Studies of charmed strange baryons in the ΛD final state at Belle

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
4Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5Chonnam National University, Kwangju 660-701
6University of Cincinnati, Cincinnati, Ohio 45221
7Deutsches Elektronen–Synchrotron, 22607 Hamburg
8University of Florida, Gainesville, Florida 32611
9Justus-Liebig-Universität Gießen, 35392 Gießen
10Gifu University, Gifu 501-1193
11SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
12Gyeongsang National University, Chunjoo 660-701
13Hanyang University, Seoul 133-791
14University of Hawaii, Honolulu, Hawaii 96822
15High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
16IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
17Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
18Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
19Indian Institute of Technology Guwahati, Assam 781039
20Indian Institute of Technology Madras, Chennai 600036
21Indiana University, Bloomington, Indiana 47408
22Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
23Institute of High Energy Physics, Vienna 1050
24Institute for High Energy Physics, Protvino 142281
25INFN—Sezione di Torino, 10125 Torino
26J. Stefan Institute, 1000 Ljubljana
27Kanagawa University, Yokohama 221-8686
28Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
29King Abdulaziz City for Science and Technology, Riyadh 11442
30Korea Institute of Science and Technology Information, Daejeon 305-806
31Korea University, Seoul 136-713

032002-1 © 2016 American Physical Society
We report the discovery of $\Xi_c^{+}(3055)^0$, observed by its decay into the final-state ΛD^0, and present the first observation and evidence of the decays of $\Xi_c^{+}(3055)^+$ and $\Xi_c^{0}(3080)^+$ into ΛD^+. We also perform a combined analysis of the ΛD^+ with the $\Sigma_c^{++}K^-$ and $\Sigma_c^{+}K^-$ decay modes to measure the ratios of branching fractions, masses and widths with improved accuracy. We measure the ratios of branching fractions $B(\Xi_c^{+}(3055)^+ \rightarrow \Lambda D^+)/B(\Xi_c^{0}(3055)^+ \rightarrow \Sigma_c^{++}K^-) = 5.09 \pm 1.01 \pm 0.76$, $B(\Xi_c^{0}(3080)^+ \rightarrow \Lambda D^+)/B(\Xi_c^{+}(3080)^+ \rightarrow \Sigma_c^{++}K^-) = 1.29 \pm 0.30 \pm 0.15$, and $B(\Xi_c^{0}(3080)^+ \rightarrow \Sigma_c^{+}K^-)/B(\Xi_c^{+}(3080)^+ \rightarrow \Sigma_c^{+}K^-) = 1.07 \pm 0.27 \pm 0.04$, where the uncertainties are statistical and systematic. The analysis is performed using a 980 fb$^{-1}$ data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

DOI: 10.1103/PhysRevD.94.032002
STUDIES OF CHARMED STRANGE BARYONS IN THE

I. INTRODUCTION

In recent years, there has been significant progress in the study of the charmed baryon spectrum, mainly from the Belle and BABAR experiments [1–9]. In the charmed strange baryon sector, a number of excited states (Ξ_c) have been observed. Belle reported evidence for two excited states, Ξ_c(2980) and Ξ_c(3080), in the Λ_c^+K^-π^+ and Λ_c^0K^0π^- final states [2]. These states have been confirmed by BABAR [6]. In the same paper, BABAR also claimed evidence for two resonances, the Ξ_c(3055)^+ and the Ξ_c(3123)^+, observed in the Σ_c^+K^- and Σ_c^+K^- final states. Recently, Belle confirmed the existence of the Ξ_c(3055)^+, but no evidence was found for the Ξ_c(3123)^+ [9]. As discussed in Refs. [10,11], the decay pattern of charmed baryons provides an important contribution to our understanding of the nature of the states. To date, all measurements of Ξ_c baryons were performed using decays in which the charm quark is contained in the final-state baryon. Measurements of final states in which the charm quark is part of the final-state meson provide complementary information.

In this paper, we report studies of Ξ_c baryons decaying to the ΛD^+ and ΛD^0 final states using a data sample with an integrated luminosity of 980 fb^{-1} collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We find significant signals for Ξ_c(3055)^+ and Ξ_c(3080)^+ decays into ΛD^+. In the ΛD^0 final state, we report observation of the Ξ_c(3055)^0. These measurements constitute the first observation and evidence for the Ξ_c(3055) and Ξ_c(3080) into the ΛD final states, and the first-ever observation of the Ξ_c(3055)^0. We also perform a combined analysis of the ΛD^+, Σ_c^+K^-, and Σ_c^+K^- final states to measure the ratios of branching fractions and to improve the accuracy of the mass and width measurements.

