response to the background events. After section 4.3, describing the event
reconstruction, the performance of the current reconstruction software is evaluated in section
4.4.

4.1 Background Generation

For the generation of the e+e− → νν̄γ(γγ) background events the Monte Carlo generator
NUNUGPV [14] was used. This program has been developed for the LEP2 experiments where the
centre of mass energy

√
s ≤ 209 GeV exceeds the W -pair production threshold at

√
s = 160

GeV. As already stated in section 2.5 the t-channel W exchange contributes substantially to
the hard scattering neutrino production at high energies, and is therefore taken into account
by NUNUGPV. In addition to the tree level diagrams responsible for the hard scattering photon
in Fig. 2.4, NUNUGPV evaluates the electroweak corrections in Fig. 4.1 and topologically equal
diagrams which provide for the additional ISR photons. These QED corrections are taken into
account by convoluting the photon spectrum with pt-dependent structure functions.
With NUNUGPV a sample of background events for unpolarised electrons and positrons with two
additional ISR photons is generated. The cuts imposed on the hard scattering photon γobs on
generator level are listed in Table 4.1. Figure 4.2 shows the energy and cosΘ distributions of
the hard scattering photon and both of the ISR photons for the generated sample.
The ISR emission reduces the effective centre of mass energy

√
s. Its spectrum is plotted in

Fig. 4.3. Events with
√

s > 490 GeV dominate the sample. This can be compared with the ISR
spectra in Figure 4.2, where emission energies of less than a few GeV are the most likely. The
restriction on hard scattering photons with an angle of more than 15◦ with the beamline is done
for two reasons. First of all, the photon emission is strongly peaked in forward direction (see
right column in Fig 4.2). Photons with angles of less than ≈ 8◦ (or cosΘ > 0.99) are below the
calorimetric acceptance as described in section 3.2.2. So exclusion of low angle photons keeps
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Figure 4.1: Electroweak corrections to e+e− → νν̄γ (only diagrams including a Z0 boson).

the total number of events low without loosing photons in the sensitive region of the detector.
Second to this, the observed particles should pass the tracking system to make a differentiation
between charged particles and photons possible. To allow for track reconstruction efficiencies
of more than 92% the angle should comply with Θ > 20◦ (cosΘ < 0.95, see sec. 3.2.1). The
cut is chosen to 15◦ because generated photons with angles slightly less than 20◦ might be
reconstructed with angles of more than 20◦. The same argument holds for the lower cut on
the energy, for in the later analysis only reconstructed photon candidates with energies of more
than 10 GeV will be accepted. The upper cut on the photon energy is given by kinematics. The
cuts result in an integrated cross section of σbg = 2.42 pb. With this cross section an integrated
luminosity of L = 500 fb−1 corresponds to 1.21 × 106 events.

process e−e+ → νν̄γ(γγ)
ISR taken into account

Number of events 1.2 × 106

(Pe−/Pe+) (0.0/0.0)√
s 500 GeV

Eγ,obs 8 GeV < E < 250 GeV
Θγ,obs 15◦ < Θ < 165◦

σbg 2.42 pb

Int. luminosity L 500 fb−1

Table 4.1: NUNUGPV generation parameters. Constraints refer to the hard scattering photon γobs

in the laboratory frame.

4.2 Detector Simulation

This study is done with a full simulation of the current baseline detector model LDC01Sc of
the Large Detector Concept (LDC) (section 3.2). The magnetic field has a strength of 4 Tesla.
For simulation of the detector response to the generated events the Mokka 6.1 software package
[25] was used. Mokka is a GEANT4 [24] based simulation tool for future linear colliders. Given
a detector geometry it calculates the passage of particles through the detector and returns the
detector response to the energy deposited in the individual subsystems of the detector. Because
of the huge computational resources needed for this simulation it was carried out on the LHC
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Figure 4.2: Generator spectra. The left column is (top to bottom) the energy distribution i) of
the hard scattering photon γobs, ii) the ISR photon emitted from the incoming electron and iii)
the ISR photon emitted from the incoming positron. The right column are the corresponding
cosΘ distributions.

29



 [GeV]CMSE
0 50 100 150 200 250 300 350 400 450 500

#e
ve

n
ts

10

210

310

410

510

610

Figure 4.3: Spectrum of the reduced centre of mass energy. The reduction is due to ISR
emission.

Computing Grid (LCG) [26].
As described in section 3.2.2 the ECAL consists of two different sampling structures composed of
alternating layers of absorber plates (tungsten with thickness of 2.1 mm or 4.2 mm respectively)
and silicon diodes for read-out. The layers themselves are segmented into 5 × 5 mm2 cells. A
particle passing through a cell deposits a fraction of its kinetic energy in both layers. This
energy deposition is called the physical energy. While the energy in the absorber is lost, the
energy deposited in the silicon, the so called the visible energy, is converted to an electrical
signal. The signal is proportional1 to the visible energy. The physical, kinetic energy Ephys,i in
cell i is then related to the visible energy Evis,i by

Ephys,i = ckEvis,i k = 1, 2 (4.1)

where ck is a calibration constant that can be obtained from simulation, and k indices the two
different sampling structures. Because the tungsten layer in sampling structure 2 is two times
thicker than in structure 1, the calibration constant c2 is roughly two times2 c1. If the energy
deposited from one particle is spread over many cells, the physical energy can be reconstructed
with

c1

∑

i

E1
vis,i + c2

∑

i

E2
vis,i = Ephysical

The high indices indicate the two different ECAL structures and the sums extend over all cells
in each structure the particle has deposited energy in. For the HCAL only one calibration con-
stant c is needed since it only consists of one sampling structure. This energy calibration is done

1The proportionality holds only approximately in the absence of e.g. saturation effects etc.
2c2 is not exactly two times c1 because the ratio of thicknesses of the full layers including the active material

is not equal to 2.
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together with the digitisation within the Marlin framework (Modular Analysis and Reconstruc-
tion framework for Linear colliders) [27]. Digitisation is the process that simulates the read-out
electronics and converts the visible energy to the number of activated ADC channels. The digi-
tisation and calibration algorithm provided by Marlin is called MokkaCaloDigi. Table 4.2 lists
the calibration constants for the calorimeters and the threshold energies for hits to be digitised.
When this analysis was conducted the calibration constants for Mokka 6.1 were not available,
so the constants used were those derived for Mokka 5.4. Because changes in the simulation
model also change the calibration constants, these values are not optimal for Mokka 6.1 and a
worsened reconstruction performance has to be expected. The influence of the inappropriate
calibration constants is compensated for manually later in the analysis (sec. 4.4.3).

MokkaCaloDigi

ECAL calibration coeff. c1 = 50.6653; c2 = 88.7552
HCAL calibration coeff. c = 23.25853
Threshold for ECAL hits 1 × 10−4 GeV
Threshold for HCAL hits 4 × 10−4 GeV

Table 4.2: Calibration constants and digitisation parameters in Mokka 5.4. The calibration
constants apply after digitisation. They are roughly proportional to those explained in the
text.

