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We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The

theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the

monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to

a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and

Hund’s coupling J , the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of

interaction parameters. Furthermore, we find that when U − 3J is small or negative, a spontaneous instability to

bond disproportionation takes place for large enough J . This minimal theory emphasizes that a small or negative

charge-transfer energy, a large Hund’s coupling, and a strong coupling to bond disproportionation are the key

factors underlying the transition. Experimental consequences of this theoretical picture are discussed.
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I. INTRODUCTION

The rare-earth nickelate series RNiO3 displays a rich

phase diagram with striking structural and metal-insulator

transitions [1] (see Refs. [2] and [3] for reviews). Only the

end member of the series LaNiO3 is metallic and nonmagnetic

down to the lowest temperature [4]. Compounds with heavier

rare-earth ions R (i.e., smaller ionic radius) display a bad-

metal [5] to insulator transition (MIT) as temperature is

lowered. The compounds with Pr or Nd undergo a transition to

a magnetic insulating state. However, the transition is towards

a nonmagnetic insulating state for the smaller rare-earth ions

(R = Sm and beyond), and the magnetic ordering sets in only

at a lower temperature. For example, in LuNiO3 the MIT

occurs at TMIT ≃ 600 K, but the magnetic ordering occurs

only at TN ≃ 130 K.
The transition from the high-temperature metallic phase

in the orthorhombic (Pbnm) structure to the low-temperature
insulating phase is concomitant with a structural transition
to a monoclinic (P 21/n) structure with two types of NiO6

octahedra [6–9]. One set of octahedra is compressed and
has short Ni-O bonds (SB), and the other set of octahedra
is expanded and has long Ni-O bonds (LB).

The nature of this MIT has still not been fully clarified, and
the respective role of correlations (on-site Coulomb repulsion
U and Hund’s rule coupling J ), orbital degeneracy, and
structural transition in causing the MIT is still under debate.
Interest in this issue has been renewed by the recent activity on
nickelates in the form of thin films and heterostructures, and
the opportunities for controlling the MIT in these structures
(e.g., by strain or electric field) [10–17]. The broad question
behind the nature of the MIT is how we should think of the
electronic structure of these materials.

In the most naive ionic picture, each nickel is Ni3+

(d7) corresponding to the low-spin configuration t6
2ge

1
g . The

MIT was initially interpreted as a Mott transition (or more
accurately a metal to charge-transfer insulator transition) of
the quarter-filled eg shell caused by the change in Ni-O-Ni
angle as the tolerance factor is reduced [1]. However, the MIT

is simultaneously accompanied by the structural differentiation
between the two nickel sites and there is no anomaly in the
susceptibility at TMIT [18], which makes the homogeneous
Mott transition picture untenable (see also Ref. [19]). Clearly,
the MIT is not a Slater transition either, since for smaller
rare-earths compounds it occurs at a temperature above that of
magnetic ordering.

Although t6
2ge

1
g is an orbitally degenerate configuration that

is susceptible to Jahn-Teller distortion of the octahedra, such a
distortion is not experimentally observed for all octahedra [20].
Nonetheless, several experiments reveal that the lattice degrees
of freedom play an active role in the transition. For example, a
large isotope effect is observed on TMIT, at least for the lighter
rare earths [21,22]. In addition, recent control of the transition
by light pulses resonant with specific vibrational modes have
emphasized the importance of lattice degrees of freedom [23].
This suggests that these materials take some other structural
route to lift the orbital degeneracy.

Charge disproportionation on the Ni sites into Ni3+δ (on
SB sites) and Ni3−δ (on LB sites) has been proposed as an
alternative way to interpret the structural transition and resolve
the orbital degeneracy issue. A number of recent experiments,
especially resonant spectroscopies [6,8,24–27], have been
interpreted in terms of charge disproportionation. However, a
strong on-site d-d Coulomb repulsion U that is likely relevant
for Ni should suppress charge disproportionation.