The remaining sections of the paper are organized as follows. In Secs. II and III, we describe the data sample and event selections. In Sec. IV, observations and measurements of Ξ_c baryons in the ΛD^+ and ΛD^0 final states are presented. In Sec. V, the combined analysis with the Σ_c^+K^- and Σ_c^+K^- final states is presented. Finally, the summary and conclusion are given.

II. DATA SAMPLES AND THE BELLE DETECTOR

We use a data sample with a total integrated luminosity of 980 fb^{-1} recorded with the Belle detector at the KEKB asymmetric-beam-energy e^+e^- collider [12]. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K^0_L mesons and to identify muons. The detector is described in detail elsewhere [13]. Two inner detector configurations were used. A 2.0-cm radius beampipe and a 3-layer silicon vertex detector were used for the first sample of 156 fb^{-1}, while a 1.5-cm radius beampipe, a 4-layer silicon detector, and a small-cell inner drift chamber were used to record the remaining 824 fb^{-1} [14].

We use a GEANT-based Monte Carlo (MC) simulation [15] to model the detector response and its acceptance to obtain the reconstruction efficiency and the mass resolution for the signal. We reweight the signal MC sample according to the scaled-momentum x_p = p^*/p_{max} distributions, based on the measurements in real data, to obtain the correct reconstruction efficiency. Here, p^* is the momentum of the Ξ_c system in the center-of-mass frame and p_{max} = √{s/4 - M^2c^4}/c, where s is the total center-of-mass energy squared, M is the invariant mass of the Ξ_c system, and c is the speed of light. The generated Ξ_c decay angular distribution is flat. We also use MC events generated with EVTGEN [16] and JETSET [17] to study the mass distribution in the background process e^+e^- → q̅q process (q = u, d, s, c and b).

III. EVENT SELECTION

Our analysis is optimized to search for decays of Ξ_c baryons into the ΛD^+ and ΛD^0 final states. Throughout this paper, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated. A Λ candidate is reconstructed via its decay into pπ^-. A D^+ candidate is reconstructed via its decay into K^-π^+π^+. A D^0 candidate is reconstructed via its decay into K^-π^+K^-π^- and K^-π^+π^-.

The selection of charged hadrons is based on information from the tracking system (SVD and CDC) and hadron identification system (CDC, ACC, and TOF). The charged hadrons that are not associated with the Λ candidate are required to have a point of closest approach to the interaction point that is within 2 cm along the z axis and within 0.2 cm in the transverse (r − φ) plane. The z axis is opposite the positron beam direction. For each track, likelihood values L_p, L_K, and L_π are provided by the hadron identification system, based on the ionization losses in the CDC, the number of detected Cherenkov photons in the ACC, and the time-of-flight measured by the TOF. The likelihood ratio is defined as L(i;j) = L_i/(L_i + L_j). A track is identified as a proton if the likelihood ratios L(p:π) and L(p:K) are greater than 0.6, as a kaon if the likelihood ratios L(K:π) and L(K:p) are greater than 0.6, or as a pion if the likelihood ratios L(π:K) and L(π:p) are greater than 0.6. In addition, an electron likelihood is provided based on information from the ECL, ACC, and CDC [18]. A track with an electron likelihood greater than 0.95 is rejected.
The momentum-averaged efficiencies of hadron identification are about 90%, 90%, and 93% for pions, kaons, and protons, respectively. The momentum-averaged probability to misidentify a pion as a kaon is about 9%, to misidentify a kaon as a pion about 10%, and to misidentify a pion or kaon as a proton about 5%. The π^0 candidates are reconstructed from pairs of photons whose invariant mass $(M_{\gamma\gamma})$ satisfies $120 \text{ MeV}/c^2 < M_{\gamma\gamma} < 150 \text{ MeV}/c^2$, which corresponds to $\pm 2.5\sigma$ (where σ is the one-standard-deviation of the resolution). The energy of each photon in the laboratory frame is required to be greater than 50 MeV and the energy of the π^0 candidate in the laboratory frame is required to be greater than 500 MeV. The D^+ candidates are selected by requiring $|M(K^-\pi^+\pi^+) - m_{D^+}| < 12 \text{ MeV}/c^2$, where m_{D^+} is the D^+ mass [19]. The D^0 candidates for each decay mode of the D^0 are selected by requiring $|M(K^-\pi^+\pi^-) - m_{D^0}| < 14 \text{ MeV}/c^2$, $|M(K^-\pi^+\pi^- - m_{D^0}| < 11 \text{ MeV}/c^2$, and $|M(K^-\pi^-\pi^0) - m_{D^0}| < 27 \text{ MeV}/c^2$, where m_{D^0} is the D^0 mass. These mass ranges correspond to $\pm 2.5\sigma$. To improve the momentum resolution, the daughter particles are fitted to a common vertex together with an invariant mass constrained to the D^+ or D^0 mass. The Λ candidates are selected using cuts on four parameters: the angular difference between the Λ flight direction and the direction pointing from IP to the decay vertex in the transverse plane, the distance between each track and the IP in the transverse plane, the distance between the decay vertex and the IP in the transverse plane, and the displacement along z of the closest-approach points of the two tracks to the beam axis. Also, the invariant mass of a Λ candidate is required to be within 3 MeV/c^2 of the Λ mass, which corresponds to $\pm 3\sigma$. Excited charmed baryons are known to be produced with much higher average momenta than the combinatorial background. We thus require that x_{ρ} be greater than 0.7 for the ΛD^+ and 0.8 for the ΛD^0 modes. This requirement removes any possible Ξ_c^0 contribution coming from B meson decays.