4.3 Event Reconstruction

Besides digitisation algorithms Marlin offers algorithms for event reconstruction. The event
reconstruction in Marlin is an implementation of the Particle Flow Concept, that both exploits
and requires the high granularity of the calorimetric system. Event reconstruction with Particle
Flow is a combination of clustering, tracking and particle identification. The tracking algorithm
will not be explained here, because it is of minor relevance to this analysis. The Marlin clustering
algorithm TrackwiseClustering sorts the calorimeter hits by their distance to the interaction
point (IP) [28]. The hits closest to the IP are taken as seeds for proto clusters. Going outward
the algorithm tries to assign other hits to a proto cluster. The ith hit is assigned if the length
d(ij) of the arc defined in Figure 4.4 is less than a cut value dcut for any hit j of the proto
cluster with a distance R from hit i less than a cut value Rcut. If hit i cannot be assigned, the
procedure is repeated iteratively with hits in the proto cluster that have distances from hit i
less than n · Rcut until d(ij) < dcut or the number of iterations n exceeds a limit nIter.
The proto cluster is finally accepted as a cluster if the number of hits exceeds a minimal number
Nmin (see Table 4.3 for parameter values). After tracking and clustering, the Wolf algorithm
identifies the particles. For this it connects clusters and tracks if the distance of closest approach
falls below a certain value smax. If a track and a cluster can be connected the particle candidate
responsible for them is identified as a charged particle. A second criterion is then the fraction of
energy deposited in the ECAL compared to the HCAL. If this fraction exceeds 95% the particle
is identified as an electron (positron) if a track exists and as a photon if not. If less energy
is found in the ECAL, or more in the HCAL respectively, the particle is tagged a pion or a
kaon (neutral, or charged if a track could be matched). Muons are identified with the trackers
incorporated in the iron yoke. In parallel to this full event reconstruction a reconstruction based
on cheater algorithms is made. These cheater algorithms perform clustering and tracking using
information from the Monte Carlo truth. The energy distribution of the particles reconstructed
from these clusters represents the intrinsic energy resolution of the detector.

31



d(ij)

seed

i

j

R

Figure 4.4: Definition of variables between hits i and j for the clustering method explained in
the text.

4.4 Reconstruction Performance

Any result from a real measurement or a physics study has to be seen in the light of the
detector’s capability to deliver an image as close to the reality as possible of the actual physics
happened. The spectrum of the hard scattering photons on generator level is shown in Figure
4.5(a) as function of the generated energy Eγ,generated. For this plot only photons with an angle
of more than 20◦ with the beamline are counted. The peak of the radiative return of the Z0

is clearly visible at about 240 GeV. The great abundance of photons at the low end of the
distribution stems from the t-channel W exchange. The plot in Figure 4.5(b) is the distribution
of reconstructed photon candidates with angles to the beamline of more than 20◦. If more than
one candidate is reconstructed in this region, the candidate with the highest reconstructed
energy Eγ,reconstructed is selected. The first noticeable feature of the reconstructed spectrum
is the missing Z0 peak. Secondly, many photons are reconstructed at energies well above
250 GeV, even up to ≈ 300 GeV. For comparison Figures 4.5(c) and 4.5(d) are the spectrum
obtained with the cheaters and an overlay of the distributions of full and cheated reconstruction.
At energies around the Z0 peak the full reconstruction finds less photon candidates than the
cheated reconstruction. Secondly the peak of the radiative return is shifted to ≈ 255 GeV
with the cheated reconstruction. A further investigation of the differences between these three
spectra requires a connection between the photons on generator level and the photon candidates
after reconstruction.

4.4.1 Matching of Generated and Reconstructed Photon Events

The matching between generated photons and reconstructed candidates is done by placing a
cone around the direction vector of the reconstructed photon candidate. If the direction vector
of a generated photon is inside this cone it is considered as matched. Two important criteria
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TrackwiseClustering

dcut [mm] 25
Rcut [mm] 10

nIter 5
Nmin 10

Wolf

B-Field [T] 4
EM Fraction 0.95
smax [mm] 50

Table 4.3: MarlinReco reconstruction parameters. TrackwiseClustering parameters for
ECAL only.

for matching generated to reconstructed photons are the purity p and the efficiency ǫ. In order
to establish an unique match, p and ǫ are given by:

p =
# unique matches

# accepted photons

ǫ =
# unique matches

# reconstructed photons

A reconstructed photon is accepted when it can be matched to at least one generated photon and
it is matched uniquely when exactly one generated photon is found in the cone. Efficiency and
purity are not independent. A smaller cone opening angle increases the purity while decreasing
the efficiency.
Fig. 4.6 is a purity vs. efficiency plot for a series of opening angles, starting in the lower right
with Θcone = 0.15 radians down to Θcone = 0.005 radians in the upper left in steps of 0.005
radians. The values of p and ǫ are calculated for the photons with the highest reconstructed
energy in each event. Both efficiency and purity are very high over the whole range of opening
angles. This is as expected from the fact that each event contains only up to three photons,
when also the two ISR photons are most probable to leave the detector through the beampipe.
There is an unexpected backbending in the lower right of the plot. The reason for this is that
the probability of having more than one generated photon in the cone increases with larger
opening angles, which in turn lowers the number of unique matches. From this plot an opening
angle of 0.05 radians was chosen as a working point, indicated in the plot with an arrow.

4.4.2 Cluster Splitting

Electromagnetic particles like electrons and photons that enter the calorimeter seed an electro-
magnetic shower. These showers proceed through the calorimeter by a succession of e+e− pair
production and the emission of bremsstrahlung. A typical form of an electromagnetic shower
can be seen in the event display in Figure 4.7. If the clustering algorithm fails to collect all
energy depositions of an electromagnetic shower from one unique particle, the energy cloud can
be split up in several clusters, which are then in turn identified as individual particles.
With an established matching between the reconstructed candidates and the generated photons
the average number of additionally reconstructed photons in the proximity of the candidate can
be plotted as a function of the generated photon’s energy. A photon candidate is regarded to
be in the proximity of a reconstructed and matched photon, if its direction vector lies in a cone
with an opening angle of 0.1 radians around the direction of the latter photon. The result is
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(a) Energy of hard scattering photon γobs with
20◦ < Θ < 160◦ (generator level).
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(b) Energy of most energetic photon candidates
with 20◦ < Θ < 160◦ (reconstruction level).
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(c) Energy of most energetic cheated photon can-
didates with 20◦ < Θ < 160◦ (cheater level).
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(d) Overlay of full reconstruction (black) and
cheated reconstruction (grey) spectra.

Figure 4.5: Generated and reconstructed energy distributions. The photon (candidates) are
restrained to 20◦ < Θ < 160◦.

shown in the profile histogram in Figure 4.8(a). The average number increases from ≈ 1 at 10
GeV to about 2 at 240 GeV, resulting in a loss of high energy photons. Photons from the Z0

return are disappearing, and the height of the peak is lowered. By summing up the energies
of the additionally reconstructed photons, combined photons can be constructed (see spectrum
in Figure 4.8(b)). The spectrum of these combined photons is compared to that of the photon
reconstruction with the cheater algorithms. The overlay and the relative difference of these
two spectra in Figures 4.8(c) and 4.8(d) show that the combination of the splitted photons
retrieves the cheater spectrum with great accuracy. At very high energies the distributions
differ slightly more, but the relative deviation for energies of less than 250 GeV is on the level
of a few percent (≤ 5%). This result justifies the choice of the angle that defines the proximity.
With the procedure described, the combined photon candidates inherit the assigned generated
photons from the matched reconstructed photons.
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Figure 4.6: Purity vs. efficiency plot for matching generated to reconstructed photon candi-
dates. The arrow indicates the chosen cone opening angle for the matching procedure.

Figure 4.7: Event display of a single photon event. The cluster is mostly confined in the ECAL.
Some cells in the HCAL are also hit (centre upper left).
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per generated photon as a function of generated
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(b) Energy distribution of “combined” photons.
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Figure 4.8: Plots for the combination procedure.