A different picture was proposed early on by Demourgues
et al. [28] and Mizokawa, Khomskii, and Sawatzky [29]. The
basic premise of these authors is that the d7 ionic assignment
is invalid: holes are formed on oxygen sites, a behavior
sometimes referred to as “negative charge-transfer” insula-
tors [30–32]. Recent work by Park, Millis, and Marianetti
[33–35] provides strong theoretical support to the importance
of ligand holes. These authors performed electronic structure
calculations involving both oxygen and nickel states, taking
correlation effects into account within dynamical mean-field
theory (DMFT). They found that the insulating phase can be
viewed as a “site-selective” Mott phase. The extreme limit
of this picture is the following [33], as also emphasized by
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Johnston et al. [36]: LB octahedra have the configuration d8,
while SB octahedra acquire the configuration d8L2, with two
holes on the ligand and two electrons in the atomic-like eg

shell of nickel, hence lifting orbital degeneracy. Note that
this does not imply an actual charge disproportionation since
each oxygen is shared by two octahedra, although the charge
density is larger in the SB octahedra than in the LB octahedra.
The spin is strongly modulated in this picture, with S = 0
on the SB octahedra (where the two ligand holes screen
out the Ni moment) and S = 1 on the LB octahedra. In the
strong-coupling limit, the system can be described as the
superposition of a Kondo insulator on the SB sites and of a Mott
insulator on the LB sites, a mechanism called “site-selective
Mott transition” by the authors of Ref. [33]. This mechanism
is also qualitatively consistent with ideas of Goodenough and
coworkers pointing at the strong covalent bonding in the
SB octahedra [3,20,37]. This picture is quite attractive and
reconciles a number of different experimental observations, in
particular the absence of Jahn-Teller distortions.

Mazin et al. have pointed out that a disproportionation of
the type 2e1

g → e0
g + e2

g can be favorable when U − 3J is
small [38]. This picture is similar to that mentioned above
if one assumes that the disproportionation occurs for the
antibonding eg orbital resulting from the strong hybridization
between Ni 3d and O 2p states. Reference [38] used density
functional calculations to show that the magnetically ordered
state with such disproportionation is indeed an insulator,
although this picture cannot fully describe the nonmagnetic
insulating state that occurs for the majority of the rare-earth
ions.

Two outstanding theoretical questions remain unanswered
to this day, however. The first one is whether it is at all possible
to construct a low-energy description of nickelates and of their
MIT in terms of low-energy electronic states only. By low
energy, we mean a two-band (per nickel site) picture involving
only eg states resulting from the strong hybridization between
oxygen and nickel atomic states. This question was previously
addressed by Lee, Chen, and Balents in the weak-coupling
limit, mostly in connection with ordered states [39,40]. The
second question is why the metallic state of these materials
is so easily destabilized into an insulator with bond-length
disproportionation and lower crystal symmetry. These are the
questions that we set out to answer in the present paper.

Our answer to the first question is in fact remarkably
simple. We find that an effective two-band description is indeed
possible, provided that the effective low-energy interaction
U − 3J between two electrons with parallel spin in different
orbitals is smaller than the energy difference �s between
inequivalent nickel sites. Since �s is zero in the orthorhombic
phase and remains a small energy scale in the monoclinic phase
(our estimate for LuNiO3 is �s ≃ 0.25 eV), this implies that
U − 3J has to be taken small or even slightly negative, in qual-
itative agreement with the negative charge-transfer picture. We
emphasize that in this description J and, especially, U are not
the values for atomic-like localized nickel states but rather
renormalized low-energy values appropriate for the covalent
eg states. We explicitly construct such a low-energy model
by performing electronic structure calculations of LuNiO3 in
both the high-temperature orthorhombic and low-temperature
monoclinic structures. By exploring the phase diagram of this

model as a function of U and J using DMFT, we show that a
consistent description of both the metallic and the insulating
phases can be obtained.

Furthermore, our low-energy description also provides an
insight into the second question. We show that the phase
diagram of this model as a function of U and �s changes
drastically as the Hund’s coupling J is increased. When
U − 3J is small (��s), a symmetry-breaking transition of the
metal into a spontaneously disproportionated insulating state
takes place. This confirms the importance of Hund’s coupling
for these materials [38] and provides a new low-energy
perspective on its physical relevance.