IV. OBSERVATION OF $\Xi_c^+ \rightarrow \Lambda D$ DECAYS

Figure 1 shows the ΛD invariant-mass $[M(\Lambda D)]$ distributions for data after the application of all the selection criteria; signals near 3055 and 3080 MeV/c^2 are seen. We do not observe any such peaks in the distributions of wrong-sign $\bar{\Lambda}D$ combinations, in data from the D meson mass sideband, nor in MC events that do not include these resonances. We also check for the possible peaking background from $D_s(2460)^+ \rightarrow K_S^0 D^+$ where the K_S^0 is

![FIG. 1. $M(\Lambda D)$ distributions: (a) $M(\Lambda D^+)$ distribution; $M(\Lambda D^0)$ distributions for the (b) $K^-\pi^+$, (c) $K^-\pi^+\pi^-\pi^-$, and (d) $K^-\pi^-\pi^0 D^0$ decay modes. Points with statistical error bars are data. Blue solid lines show the fit results. The red dashed, magenta dotted, and black dashed-dotted lines show the $\Xi_c(3055)$ signal, the $\Xi_c(3080)$ signal, and the background components, respectively.]

032002-4
and detection efficiencies. The reasonable variations to the fitting technique. The stability values are 144.6 for the widths of the nominal fit is taken as the systematic uncertainty. To check the uncertainty due to \(\sigma_{\text{res}} \), the ratio \(r_s = \sigma_{\text{MC}}^D / \sigma_{\text{data}}^D \) is evaluated, where \(\sigma_{\text{MC}}^D \) and \(\sigma_{\text{data}}^D \) are the \(D^0 \) mass resolution for MC and data. For the \(D^0 \) mode, \(r_s \) is 1.16, 1.16, and 1.08 for the final state of \(K^-\pi^+ \), \(K^-\pi^+\pi^+\pi^- \), and \(K^-\pi^+\pi^- \), respectively. We evaluate the uncertainty by fitting data with \(\sigma_{\text{res}} \) scaled by 16% for all the decay modes. To check the uncertainty on the mass due to a possible miscalibration of the momentum and energy measurements, we check the reconstructed \(D^0 \) masses for both data and signal MC. In each mode, the peak position is observed to have a distinct but small deviation from the world average. However, these deviations are well reproduced by the MC and, because of the mass-constrained fit, have little effect on the determination of the masses of the \(\Xi^+_c \) baryons. In the signal MC, the differences between the input and output masses of the \(\Xi^+_c \) baryons is less than 0.1 MeV/c\(^2\) for all \(D^0 \) decay modes. We assign a systematic uncertainty of 0.1 MeV/c\(^2\) on the mass measurements. We perform fits that include the interference of the \(\Xi_c(3055) \) and \(\Xi_c(3080) \), assuming both resonances have spin 1/2 and decay in the S-wave, which maximize the interference effect. The systematic uncertainties are summarized in Table I. The fit result for the \(\Xi_c(3080)^+ \) width is (1.4 \pm 1.8) MeV, which is consistent with zero. Therefore, we set a 90% confidence level upper limit on the width. We redo the fit by changing the width; the width for which the likelihood ratio \(-\ln(L/L_{0\text{e}}) \) is 2.7, where \(L_{0\text{e}} \) is the likelihood with the zero width for \(\Xi_c(3080)^+ \), is assigned as the 90% confidence level upper limit. We obtain the upper limit \(\Gamma_{\Xi_c(3080)^+} < 6.3 \) MeV. The measurements of the masses and widths are summarized in Table II. Note that the final values for the \(\Xi_c(3055)^+ \) and \(\Xi_c(3080)^+ \) masses and widths in this paper are those combined with \(\Sigma_c^+K^- \) and \(\Sigma_c^{*+}K^- \) decay modes. Values in the \(\Lambda D \) mode only are shown to compare with other decay modes. We find that the mass of the \(\Xi^+_c(3055)^+ \) and widths of \(\Xi^+_c(3055)^+ \) and \(\Xi_c(3080)^+ \) are consistent with our previous measurements with the \(\Sigma_c^+K^- \) and \(\Sigma_c^{*+}K^- \) decay modes [9]. However, we find a small inconsistency for the mass of the \(\Xi^+_c(3080)^+ \), which may indicate the possible underestimation of the systematic uncertainty for the determination of the masses. We determine the combined value for the masses of the \(\Xi^+_c(3055)^+ \) and \(\Xi^+_c(3080)^+ \) by taking the