4.4.3 Energy Calibration

The energy distribution of the combined photons in Figure 4.8(b) represents almost the best
reconstruction result available with the current reconstruction software, since it is very close
to the results of the cheated reconstruction. As stated in sec. 4.2 the detector simulation was
calibrated for the version 5.4 of the Mokka software. Figures 4.9(a) and 4.9(b) display the
mean ratio of the reconstructed energy Erec of the combined photon candidates and the energy
Egen of the matched generated photons as a function of the generated energy and cosΘ. At
20 GeV the mean reconstructed energies are about 15% higher than the generated energies, at
240 GeV the difference between reconstructed and generated energy is still 5%. The angular
dependency of the ratio Erec/Egen in the barrel region (| cosΘ| < 0.8) is related to the fact
that only one calibration constant is used for the full angular regions covered by each sampling
structure (sec. 4.2). When particles enter the calorimeter with an angle of less than 90◦ they
have to travel through more absorber material as if they enter the calorimeter perpendicular
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to its surface. This changes the ratio of physical and visible energy. Since this is a pure
geometrical effect it should be straight forward to account for it in the future. In the cosΘ
plot the transition region between barrel and endcap is visible as a steep step at | cosΘ| ≈
0.8. This step corresponds to the drop in Fig. 3.7(b) which is undisturbed by geometrical
effects3. Using the first plot the combined energies were manually calibrated by multiplying
the reconstructed energies of the combined photon candidates with the mean inverse ratio
(Erec/Egen)

−1 evaluated for the generated photons that could be matched to the candidates.
Figures 4.9(c) and 4.9(d) show the mean energy ratio Erec/Egen as function of generated energy
and cosΘ after calibration. The ratio in Figure 4.9(c) is now close to constant at 1. The
remaining difference of ≈ 1% between reconstructed and generated energies is probably due
to the remaining angular dependency (Fig. 4.9(d)) in combination with the energy and cosΘ
distributions of the events under consideration. In the energy spectrum of the combined photons
(Fig. 4.9(e)) the centre of the Z0 peak is now at about 240 GeV. This shift is also visible in
Figure 4.9(f) which is an overlay of the combined distributions before and after calibration.

4.4.4 Energy Resolution

After the photon combination and manual calibration, the spectrum in Figure 4.9(e) is still
differing from the generator spectrum considerably. The loss of photons at energies around
the Z0 peak is not as dramatic as with the full reconstruction, but the width of the now
anticipational Z0 resonance is of the order of > 20 GeV. This width is mainly governed by the
energy resolution of the detector, since the natural width of the Z0 resonance is with Γ = 2.495
GeV [8] one order of magnitude smaller. The detector’s overall energy resolution is a convolution
of contributions from the response behaviour of the active material, the amplification systems,
and the read-out systems. Assuming a gaussian resolution for each contribution, the overall
energy resolution is again gaussian.
To estimate the resolution for a set of fixed generated energies ranging from 50 to 240 GeV,
a window with a width of 5 GeV is put around each energy point. All photons from the
cheated reconstruction, for which the photon energy on generator level is within this window,
are then histogramed as a function of their reconstructed energies and fitted with a gaussian.
The connection between cheated reconstruction and generator information is taken from a list
stored by the cheater algorithm. Two example histograms for 50 and 190 GeV are displayed in
Figures 4.10(a) and 4.10(b) for calibrated candidates. Finally the resolution is calculated from
the mean µE and the variance σ2

E of the fit with σE

µE
and plotted as a function of 1/

√
E, since

the resolution can be approximated by the expression

σE

µE
≃ α√

E
+ b.

For the LDC01Sc α = 14.4% and b = 0.5% are the design goals for photons with energies
between 1 and 100 GeV and Θ = π/2 ([23] and sec. 3.2.2). Figures 4.10(c), 4.10(d) and 4.10(e)
show the energy resolution before manual calibration averaged over the full detector, the barrel
(| cosΘ| < 0.5) and endcaps (0.8 < | cosΘ| < 1). Due to a missing factor of 2 the plotted values
of the resolutions have to be doubled. The overall resolution is with ≈ 16% about the same as
in the barrel alone (σE

µE
≥ 14%) , while the resolution in the endcaps is with 10% a little better.

Responsible for the increased resolution in barrel and endcaps is the angular dependency of the
ratio of reconstructed and generated energy Erec/Egen (Fig. 4.9(d)), a geometrical effect4, in
combination with the cuts in cosΘ to separate barrel and endcaps. When averaging over the

3Fig. 3.7(b) is obtained from the raw detector response, without digitisation.
4i.e. independent of the energy of the generated photons.
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(e) Energy distribution of combined and cali-
brated photon candidates.
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Figure 4.9: Plots for calibration procedure.
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full detector, the mean reconstructed energies deviate from the generated energies on a larger
scale. The resolution after calibration for the full detector is shown in Figure 4.10(f). For
energies between 50 and 250 GeV (0.14 > 1/

√

E(GeV) > 0.063) the resolution is roughly at a
constant value of about 12%, which is by a factor of ≈ 6 worse than the design aim indicated
by the solid line at the bottom. The so obtained energy resolution has to be judged with care.
A strong limitation to conclusions drawn from it is that the generated photons do not have
a fixed angle Θ, but they are distributed according to the νν̄γ background. In general it is
not expected to have the same resolution at all angles. Furthermore the method of looking at
an energy window instead of using a fixed energy worsens the resolution at low energies. For
example at 50 GeV (1/

√
E = 0.14) the relative window size is 5 %, half of the observed energy

resolution. At energies above 200 GeV (1/
√

E = 0.07) however the relative half width is less
than 1.25 %.
Nevertheless the observed energy resolution at high energies should be a good estimate of the
energy resolution obtained from a more thorough test. At 240 GeV the width of the Z0 peak
with σE

µE
= 0.12 is expected to be about 28.8 GeV, not in very good accordance with the

observation but in the same magnitude of > 20 GeV. An extrapolation of the design goal to
energies of more than 200 GeV gives an expected width of about 3.4 GeV from the detector
resolution alone. For a better estimate of the energy resolution, a large number of photons
should be simulated at fixed energy and Θ. After a series of tests at different fixed energies the
energy resolution σE

µE
can be plotted at different angles as function of the simulated energies.
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Chapter 5

The Analysis

In this chapter the results of this thesis are presented. In sections 5.1 and 5.2 the weighting
procedure and the event selection are described. After addressing effects from signal migration
in section 5.3, section 5.4 discusses the sensitivity of the ILC on the discovery of a signal, based
on an event sample corresponding to an integrated luminosity of 500 fb−1 (sec. 4.1). The cross
section is probed in terms of the annihilation fraction κe and as a function of the WIMP mass
Mχ for spin 1 and spin 1/2 WIMPs. Exploiting the freedom of the model-independent approach,
these calculations are made for three different couplings of the WIMPs to the incoming electrons
and positrons. The impacts of the choice of the coupling on the sensitivity are studied for
three combinations of beam polarisations: unpolarised beams, 80% electron polarisation only
(Pe− = 0.8, Pe+ = 0.0) and 80% electron with additional 60% positron polarisation (Pe− =
0.8, Pe+ = 0.6). Section 5.5 then gives the results of the tests on the mass resolution for specific
WIMP candidates with cross section parameters accessed in the reach study. For all results
only statistical errors are taken into account.

5.1 The Weighting Procedure

After full background reconstruction the signal is simulated by assigning a weight wevent ac-
cording to the ratio of WIMP production and background cross sections to the combined and
calibrated photon candidates (sec. 4.4). Weighting has the advantage that any signal hypothesis
within the WIMP cross section parameter space can be tested without new Monte Carlo gen-
eration and detector simulation. Since the WIMP production cross section is given in leading
order and thus includes the emission of just one photon, only one combined photon candidate is
weighted in each event (sec. 5.2). The selected photon candidate is usually, but not always the
photon reconstructed from the generated hard scattering photon. This ambiguity is wanted,
because in a real experiment the distinction between the ISR and the hard scattering photon
is not possible either.
When the combined photon candidate is picked, its weight is calculated from the hard scatter-
ing photon on generator level. In contrast to the signal process, the background contains up
to two additional ISR photons. To establish comparable situations, these photons have to be
removed from the events by evaluating the weights in the centre of mass frame of the interme-
diate leptons (i.e. the electrons and positrons after the ISR emission). The four vector k′ of the
hard scattering photon in the new reference system of the intermediate leptons is obtained by
applying a Lorentz transformation Λ to the photon four vector k in the laboratory system:
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k′µ = Λµ
νkν , (5.1)

or in matrix notation with the photon energy E:

(

E′

~E′

)

=

(

γ −~vT

c γ

−~v
c γ I + ~v~vT

v2 (γ − 1)

)

(

E
~E

)

. (5.2)

The vector ~v is the velocity of the centre of mass of the intermediate leptons. With the four
vectors pe− and pe+ of the initial electron and positron and pγ

e−
and pγ

e+
of the ISR photons

emitted from them, ~v is the spatial component divided by the time component of

(

pe− + pe+ − pγ
e−

− pγ
e+

)

. (5.3)

The square reduced centre of mass energy s′ is given by

s′ =
(

pe− + pe+ − pγ
e−

− pγ
e+

)2
. (5.4)

The form of the weights is determined by the following consideration. The numbers of hard
scattering photon events Nbg and signal events Nsig with a dimensionless normalised energy
x = 2Eγ/

√
s between x and x + ∆x and an angle between Θ and Θ + ∆Θ is

Nbg = Ld2σbg

dxdΘ
∆x∆Θ (5.5)

Nsig = Ld2σsig

dxdΘ
∆x∆Θ, (5.6)

with the integrated luminosity L. The full number N of events in this range is then:

N = Nbg + Nsig = Nbg

(

1 +
Nsig

Nbg

)

= Nbg

(

1 +
S

B

)

. (5.7)

with S :=
d2σsig

dxdΘ
(5.8)

and B :=
d2σbg

dxdΘ
. (5.9)

Each selected combined photon candidate therefore gets a weight wevent defined as:

wevent = 1 +
S

B
, (5.10)

evaluated with the variables x′ = E′/
√

s′, cosΘ′ and s′ of the hard scattering photon on
generator level. The signal-like part of each event is then wevent − 1. The signal cross section
is taken from the theoretical prediction Eq. (2.24) of section 2.4 (Fig. 5.1). The background
cross section is obtained by filling a two dimensional histogram according to the x′ = 2E′

γ/
√

s′

and cosΘ′ distributions of the generated hard scattering photons, and normalising it to the
integrated cross section σbg calculated by the event generator (Fig. 5.2). In case of polarised
beams the spin averaged annihilation fraction κe in the signal cross section S = S(κe) has
to be replaced with κpol

e of Eq. (2.27) (see sec. 2.6) and the background cross section scales
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approximately with κbg = (1 − Pe−)(1 − Pe+) (sec. 2.6), so B(κbg) = κbgB. The number of
events Npol in (x, x + ∆x) and (Θ, Θ + ∆Θ) is now

Npol = Npol
bg + Npol

sig = Npol
bg

(

1 +
S(κpol

e )

B(κbg)

)

= Nbgκbg

(

1 +
S(κpol

e )

κbgB

)

, (5.11)

changing the weight wevent to

wpol
event = κbg

(

1 +
S(κpol

e )

κbgB

)

(5.12)
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Figure 5.1: Differential cross section for the emission of the ISR photon in the process e+e− →
χχγ. The parameters are: Mχ = 150 GeV, S = 1, J = 1 and κe = 1. The photon is restrained
by: Eγ,ISR > 10 GeV and sin Θγ > 0.1.

5.2 The Selection

This section gives a brief summary of the cuts applied on the background event sample during
the analysis. The cuts can be classified in three groups. The first group of cuts are performed
on generator level (see sec. 4.1) These cuts are intended to reduce the amount of data. The
generator cuts are:

1. The energy of the hard scattering photon γobs has to comply with 8 GeV < Eγobs
< 250

GeV. The upper cut follows from kinematics.

2. The angle of the hard scattering photon with the beamline is restrained to 15◦ < Θ < 165◦.
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Figure 5.2: Differential cross section for the emission of the hard scattering photon in the
process e+e− → νν̄γ(γγ). The variables x = 2Eγ/

√
s and cosΘ are evaluated in the centre of

mass frame of the intermediate electrons and positrons.

After the detector simulation and event reconstruction some selection cuts are performed. From
each event one combined and calibrated photon candidate is selected. The set of photon can-
didates which pass this selection is the basis for the further analysis. The selection cuts are:

1. The first cut is a cut on the energy of the photon candidates. The reconstructed energy
is demanded to be higher than 10 GeV.

10 GeV < Eγ .

2. After the cut on the photon energy, the photon candidates’ angles with the beam line is
cut on. The angles have to comply with:

20◦ < Θ < 160◦.

As described in section 3.2.1, the track reconstruction efficiency is 92% in this angu-
lar region. Thus discrimination between charged an neutral candidates is possible, and
backgrounds from e.g. Bhabha scattering (sec. 2.5) would be reduced efficiently.

3. The photon candidate with maximal energy is selected.

Additional cuts are applied before the sensitivity calculation. For technical reasons they are
not applied in the calculation of the mass resolution (see sec. 5.5). The cross section derived in
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section 2.4 is only valid for non-relativistic WIMPs. To assure this, a lower cut is applied on
the photon candidate’s energy. This cut depends on the WIMP mass Mχ:

Ecut =
E2

beam − 2M2
χ

Ebeam
, (5.13)

where Ebeam is the beam energy and Ecut the minimum ISR photon energy. Table 5.1 lists the
generator and selection cuts applied and the number of remaining background events. In Table
5.2 the number Nbg of background events after the mass dependent relativistic cut is listed for
some selected WIMP masses. Also listed is the number of signal events after these cuts. The
numbers are valid for unpolarised beams, J = 1, S = 1 and κe = 1. In case of polarisation
these numbers scale approximately with κbg = (1 − Pe−)(1 − Pe+) (background) and κpol

e of
Eq. (2.27) (signal).

cuts Number of events
generator cuts 1.21 × 106

selection cuts 1.07 × 106

Table 5.1: Cut-flow table for generator and selection cuts for unpolarised beams.

WIMP mass [GeV] 30 90 150 160 170 180 210 240
Ecut [GeV] 242.8 185.2 70 45.2 18.8 0 0 0
Nbg [×103] 64 131 315 438 729 1066 1066 1066
Nsig [×103] 1.6 1.6 31.7 38.3 51.9 65.5 18.6 0.4

Table 5.2: Number of events after some selected mass dependent cuts. The numbers are for
unpolarised beams, J = 1, S = 1 and κe = 1. In case of polarisation these numbers scale with
κbg = (1 − Pe−)(1 − Pe+) (background) and κpol

e of Eq. (2.27) (signal).

5.3 Effects of Signal Migration

WIMPs with masses of e.g. 50 GeV, produced at the ILC’s centre of mass energy of 500 GeV
will be mostly relativistic and the emitted photon energies small. So to ensure βχ = vχ/c ≪ 1
the energy of the reconstructed photon events has to comply with the relativistic cut (5.13):

Ecut < Eγ (5.14)

The sensitivity to a signal depends on the ratio of signal events S to background events B. After
reconstruction some events with generated energies from below the cut may have migrated to
above the cut. This leads not only to a higher background rate, but also to more signal events,
depending on the weight of the events. To quantify migration effects the relative amounts of
accepted, expected and migrated signals are looked at. A signal is accepted by the cut, when
the reconstructed energy of the weighted photon candidate is higher than Ecut. It is migrated
(expected) when it is accepted and the generated photon energy of the reconstructed photon
candidate holds Eγ,gen < Ecut (Eγ,gen > Ecut respectively). Figure 5.3 shows on the left-hand
side the ratio of signal events accepted by the cut to the signal events expected as a function
of the WIMP mass. At masses below 80 GeV the accepted signal rate is higher than the
expected rate by a factor between 3 (at 80 GeV) and 18 (at 30 GeV). Above Mχ = 80 the
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ratio drops below 2 with an fluctuation at about 140 GeV. Whether the migrated signal events
influence the sensitivity calculation can be derived from the plot on the right. Displayed are
the ratio of signal events S to the square root of background events

√
B (the poisson standard

deviation) for the migrated signal (dashed line) and expected signal (solid line). The expected
ratio exceeds the migrated ratio at masses above ≈ 130 GeV. Below that mass any test on the
sensitivity is strongly improved by migration. Above 130 GeV the expected signal dominates
the ratio S/

√
B by at least a factor of 10. Here the effects of migration are minor, especially

the spike at 140 GeV in the left plot has not much influence on the sensitivity calculations.
Strong migration extends the observability to relativistic WIMPs, but a comparison with the
cosmological restraints on the annihilation cross section σan is not possible any more.
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Figure 5.3: Left: ratio of accepted signal events to expected signal events as a function of
WIMP mass. Right: ratio of expected (solid line) and migrated (dashed line) signal events S
to

√
B of background events B.