We estimate the systematic uncertainty of the masses and widths of \(\Xi^+_c(3055)^0 \), \(\Xi^+_c(3055)^+ \), and \(\Xi_c(3080)^+ \) in the \(\Lambda D^+ \) decay mode as the changes produced by giving reasonable variations to the fitting technique. The stability of the background shape is checked by changing the fit region and background PDF. The maximum deviation from the nominal fit is taken as the systematic uncertainty. To
weighted average. The uncertainty is scaled by \(\sqrt{\chi^2/(N-1)} \), where \(N \) is the number of different decay modes, which is 2 for \(\Xi_c(3055) \) and 3 for \(\Xi_c(3080) \), if the \(\chi^2/(N-1) \) is greater than 1; this is the recipe used in Ref. [19]. The scale factor for the \(\Xi_c(3055) \) is 1.0 and that for the \(\Xi_c(3080) \) is 3.3. The measured mass of the \(\Xi_c(3055) \) is \((3055.9 \pm 0.4) \text{ MeV}/c^2 \) and that for \(\Xi_c(3080) \) is \((3077.9 \pm 0.9) \text{ MeV}/c^2 \). The combined values for the widths are determined by a simultaneous fit with \(\Sigma_c^{++}K^- \) and \(\Sigma_c^{++}K^- \) decay modes as described in the next section.

V. COMBINED ANALYSIS WITH THE \(\Sigma_c^{++}K^- \) AND \(\Sigma_c^{++}K^- \) DECAY MODES

We measure the ratio of branching fractions,
\[
B(\Sigma_c^{++} \rightarrow D^{++})/B(\Sigma_c^{++} \rightarrow \Sigma_c^{++} K^-) \equiv R_{B(D^{++})},
\]
using the following equations:

\[
R_{B(D^{++})} = R_{\text{yield}(D^{++})} \times (B \times e)_{\Sigma_c^{++} K^-}/(B \times e)_{\Lambda_c^+ K}
\]

(1)

\[
(B \times e)_{\Lambda_c^+ K} = B(\Lambda_c^+ \rightarrow K^- p \pi^+) \times e(\Lambda_c^+) \]

(2)

\[
(B \times e)_{\Xi_c^{++} K^-} = B(\Xi_c^{++} \rightarrow p K^- \pi^+) \times \left[e_{pK^-\pi^+} + R_{pK^-\pi^+} \right] \times B(K_0^{*+} \rightarrow \pi^+ \pi^-) \times e_{pK^-\pi^+}.
\]

(3)

where \(e(\Lambda_c^+) \) is the reconstruction efficiency for the \(\Lambda_c^+ \) mode, \(e_i \) is the reconstruction efficiency for the \(\Sigma_c^{++}K^- \) mode with the \(i \)th subdecay of the \(\Lambda_c^+ \), \(R_{pK^-\pi^+} \) is the ratio of branching fraction \(B(\Lambda_c^+ \rightarrow p K_0^{*+})/B(\Lambda_c^+ \rightarrow p K^- \pi^+) \), and \(R_{\text{yield}(D^{++})} \) is the ratio of the yields of \(\Xi_c^{++} \) baryons in the \(D^{++} \) and the \(\Sigma_c^{++} K^- \) modes. For \(B(\Lambda_c^+ \rightarrow p K^- \pi^+) \), we use the latest Belle measurement [20]. Other branching fraction values are taken from Ref. [19]. We also measure the ratio of branching fractions,
\[
B(\Xi_c^{++} \rightarrow \Sigma_c^{++} K^-)/B(\Xi_c^{++} \rightarrow \Sigma_c^{++} K^-) \equiv R_{\Xi_c^{++} K^-},
\]