5.4 Sensitivity

The following paragraphs present the results of the calculations of the sensitivity on the ob-
servation of a signal. They are based on a sample of background events corresponding to an
integrated luminosity of 500 fb−1. The sensitivity curves are calculated on 3σ level and only
statistical errors are taken into account. The input to the calculations are the energy and
cos(Θ) distributions of the photon candidates for signal and background. They serve as the
expected signal and background rates. The plots in Figure 5.4 show the input histograms for
signal and background for WIMP masses of 150 and 200 GeV. In both cases the annihilation
fraction κe is set to one1. The relativistic cut is visible at photon energies of 70 GeV in the
150 GeV histograms. The statistical errors are plotted. Close to the cut the signal amounts to
about 30 to 40% of the background. This large value is due to the choice of κe. Strong signal
fluctuations caused by large event weights can be seen over the full signal range, especially in
the cosΘ plot. The exact reason is not known, although the stronger fluctuations in the case
of 150 GeV WIMPs compared to the 200 GeV WIMPs indicate that they are due to the loss
of statistics caused by the relativistic cut (Eq. (5.13) and Table 5.2). Next to this explanation,
migrations effects might contribute, and the large weights might come from the center of the

1i.e. the WIMPs couple only to electrons and positrons.
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x-Θ region, where statistical fluctuations can be seen in the background cross section (Fig. 5.2).
Overall a further understanding of the systematical errors is needed.
All WIMP candidates are assumed to be p-annihilators (J = 1) with spin 1 or 1

2 . The value of
the annihilation cross section σan is set from Fig. 2.3 to 6 pb throughout the analysis.

5.4.1 Helicity Conserving, SM Charged Weak Interaction-like Cou-

plings

When the WIMP couplings conserve helicity but not parity, only one of the spin-dependent
annihilation fractions κ(eR

−eL
+) and κ(eL

−eR
+) is non-zero (sec. 2.6). The other two parameters

κ(eR
−eR

+) and κ(eL
−eL

+) describe couplings that do not conserve helicity, so κ(eR
−eR

+) = κ(eL
−eL

+) ≡
0.

p-annihilator, Sχ = 1, κ(eR
−eL

+) = 0, κ(eL
−eR

+) = 4κe

With κ(eR
−eL

+) = 0 and κ(eL
−eR

+) = 4κe the WIMP couplings to the leptons are the same as
for the standard model neutrinos. Figure 5.5 shows the sensitivity curves on the spin averaged
κe as a function of the WIMP mass Mχ. The curves are calculated for unpolarised beams
(solid line), 80 % electron polarisation only (dotted line) and for 80% electron polarisation with
additional 60% positron polarisation (dashed line). The left plot with a decimal scale in κe

covers a range of masses from 30 to 250 GeV. For unpolarised beams the sensitivity on κe is at
0.3 for a mass of 30 GeV and rises to about 0.8 at 50 GeV. The higher sensitivity on κe at 30
GeV compared to 50 GeV is a result of the migration effects described in the previous chapter.
Between 120 and 210 GeV the limits for a 3σ observation are below 0.1, down to about 0.02 at
150 GeV. As described, the migration is expected to increase the sensitivity for WIMP masses
up to 130 GeV. Therefore in the right plot in Figure 5.5 the x-axis covers only masses between
100 and 250 GeV and a logarithmic scale is chosen for a better comparison between the different
polarisation configurations. Beam polarisation reduces the signal by roughly the same factor
as the background rate. The ratio S/

√
B of signal to the square root of the background thus

decreases and the sensitivity is lowered. Electron polarisation decreases the reach by a factor
of about 2.2 over the full range of masses. Additional positron polarisation reduces the reach
again by a factor of ≈ 1.6.

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = 0, κ(eL

−eR
+) = 4κe

Figures 5.6 are again sensitivity plots for a p-annihilator WIMP, but now with a spin of S = 1
2 .

The WIMP couplings are the same as in the previous case. The plot axises and line codings
(solid, dotted and dashed) are as in Figure 5.5. The accessible region for a spin 1

2 WIMP is
considerably smaller as in the spin 1 case. Between 120 and 210 GeV the limit lies below 0.3
with a minimum of 0.05 at 150 GeV. Below 75 GeV no observation is possible on a 3σ level.
This is probably also true for masses higher than 75 GeV where migration still is influential.
The effects of beam polarisation are at the same order and direction as for a spin 1 WIMP.
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(a) Input histogram to the sensitivity algorithm.
Energy distributions of signal (grey) and back-
ground (black) for a 150 GeV WIMP with κe = 1.
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(b) Input histogram to the sensitivity algorithm.
cos Θ of signal (grey) and background (black) for
a 150 GeV WIMP with κe = 1.
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(c) Input histogram to the sensitivity algorithm.
Energy distributions of signal (grey) and back-
ground (black) for a 200 GeV WIMP with κe = 1.
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(d) Input histogram to the sensitivity algorithm.
cos Θ of signal (grey) and background (black) for
a 200 GeV WIMP with κe = 1.

Figure 5.4: Input histograms for the sensitivity calculation. The WIMP candidates are 150 and
200 Gev, spin 1 p-annihilators. The remaining parameters are set to κe = 1 and σan = 6 pb.
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Figure 5.5: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ. The
limits are calculated for 500 fb−1 experiment. The WIMP couplings have the same helicity de-
pendency as the SM charged weak interaction. The WIMP candidates are spin 1 p-annihilators.
The limits are for unpolarised beams (solid), 80% e− polarisation (dotted) and additional 60%
e+ polarisation. Left: decimal scale. Right: cutout with logarithmic scale.

5.4.2 Helicity Conserving Couplings, Opposite to SM Charged Weak

Interaction

p-annihilator, Sχ = 1, κ(eR
−eL

+) = 4κe, κ(eL
−eR

+) = 0

This and the next WIMP candidate differ from the previous two in the couplings to the leptons.
In opposition to the standard model neutrinos they couple to right-handed electrons and left-
handed positrons. Sensitivity curves for a spin 1 WIMP candidate are plotted in Figure 5.7.
The limits for unpolarised beams are the same as for the spin 1 WIMP with the neutrino-like
couplings. But here beam polarisation increases the S/B ratio allowing for smaller limits to be
set. Polarised electrons limit the κe on 3σ level to 0.006 (factor 3.5) at 150 GeV. Polarisation
of both electrons and positrons lowers this limit to 0.002 (factor 3).

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = 4κe, κ(eL

−eR
+) = 0

With the spin set to 1
2 the accessible region becomes smaller in comparison to the spin 1 case

(Fig. 5.8). The positive effects of beam polarisation manifest again in a successive lowering of
the limits by factors of 4 and 2.3.

5.4.3 Parity and Helicity Conserving Couplings

Parity and helicity conserving couplings are characterised with the spin-dependent annihilation
fractions κ(eR

−eL
+) = κ(eL

−eR
+) = 2κe and κ(eR

−eR
+) = κ(eL

−eL
+) = 0 (see sec. 2.6).

p-annihilator, Sχ = 1, κ(eR
−eL

+) = κ(eL
−eR

+) = 2κe

Figure 5.9 is the 3σ plot for a spin 1 WIMP. Although the neutrino-like part of the couplings
reduces the S/B ratio, the net effect is an increase of the signal to background ratio as one can
see from
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Figure 5.6: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ. The
limits are calculated for 500 fb−1 experiment. The WIMP couplings have the same helicity de-
pendency as the SM charged weak interaction. The WIMP candidates are spin 1

2 p-annihilators.
The limits are for unpolarised beams (solid), 80% e− polarisation (dotted) and additional 60%
e+ polarisation. Left: decimal scale. Right: cutout with logarithmic scale.

(S/B)pol

(S/B)unpol
=

1

2

(

(1 + Pe−)(1 + Pe+)

(1 − Pe−)(1 − Pe+)
+ 1

)

, (5.15)

using Equation (2.27) and the scaling factor κbg of the background. Fully polarised beams
(Pe− = 0.8, Pe+ = 0.6) enhance the ratio by a factor of 18.5. For masses between 120 and 210
GeV and unpolarised beams the accessible region goes down to below 0.1. The sensitivity is
increased by a factor of ≈ 5 by full electron and positron polarisation.

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = κ(eL

−eR
+) = 2κe

Figure 5.10 is again an sensitivity plot for helicity and parity conserving couplings. The spin
of the WIMP candidate is 1

2 . The scaling factor κe can be probed down to 0.05 for unpolarised
beams at a mass of 150 GeV. The increase in sensitivity through beam polarisation is indicated
by the dotted and dashed lines.

Given a typical MSSM value of 0.3 for κe [13] a 3σ observation of p-annihilator WIMPs with spin
1 should be possible for all investigated couplings and unpolarised beams between Mχ = 90
GeV and Mχ = 225 GeV (Mχ = 120 GeV to Mχ = 215 GeV for spin 1

2 ). The increase in
sensitivity with fully polarised beams is especially noticeable for couplings opposite to the SM
weak interaction. Here an overall increase by a factor of ≈ 10 is observed. For helicity and
parity conserving couplings the effect is a factor of 5 in increase.
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Figure 5.7: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ.
The limits are calculated for 500 fb−1 experiment. The WIMP couplings have the opposite
helicity dependency as the SM charged weak interaction. The WIMP candidates are spin 1
p-annihilators. The limits are for unpolarised beams (solid), 80% e− polarisation (dotted) and
additional 60% e+ polarisation. Left: decimal scale. Right: cutout with logarithmic scale.
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Figure 5.8: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ.
The limits are calculated for 500 fb−1 experiment. The WIMP couplings have the opposite
helicity dependency as the SM charged weak interaction. The WIMP candidates are spin 1

2
p-annihilators. The limits are for unpolarised beams (solid), 80% e− polarisation (dotted) and
additional 60% e+ polarisation. Left: decimal scale. Right: cutout with logarithmic scale.
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Figure 5.9: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ. The
limits are calculated for 500 fb−1 experiment. The WIMP couplings conserve both helicity and
parity. The WIMP candidates are spin 1 p-annihilators. The limits are for unpolarised beams
(solid), 80% e− polarisation (dotted) and additional 60% e+ polarisation. Left: decimal scale.
Right: cutout with logarithmic scale.
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Figure 5.10: Reach on 3σ level on the parameter κe as a function of the WIMP mass Mχ. The
limits are calculated for 500 fb−1 experiment. The WIMP couplings conserve both helicity and
parity. The WIMP candidates are spin 1

2 p-annihilators. The limits are for unpolarised beams
(solid), 80% e− polarisation (dotted) and additional 60% e+ polarisation. Left: decimal scale.
Right: cutout with logarithmic scale.

52



5.5 Mass Resolution

Once a signal is observed, one of the first questions to arise is, if and how well the mass of the
WIMP candidate can be determined. The mass resolution is investigated by comparing the
recoil mass spectrum of signal plus background for a given WIMP with the expected spectra
of different signal hypotheses. As in the sensitivity calculations only statistical errors are taken
into account. A good figure of merit is the value of the χ2 test statistics (sec. 2.7.2). The
smaller the value, the better the agreement between “measurement” and hypothesis. For the
following results the event sample of a corresponding luminosity of 500 fb−1 is split up into two
blocks with sizes of 1/3 and 2/3 of the full sample. The larger block is used as the weighting
basis of the hypotheses, the other one serves for the “data”. Due to the splitting, the effective
luminosity is lowered to L = 167 fb−1, or about one year of data taking with the ILC. The
recoil mass calculates from

Mrecoil =
√

s − 2
√

sEγ

where
√

s is the centre of mass energy and Eγ the energy of the photon candidate. Each can-
didate is again weighted with the hard scattering photon on generator level. In Figures 5.11(a)
and 5.11(b) the recoil spectrum for a p-annihilator, spin 1 WIMP signal of 150 GeV is shown,
with κe = 0.3 and σan = 6 pb. The couplings are helicity and parity conserving, beams are un-
polarised. At ≈ 300 GeV the signal (white) kicks in, corresponding to the maximal kinetically
allowed photon energy of 160 GeV. Figures 5.11(c) and 5.11(d) display the recoil distributions
for fully polarised e− and e+ beams for the 150 GeV DM candidate and additionally for a 100
GeV WIMP with the same remaining parameters. The 100 GeV signal starts at ≈ 200 GeV.
The relativistic lower cut of sec. 5.3 is an upper cut in the recoil distribution, depending on
the WIMP mass. To make possible a comparison between different mass hypotheses the cut is
not applied in this test. Observed resolutions are however not strongly influenced therefrom,
because the main criterion for the mass determination is not the absolute norm, but the “kick
in” point of the signal. The mass resolution is then determined by the values of the hypoth-
esised WIMP masses for which the difference between the value of χ2 test and the minimal
value of this test is 1. The fluctuations of the signal are boosted strongly through polarisation.
Their position however is independent of the tested WIMP masses, since it only depends on
the differences between x and Θ of the generated hard scattering photon (from which the event
weight is calculated) and the selected reconstructed photon (whom the weight is assigned to).
The obtained mass resolutions are not heavily affected by the increased weights, because they
cancel out in the χ2 function (Eq. (2.53)) with the large statistical errors (see Fig. 5.11(c) and
5.11(d)).

5.5.1 Helicity Conserving, SM Charged Weak Interaction-like Cou-

plings

In the following the results of the tests on the mass resolution for spin 1
2 and spin 1 WIMP

candidates with neutrino-like couplings are given. Each WIMP is assumed to be a p-annihilator
and the value of the annihilation cross section is chosen to σan = 6 pb. The annihilation fraction
κe is fixed to 0.3

p-annihilator, Sχ = 1, κ(eR
−eL

+) = 0, κ(eL
−eR

+) = 4κe

In Figure 5.12 the value of χ2−χ2
min is displayed as a function of the hypothesised WIMP mass.

For the signal a WIMP with a mass of 150 GeV is chosen. The test has been calculated for
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(a) Recoil mass spectrum for a 150 GeV, spin 1, p-
annihilator WIMP with ke = 0.3. The couplings
are parity and helicity conserving. The beams are
unpolarised. The “data” is plotted with errors,
the (grey) area is the background contribution.
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(b) Same as Fig 5.11(a), logarithmic scale.
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(c) Recoil mass spectrum for a 150 GeV, spin 1, p-
annihilator WIMP with ke = 0.3. The couplings
are parity and helicity conserving. The beams are
fully polarised. The “data” is plotted with errors,
the (grey) area is the background contribution.
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(d) Recoil mass spectrum for a 100 GeV, spin 1, p-
annihilator WIMP with ke = 0.3. The couplings
are parity and helicity conserving. The beams are
fully polarised. The “data” is plotted with errors,
the (grey) area is the background contribution.

Figure 5.11: Input histograms for the calculation of the mass resolution.