(4)

where \(R_{\text{yield}(\Xi_c^{++} K^-)} \) is the ratio of yields of \(\Xi_c^{++} \) in the \(\Sigma_c^{++} K^- \) decay mode and \(\Sigma_c^{++} K^- \) decay modes. \((B \times e)_{\Sigma_c^{++} K^-}\) shares the form of Eq. (3) for \((B \times e)_{\Xi_c^{++} K^-}\) after replacing the reconstruction efficiency for \(\Sigma_c^{++} K^- \) with that for \(\Sigma_c^{++} K^- \). The data set used for the \(\Sigma_c^{++} K^- \) and \(\Sigma_c^{++} K^- \) decay modes is the same as that for the \(\Delta D^{++} \) mode. Event selections are the same as those in Ref. [9]. A \(\Lambda_c^+ \) or \(\Sigma_c^{++} \) candidate is reconstructed via its decay into \(\Lambda_c^+ \pi^+ \); the \(\Lambda_c^+ \) candidate here is reconstructed via its decay into \(pK^-\pi^+ \) and \(pK_0^{*+} \). Note that the requirement \(x_p > 0.7 \) is the same as that for the \(\Delta D^{++} \) mode and so it is possible to directly compare the three decay modes. To obtain \(R_{\text{yield}} \) and to measure the width of the \(\Xi_c^{++} \) and \(\Xi_c^{++} \) with greater accuracy than is possible using a single decay mode, we perform a simultaneous UML fit with the widths of the \(\Xi_c^{++} \) states constrained to be the same among the three decay modes, as discussed in the previous section. The masses are not constrained because we find inconsistency for the mass of the \(\Xi_c^{++} \) among the three decay modes. We also fit the mass distribution of the \(\Sigma_c^{++} \) sideband region, defined as \(|M(\Lambda_c^+ \pi^+)-(m_{\Sigma_c^{++}} \pm 15 \text{MeV}/c^2)|< 5 \text{MeV}/c^2 \), where \(m_{\Sigma_c^{++}} \) is the \(\Sigma_c^{++} \) mass, to subtract the contribution from nonresonant \(\Lambda_c^+ K^- \pi^+ \) decays in the signal region. We subtract half of the yield found in the sideband regions because the mass range of the sideband region is double the width of the \(\Sigma_c^{++} \) signal region. It is difficult to define the \(\Sigma_c^{++} \) sideband regions because the maximum mass that is possible for combinations to contribute to the \(\Xi_c^{++} \) is only slightly higher than the \(\Sigma_c^{++} \) mass, and a low mass sideband would overlap with the \(\Sigma_c^{++} \) region. Thus, we estimate the contribution under the \(\Sigma_c^{++} \) by scaling the yield in the \(\Sigma_c^{++} \) sideband regions by 2.9, a factor estimated using signal MC. We assume no interference between \(\Sigma_c^{++} K^- \) or \(\Sigma_c^{++} K^- \) with nonresonant \(\Lambda_c^+ K^-\pi^+ \). The PDFs and fit region for the \(\Delta D^{++} \) are the same as those described in Sec. IV. The fit conditions for the \(\Sigma_c^{++} K^- \) and \(\Sigma_c^{++} K^- \) modes are the same as in Ref. [9]. For the fit to the events from the \(\Sigma_c^{++} \) sideband region, we use the 3.0–3.2 GeV/c^2 mass range. The \(\Xi_c^{++} \) contributions are represented by a Gaussian-convolved Breit-Wigner with the same mass resolution of the \(\Xi_c^{++} \) states as that used for the \(\Sigma_c^{++} \) signal region. The combinatorial background is represented by a second-order Chebyshev polynomial. Figure 2 shows the results of the simultaneous fit.