54



unpolarised, partially (Pe− = 0.8; Pe+ = 0.0) and fully (Pe− = 0.8; Pe+ = 0.6) polarised beams.
Because of the choice of the couplings, being the same as for the neutrino background, no change
in the mass resolution is observed for different polarisation configurations. The horizontal line
in Figure 5.12 intersects the curve at distances of one standard deviation from the minimum.
The test returned as best fit 152± 4 GeV. The shift of the minimum to higher masses is due to
low statistics.

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = 0, κ(eL

−eR
+) = 4κe

Figure 5.13 shows the mass resolution for a 150 GeV spin 1
2 WIMP. The resolution for this

candidate is with 158 ± 8 GeV by a factor of two worse than in the previous case. Again
the fitted mass is higher than the signal mass. Here the shift is of the order of one standard
deviation. Table 5.3 summarises the findings for the standard model like couplings.

S = 1 S = 1
2

Mχ = 150 GeV
Pe− = 0.0; Pe+ = 0.0 152.1± 4.0 GeV 157.6± 8.2 GeV
Pe− = 0.8; Pe+ = 0.0 152.1± 4.0 GeV 157.6± 8.2 GeV
Pe− = 0.8; Pe+ = 0.6 152.1± 4.0 GeV 157.6± 8.2 GeV

Table 5.3: Mass resolution for spin 1 and 1
2 WIMPs with SM charged weak interaction like

couplings.
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Figure 5.12: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1 WIMP. The WIMPs couple to e+ and
e− like SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The horizontal line
intersects the curve at distances of one standard deviation from the minimum.
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Figure 5.13: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1
2 WIMP. The WIMPs couple to e+ and

e− like SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The horizontal line
intersects the curve at distances of one standard deviation from the minimum.

5.5.2 Helicity Conserving Couplings, Opposite to SM Charged Weak

Interaction

The spin 1 and 1
2 WIMPs tested for here couple to the initial leptons in the opposite way as

SM neutrinos.

p-annihilator, Sχ = 1, κ(eR
−eL

+) = 0, κ(eL
−eR

+) = 4κe

With the couplings chosen here beam polarisation increases the mass resolution. In Figures
5.14, 5.15 and 5.16 the values of the χ2 − χ2

min test statistic are shown as a function of the fit
parameter Mχ for WIMP signals with 100, 150 and 180 GeV. The solid lines are for unpolarised
beams, the dotted lines for partially and the dashed lines for fully polarised beams. 80% e−

polarisation enhances the mass resolution on average by a factor of ≈ 3.6. Further enhancement
with a factor of about 1.6 is obtained by additional e+ polarisation. Table 5.4 lists the results.

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = 0, κ(eL

−eR
+) = 4κe

Figures 5.17, 5.18 and 5.19 shows the mass resolution spin 1
2 WIMPs with masses of 100, 150

and 180 GeV. The line codings (solid, dotted and dashed) are the same as in the previous
paragraph. In Table 5.4 the results are listed alongside the spin 1 case. The mass resolutions
degrade with a factor of very roughly 1.5 compared to the calculations with spin 1 WIMPs.
The influence of beam polarisation is of the same order.
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S = 1 S = 1
2

Mχ = 100 GeV
Pe− = 0.0; Pe+ = 0.0 103.3± 4.3 GeV 106.2± 7.7 GeV
Pe− = 0.8; Pe+ = 0.0 101.3± 1.4 GeV 101.5± 1.9 GeV
Pe− = 0.8; Pe+ = 0.6 101.0± 0.9 GeV 101.3± 1.2 GeV

Mχ = 150 GeV
Pe− = 0.0; Pe+ = 0.0 152.2± 4.0 GeV 157.5± 7.9 GeV
Pe− = 0.8; Pe+ = 0.0 150.5± 1.0 GeV 150.7± 1.5 GeV
Pe− = 0.8; Pe+ = 0.6 150.3± 0.6 GeV 150.4± 0.8 GeV

Mχ = 180 GeV
Pe− = 0.0; Pe+ = 0.0 181.5± 3.0 GeV 180.6± 5.6 GeV
Pe− = 0.8; Pe+ = 0.0 180.7± 0.8 GeV 180.7± 1.3 GeV
Pe− = 0.8; Pe+ = 0.6 180.5± 0.5 GeV 180.5± 0.6 GeV

Table 5.4: Mass resolution for spin 1 and 1
2 WIMPs with couplings opposite to SM charged

weak interaction.

 [GeV]χM
90 92 94 96 98 100 102 104 106 108

m
in

2 χ-2 χ

0

1

2

3

4

5

6

Figure 5.14: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 100 GeV, spin 1 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curve at distances of one standard deviation from the minimum.
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Figure 5.15: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curves at distances of one standard deviation from the minimum.
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Figure 5.16: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 180 GeV, spin 1 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curves at distances of one standard deviation from the minimum.
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Figure 5.17: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 100 GeV, spin 1
2 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curves at distances of one standard deviation from the minimum.
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Figure 5.18: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1
2 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curves at distances of one standard deviation from the minimum.
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Figure 5.19: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 180 GeV, spin 1
2 WIMP. The WIMPs couple to e+

and e− opposite to SM neutrinos. The spin averaged annihilation fraction is set to 0.3. The
horizontal line intersects the curves at distances of one standard deviation from the minimum.

5.5.3 Helicity and Parity Conserving Couplings

Finally, like for the calculation of exclusion limits helicity and parity conserving couplings are
investigated.

p-annihilator, Sχ = 1, κ(eR
−eL

+) = κ(eL
−eR

+) = 2κe

Figures 5.20, 5.21 and 5.22 give the results for spin 1 WIMPs with masses of 100, 150 and
180 GeV. The results are listed in Table 5.5 together with the results for spin 1

2 WIMPs with
helicity and parity conserving couplings. Overall, the achievable resolution with these couplings
is slightly worse (with a factor of ≈ 1.3) as with couplings opposite to the SM weak interaction,
but is still on the percentage level.

p-annihilator, Sχ = 1
2 , κ(eR

−eL
+) = κ(eL

−eR
+) = 2κe

The obtained mass resolutions for helicity and parity conserving WIMPs with spin 1
2 are also

listed in Table 5.5. Furthermore Tables 5.6 and 5.7 list all results of the tests on the mass
resolution for spin 1 and 1

2 separately.

In summary an 80% electron polarisation increases the mass resolution by a factor of about 4 for
couplings opposite to the SM charged weak interaction, and by a factor of about 2.9 for helicity
and parity conserving couplings. These numbers are averaged over all investigated masses and
spins. Additional 60% positron polarisation gives factors of about 1.8 in both cases, resulting
in an overall increase in resolution of about 7 (couplings opposite to SM) and 5 (helicity and
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parity conserving) respectively. Resolutions for spin 1
2 WIMPs decrease by factors between

roughly 1.3 to 1.9 compared to spin 1 WIMPs, where the lower number is for fully polarised
beams and the higher number for unpolarised beams.

S = 1 S = 1
2

Mχ = 100 GeV
Pe− = 0.0; Pe+ = 0.0 103.7± 4.0 GeV 106.3± 7.7 GeV
Pe− = 0.8; Pe+ = 0.0 101.9± 1.8 GeV 101.8± 2.6 GeV
Pe− = 0.8; Pe+ = 0.6 101.4± 1.1 GeV 101.3± 1.4 GeV

Mχ = 150 GeV
Pe− = 0.0; Pe+ = 0.0 152.0± 4.0 GeV 157.2± 6.9 GeV
Pe− = 0.8; Pe+ = 0.0 150.5± 1.3 GeV 151.0± 2.3 GeV
Pe− = 0.8; Pe+ = 0.6 150.4± 0.7 GeV 150.4± 1.0 GeV

Mχ = 180 GeV
Pe− = 0.0; Pe+ = 0.0 181.4± 3.0 GeV 180.7± 5.7 GeV
Pe− = 0.8; Pe+ = 0.0 180.6± 1.1 GeV 181.0± 1.7 GeV
Pe− = 0.8; Pe+ = 0.6 180.5± 0.6 GeV 180.7± 0.9 GeV

Table 5.5: Mass resolution for spin 1 and 1
2 WIMPs with helicity and parity conserving cou-

plings.