The following systematic uncertainties are taken into account for the combined analysis for the measurements of the ratios of branching fractions and width. The systematic uncertainty due to the pion- and kaon-identification

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV)</th>
<th>Significance ((\sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Xi_c(3055)^0)</td>
<td>3059.0 ± 0.5 ± 0.6</td>
<td>6.4 ± 2.1 ± 1.1</td>
<td>8.6</td>
</tr>
<tr>
<td>(\Xi_c(3055)^+)</td>
<td>3055.8 ± 0.4 ± 0.2</td>
<td>7.0 ± 1.2 ± 1.5</td>
<td>11.7</td>
</tr>
<tr>
<td>(\Xi_c(3080)^+)</td>
<td>3079.6 ± 0.4 ± 0.1</td>
<td>< 6.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
efficiency is estimated from the ratio of the yields of the $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ with and without the pion- and kaon-identification requirements for data and MC. The difference of the ratio between data and MC is used to correct the efficiency and the statistical error of this correction is treated as the systematic uncertainty. We conservatively assume no correlation in the systematic uncertainty for pion and kaon identification between ΛD^+ and $\Sigma^+_c K^-$ decay modes as the momentum ranges for these decay modes are distinct; the systematic uncertainties for $\Sigma^+_c K^-$ and $\Sigma^{++}_c K^-$ cancel. The systematic uncertainty due to the efficiency of proton identification is determined using the ratio of the yields of the $\Lambda \rightarrow p \pi^-$ with and without the proton-identification requirement. The difference of the ratio between data and MC is used to correct the efficiency, and the statistical uncertainty of this correction is regarded as the systematic uncertainty. The systematic uncertainty due to the reconstruction efficiency of the Λ is determined using the yield ratio of $B \rightarrow \Lambda \Lambda K^+$ with and without the Λ selection cut as a function of momenta of Λ. By taking the weighted average of the momentum, it is estimated to be 3%. The uncertainties of the branching fractions [19,20] are included as systematic uncertainties. The stability of the background shape is checked by changing the fit region and background PDF.

The maximum deviation from the nominal fit among the various changes is regarded as the systematic uncertainty. To assess the uncertainty due to σ_{res}, r_σ is evaluated as $\sigma_{\text{D}}^{MC}/\sigma_{\text{D}}^{\text{data}} = 1.15$ for the ΛD^+ mode and $\sigma_{\Lambda_c^+}/\sigma_{\Lambda_c^+} = 1.08$ for the $\Sigma^{++}_c K^-$; we perform a fit with σ_{res} scaled by a factor of r_σ and use the difference of the result from the nominal fit as the systematic uncertainty. To check the uncertainty due to a possible miscalibration of momentum and energy measurements, we evaluate the difference between the reconstructed and nominal D^+ and Λ_c^+ masses for both data and MC. In data, the reconstructed D^+ mass differs from the world average [19] by 0.1 MeV/c^2 whereas, in the MC, the D^+ mass differs by 0.2 MeV/c^2. No deviation is observed for Λ_c^+ for both data and MC. In the signal MC, the difference of the input and output Ξ_c masses in the ΛD^+ mode is 0.1 MeV/c^2, which is smaller than the deviation observed in the D^+ mass because of the mass-constrained fit. We conservatively assign the systematic uncertainty of 0.1 MeV/c^2 on the mass measurement. The systematic uncertainty on the ratio of the branching fraction due to the possibility that the Ξ_c is polarized is evaluated by producing signal MC events with various assumptions on the spin density matrix with spin 3/2 and 5/2. The maximum difference of the reconstruction efficiency from the one

![Graphs](https://via.placeholder.com/150)
TABLE III. Summary of the systematic uncertainties for the width (MeV) and ratio of branching fraction ratios (%) measurements from the combined analysis.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Gamma_{\Xi_c(3055)^+}$</th>
<th>$R_{B(\Lambda K)}$ for $\Xi_c(3055)^+$</th>
<th>$\Gamma_{\Xi_c(3080)^+}$</th>
<th>$R_{B(\Lambda K)}$ for $\Xi_c(3080)^+$</th>
<th>$R_{B(\Sigma K)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi K p$ identification</td>
<td>...</td>
<td>1.4</td>
<td>...</td>
<td>1.4</td>
<td>...</td>
</tr>
<tr>
<td>Λ identification</td>
<td>...</td>
<td>3.0</td>
<td>...</td>
<td>3.0</td>
<td>...</td>
</tr>
<tr>
<td>Branching fractions</td>
<td>...</td>
<td>5.7</td>
<td>...</td>
<td>5.7</td>
<td>...</td>
</tr>
<tr>
<td>Background shape</td>
<td>1.5</td>
<td>13.1</td>
<td>0.4</td>
<td>9.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2</td>
<td>2.1</td>
<td>0.2</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Mass scale</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Polarization</td>
<td>...</td>
<td>1.6</td>
<td>...</td>
<td>3.5</td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td>1.5</td>
<td>14.9</td>
<td>0.4</td>
<td>12.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