S = 1 SM-like Opposite to SM Parity and helicity
Mχ = 100 GeV

Pe− = 0.0; Pe+ = 0.0 103.3± 4.3 GeV 103.7 ± 4.0 GeV
Pe− = 0.8; Pe+ = 0.0 101.3± 1.4 GeV 101.9 ± 1.8 GeV
Pe− = 0.8; Pe+ = 0.6 101.0± 0.9 GeV 101.4 ± 1.1 GeV

Mχ = 150 GeV
Pe− = 0.0; Pe+ = 0.0 152.1 ± 4.0 GeV 152.2± 4.0 GeV 152.0 ± 4.0 GeV
Pe− = 0.8; Pe+ = 0.0 152.1 ± 4.0 GeV 150.5± 1.0 GeV 150.5 ± 1.3 GeV
Pe− = 0.8; Pe+ = 0.6 152.1 ± 4.0 GeV 150.3± 0.6 GeV 150.4 ± 0.7 GeV

Mχ = 180 GeV
Pe− = 0.0; Pe+ = 0.0 181.5± 3.0 GeV 181.4 ± 3.0 GeV
Pe− = 0.8; Pe+ = 0.0 180.7± 0.8 GeV 180.6 ± 1.1 GeV
Pe− = 0.8; Pe+ = 0.6 180.0± 0.5 GeV 180.5 ± 0.6 GeV

Table 5.6: Mass Resolutions for S = 1 WIMPs
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S = 1
2 SM-like Opposite to SM Parity and helicity

Mχ = 100 GeV
Pe− = 0.0; Pe+ = 0.0 106.2± 7.7 GeV 106.3 ± 7.7 GeV
Pe− = 0.8; Pe+ = 0.0 101.5± 1.9 GeV 101.8 ± 2.6 GeV
Pe− = 0.8; Pe+ = 0.6 101.2± 1.2 GeV 101.3 ± 1.4 GeV

Mχ = 150 GeV
Pe− = 0.0; Pe+ = 0.0 157.6± 8.1 GeV 157.5± 7.9 GeV 157.2 ± 6.9 GeV
Pe− = 0.8; Pe+ = 0.0 157.6± 8.1 GeV 150.7± 1.5 GeV 151.0 ± 2.3 GeV
Pe− = 0.8; Pe+ = 0.6 157.6± 8.1 GeV 150.4± 0.8 GeV 150.4 ± 1.0 GeV

Mχ = 180 GeV
Pe− = 0.0; Pe+ = 0.0 180.6± 5.6 GeV 180.7 ± 5.7 GeV
Pe− = 0.8; Pe+ = 0.0 180.7± 1.3 GeV 181.0 ± 1.7 GeV
Pe− = 0.8; Pe+ = 0.6 180.5± 0.6 GeV 180.5 ± 0.9 GeV

Table 5.7: Mass Resolutions for S = 1
2 WIMPs
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Figure 5.20: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 100 GeV, spin 1 WIMP. The couplings conserve helicity
and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Figure 5.21: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1 WIMP. The couplings conserve helicity
and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Figure 5.22: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 180 GeV, spin 1 WIMP. The couplings conserve helicity
and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Figure 5.23: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 100 GeV, spin 1
2 WIMP. The couplings conserve helicity

and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Figure 5.24: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 150 GeV, spin 1
2 WIMP. The couplings conserve helicity

and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Figure 5.25: Value of the χ2 − χ2
min test statistics as function of the fit parameter Mχ. The

signal is assumed to be a p-annihilator, 180 GeV, spin 1
2 WIMP. The couplings conserve helicity

and parity. The spin averaged annihilation fraction is set to 0.3. The horizontal line intersects
the curves at distances of one standard deviation from the minimum.
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Chapter 6

Conclusions and Outlook

Given the validity of the model-independent WIMP production cross section of sec. 2.4, the ob-
tained sensitivity limits of sec. 5.4 show that the annihilation fraction κe can be probed down to
at least 0.3 for spin 1 WIMP candidates with masses between 90 and 225 GeV and unpolarised
beams. For spin 1

2 WIMPs the corresponding masses lie between 120 and 215 GeV. Typical
values for κe in MSSM models are between 0.2 and 0.3 [13]. Thus the results presented indicate
the great potential of the ILC for discovery of Dark Matter. The range of scanable values of the
parameter κe is even extended by a factor of about 10 when the spin 1 DM candidates couplings
to the initial electrons and positrons are opposite to the SM weak interaction (sec. 5.4.2) and
beam polarisation is maximal, so Pe− = 0.8 and Pe+ = 0.6. Electron polarisation by itself
provides a factor of about 4 to the lowering of observation limits. With couplings conserving
parity and helicity, electron polarisation gives a factor of ≈ 2.3 and additional positron polar-
isation another factor of 2.2. For spin 1

2 DM candidates the impacts of beam polarisation on
the sensitivity are of the same order. The absolute limits are about two times higher than for
spin 1 WIMPs because of the smaller production cross section.
The masses of a potential DM candidate with spin 1 can be resolved on the percentage level to
4% for 100 GeV WIMPs and 2% for 180 GeV candidates (sec. 5.5). If beam polarisation is ap-
plied, the resolution is enhanced to the permille level by a factor up to 7 for couplings opposite
to the SM and up to 5 for helicity and parity conserving couplings. If spin 1

2 candidates are
assumed, the resolution is with 3 to 7% for unpolarised beams 1.5 times worse than for spin 1
WIMPs. The effects of beam polarisation are however the same.
In this analysis several problems occurred during detector simulation and event reconstruction.
To mention are the invalid calibration constants (sec. 4.2) and the worse than expected energy
resolution of the reconstruction (sec. 4.4.4). The influences of these problems on the results
presented are not evaluated in this thesis and have to be kept in mind when reviewing the
analysis. Another source of irritation to the sensitivity calculation is due to the strong signal
migration (sec. 5.3) that is basically a consequence of both the calibration and the energy res-
olution. The extend of its influence on the limits given is not scrutinised either. Finally the
conclusions on the mass resolutions are rather unfirm because of the strong fluctuations in the
signal recoil mass distributions, the extension to relativistic WIMPs (the relativistic cut is not
applied) and the method itself, since only two event samples are compared for compatibility,
rather than comparing a sample to an expectation.

Further research on model-independent DM searches with simulation studies is a promising
possibility of evaluating the potential of the ILC for BSM physics. Statements on this po-
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tential should be however the result of an interplay with physics studies on specific models
containing DM candidates like e.g. supersymmetry. The next steps in this direction should be
the improvement of the detector simulation software and reconstruction utilities, and a more
thorough event simulation by using valid calibration constants. The urgent need for a deeper
understanding of systematical errors is suggested by the large fluctuations observed in the in-
put histograms to the sensitivity and mass resolution calculations. To come closer to a real
life experiment the inclusion of typical backgrounds, reducible and irreducible, should be taken
into account, and as a consequence a more sophisticated event selection has to be performed.
One important irreducible background is the process e+e− → νν̄νν̄γ of section 2.5. As men-
tioned in the foregoing paragraph, the application of the methods used have to be revised. In
addition to sensitivity limits on κe, limits on the cross section itself are needed to complete
the picture. The sensitivity curves were calculated with 〈CLs〉b (section 2.7). Although the
difference to the appropriate confidence level 〈CLb〉sb should be rather small in view of the
problems encountered with the detector simulation and the unknown systematic uncertainties,
this approximation has to be dropped. Another approximation to be abandoned is the scaling
behaviour due to polarisation of the background. The definition of κbg should include the Z0

exchange contribution in a further analysis. On the theoretical side, lifting the restraint on
non-relativistic final state WIMPs seems to be an important issue.
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