TABLE IV. Summary of results from the simultaneous fits to the ΛD^+ and $\Sigma_c^{++} K^-$ modes.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Width (MeV)</th>
<th>Yield for ΛD^+</th>
<th>Yield for $\Sigma_c^{++} K^-$</th>
<th>Yield for sideband</th>
<th>Yield for Σ_c^{++}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi_c(3055)^+$</td>
<td>7.8 ± 1.2 ± 1.5</td>
<td>721 ± 90</td>
<td>173 ± 30</td>
<td>21 ± 18</td>
<td>-</td>
</tr>
<tr>
<td>$\Xi_c(3080)^+$</td>
<td>3.0 ± 0.7 ± 0.4</td>
<td>186 ± 40</td>
<td>176 ± 23</td>
<td>20 ± 12</td>
<td>234 ± 30</td>
</tr>
</tbody>
</table>

obtained for the flat decay angular distribution is regarded as the systematic uncertainty.

Table III summarizes the systematic uncertainties. Table IV summarizes the measurement of yields and widths of the $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$ and Table V summarizes the values related to the ratio of branching fractions measurements.

TABLE V. Summary of the values related to the measurements of the ratio of branching fractions. The branching fraction values are taken from Refs. [19,20]. For the ratios of branching fractions, the first error is statistical and second is systematic.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(D^+ \rightarrow K^- \pi^+ \pi^+)$</td>
<td>0.0913 ± 0.0019</td>
</tr>
<tr>
<td>$B(\Lambda \rightarrow p\pi^0)$</td>
<td>0.639 ± 0.005</td>
</tr>
<tr>
<td>$B(\Lambda^+ \rightarrow pK^- \pi^+)$</td>
<td>0.0684 ± 0.036</td>
</tr>
<tr>
<td>$B(K^0_\Lambda \rightarrow \pi^- \pi^0)$</td>
<td>0.6920 ± 0.0005</td>
</tr>
<tr>
<td>$B(\Lambda^+ \rightarrow pK^0_\Lambda)/B(\Lambda^+ \rightarrow pK^- \pi^+)$</td>
<td>0.24 ± 0.02</td>
</tr>
<tr>
<td>$\epsilon(\Lambda D^+)$</td>
<td>0.1771</td>
</tr>
<tr>
<td>$\epsilon_{pK^-}\pi^+$</td>
<td>0.149</td>
</tr>
<tr>
<td>$\epsilon_{pK^0}\pi^+$</td>
<td>0.155</td>
</tr>
<tr>
<td>$\epsilon_{pK^-}\Sigma_c^{++} K^-$</td>
<td>0.146</td>
</tr>
<tr>
<td>$\epsilon_{pK^0}\Sigma_c^{++} K^-$</td>
<td>0.153</td>
</tr>
<tr>
<td>$\epsilon_{B \times \epsilon}\Lambda D^+$</td>
<td>0.0103</td>
</tr>
<tr>
<td>$\epsilon_{B \times \epsilon}\Sigma_c K$</td>
<td>0.0119</td>
</tr>
<tr>
<td>$\epsilon_{B \times \epsilon}\Sigma_c^*$</td>
<td>0.0117</td>
</tr>
<tr>
<td>$R_{yield(\Lambda D)}$ for $\Xi_c(3055)^+$</td>
<td>4.41 ± 0.87</td>
</tr>
<tr>
<td>$R_{yield(\Lambda D)}$ for $\Xi_c(3080)^+$</td>
<td>1.12 ± 0.26</td>
</tr>
<tr>
<td>$R_{yield(\Sigma K)}$ for $\Xi_c(3055)^+$</td>
<td>1.05 ± 0.27</td>
</tr>
<tr>
<td>$R_{yield(\Sigma K)}$ for $\Xi_c(3080)^+$</td>
<td>5.09 ± 1.01 ± 0.76</td>
</tr>
<tr>
<td>$R_{yield(\Lambda D)}$ for $\Xi_c(3055)^+$</td>
<td>1.29 ± 0.30 ± 0.15</td>
</tr>
<tr>
<td>$R_{yield(\Lambda D)}$ for $\Xi_c(3080)^+$</td>
<td>1.07 ± 0.27 ± 0.04</td>
</tr>
</tbody>
</table>

VI. SUMMARY AND CONCLUSIONS

We present studies of Ξ_c baryons decaying into the ΛD^+ and $\Sigma_c^{++} K^-$ final states. We report the first observation of the $\Xi_c(3055)^0$ in the ΛD^0 mode with a significance of 8.6σ. The mass and width of the $\Xi_c(3055)^0$ are measured to be $(3059.0\pm 0.5\pm 0.6)$ MeV/c² and $(6.4\pm 2.1\pm 1.1)$ MeV, respectively. We report the first observation of the $\Xi_c(3055)^+ \rightarrow \Lambda K$ and evidence for the $\Xi_c(3080)^+$ in the ΛD^+ final state. The mass and width of the $\Xi_c(3055)^+$ obtained from the ΛD final states only are $(3055.8\pm 0.4\pm 0.2)$ MeV/c² and $(7.0\pm 1.2\pm 1.5)$ MeV, respectively, and those for $\Xi_c(3080)^+$ are $(3079.6\pm 0.4\pm 0.1)$ MeV/c² and < 6.3 MeV, respectively. The measured values for $\Xi_c(3055)^+$ are more accurate than the world average thanks to the high statistics in this decay mode.

We perform a combined analysis of these particles by comparing their decays into ΛD^+ with those into $\Sigma_c^{++} K^-$ and $\Sigma_c^{++} K^-$. We measure the ratios of branching fractions $B(\Xi_c(3055)^+ \rightarrow \Lambda D^+)/B(\Xi_c(3055)^+ \rightarrow \Sigma_c^{++} K^-) = 5.09\pm 1.01\pm 0.76$, $B(\Xi_c(3080)^+ \rightarrow \Lambda D^+)/B(\Xi_c(3080)^+ \rightarrow \Sigma_c^{++} K^-) = 1.29\pm 0.30\pm 0.15$, and $B(\Xi_c(3080)^+ \rightarrow \Sigma_c^{++} K^-)/B(\Xi_c(3080)^+ \rightarrow \Sigma_c^{++} K^-) = 1.07\pm 0.27\pm 0.04$. The width of the $\Xi_c(3055)^+$ is $(7.8\pm 1.2\pm 1.5)$ MeV and that of the $\Xi_c(3080)^+$ is $(3.0\pm 0.7\pm 0.4)$ MeV. We take the weighted average of the measurements in the different decay modes to find the masses of the $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$ to be (3055.9 ± 0.4) MeV/c² and (3077.9 ± 0.9) MeV/c², respectively, where the uncertainties are scaled by $\sqrt{\chi^2/(N-1)}$ to account for small inconsistencies in the N individual measurements. The uncertainties on the masses incorporate the statistical and systematic values. The masses and widths of $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$, after
combining them with other decay modes, supersed our previous measurements [9].

Our measurements provide information on the nature of these baryons. For instance, the chiral quark model has been used to identify the $\Xi_c(3055)$ as the D-wave excitation in the $N=2$ shell, and predicts $B(\Xi_c(3055) \to \Sigma_c \bar{K})$; $B(\Xi_c(3055) \to \Lambda D)$ to be 2.3:0.1 or 5.6:0.0, depending on the possible excitation modes [11]. It further identifies the $\Xi_c(3080)$ as an S-wave excitation mode of the Ξ_c in the $N=2$ shell and predicts that its decay into ΛD is forbidden. Both of these predictions are in contradiction with our measurements. Further experimental and theoretical work is needed to understand these baryons.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grants No. P 22742-N16 and No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187, and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2015R1A2A2A01003280, and No. 2015H1A2A1033649; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333; the Center for Korean J-PARC Users, Grant No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and Radiation Science Research Institute; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, the Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid for Scientific Research (S) “Probing New Physics with Tau-Lepton” (No. 26220706), a Grant-in-Aid for Scientific Research on Innovative Areas “Elucidation of New Hadrons with a Variety of Flavors,” a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”) and from JSPS for Creative Scientific Research (“Evolution of Tau-Lepton Physics”).

[2] R. Chistov et al. (Belle Collaboration), Observation of New States Decaying into $\Lambda^+_c K^- \pi^+$ and $\Lambda^+_c K^0 \pi^-$, Phys. Rev. Lett. 97, 162001 (2006).
[3] B. Aubert et al. (BABAR Collaboration), Observation of an Excited Charm Baryon Ω^0_c Decaying to Ω^0_{cJ}, Phys. Rev. Lett. 97, 232001 (2006).
[6] B. Aubert et al. (BABAR Collaboration), A study of excited charm-strange baryons with evidence for new baryons $\Xi_c(3055)^+$ and $\Xi_c(3123)^+$, Phys. Rev. D 77, 012002 (2008).
[8] T. Lesiak et al. (Belle Collaboration), Measurement of masses of the $\Xi_c(2645)^+$ and $\Xi_c(2815)^+$ baryons and observation of $\Xi_c(2980)^+$ and $\Xi_c(2645)^+$, Phys. Lett. B 665, 9 (2008).