Our results also clearly establish that the homogeneous
quarter-filled Mott transition scenario is untenable and that
the MIT is a cooperative effect between the electronic
degrees of freedom and the lattice distortion, which plays
an essential role. Our description has direct implications for
experiments probing excitations in both phases, such as optical
spectroscopy, as discussed at the end of the paper.

This article is organized as follows. In Sec. II we introduce
the low-energy model and discuss the electronic structure of
both the high-T orthorhombic and low-T monoclinic phases
of LuNiO3. In Sec. III, we then explore the phase diagram of
this model using DMFT, for both phases, as a function of U

and J and identify the region of interaction parameters which
is appropriate to the description of nickelates. In Sec. IV,
we provide a qualitative understanding of the physics of the
problem, by considering a simplified model in which �s

can be varied continuously, and demonstrate the sensitivity
to site disproportionation when the Hund’s coupling J is
large enough. Finally, in Sec. V we discuss consequences for
experiments such as photoemission, optical spectroscopy, and
magnetic probes such as NMR, focusing on relevant physical
observables.

II. ELECTRONIC STRUCTURE AND LOW-ENERGY

MODEL

A. Electronic structure of LuNiO3

To determine the appropriate low-energy description for
LuNiO3, we first study its electronic structure using density
functional theory in the local density approximation (DFT-
LDA).

The high-temperature (metallic) phase of all rare-earth
nickelates that undergo an insulator-to-metal transition occurs
in the GdFeO3 type orthorhombic structure with the space
group Pbnm. There are four formula units per unit cell,

corresponding to a (
√

2 ×
√

2 × 2) enlargement with respect
to the undistorted cubic structure. The orthorhombic structure
derives from the undistorted structure following octahedral
rotations of a−a−c+ type in Glazer’s notation [41,42]. In
the low-temperature insulating phase, there is a symmetry
breaking of the Ni sites into two sublattices such that the
volume of the NiO6 octahedra in one sublattice increases,
which simultaneously results in the decrease of the volume of
the corner-shared NiO6 octahedra in the other sublattice. The
resulting structure is monoclinic with the space group P 21/n.
The volume of the long-bond (LB) octahedra is 10.69 Å3, and
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FIG. 1. LDA band structures of LuNiO3 in the high-temperature

orthorhombic Pbnm structure (top), and low-temperature monoclinic

P 21/n structure (bottom). The Brillouin zone labels are Z(0,0,0.5),

Ŵ(0,0,0), X(0.5,0,0), M(0.5,0.5,0), and Y (0,0.5,0). A “fat-band”

representation is used to display the Ni-LB site character. Larger dots

denote larger Ni-LB character and smaller dots correspond to larger

Ni-SB character.

that of the short-bond (SB) ones is 9.39 Å3, a difference of
13%. The average Ni-O bond length differs by 4.37%.

The calculated DFT-LDA band structure is displayed in
Fig. 1 for both the high-temperature orthorhombic structure
(top panel) and the low-temperature monoclinic structure
(bottom panel). The corresponding density of states (DOS)
of the eg bands are displayed in Fig. 2. The details of the
calculations are provided in Appendix A. In both structures,
the bands around the Fermi level derive from the eg states,
which are built out of strongly hybridized Ni 3d and O 2p

orbitals, reflecting the strong covalency in this material. The eg

manifold extends from −0.4 to +1.9 eV relative to the Fermi
level, corresponding to an overall bandwidth W> ≃ 2.3 eV,
and is well separated from other bands (such as t2g). There are
eight spin-degenerate bands within this manifold as there are
four Ni per primitive unit cell and two eg orbitals per Ni.

In the orthorhombic structure, the bands in the eg manifold
cross at isolated points within the energy window between
+0.4 and +0.6 eV. Correspondingly, the DOS in Fig. 2 (top
panel) displays a dip in this energy range. The degeneracies
at these crossing points are lifted in the monoclinic structure,
and the eg manifold is split into two distinct submanifolds,
each comprising four bands. The lower partially occupied
submanifold has a bandwidth W< ≃ 1.0 eV, significantly

FIG. 2. (Color online) Orbitally resolved LDA density of states

of the eg bands for the orthorhombic (top) and monoclinic (bottom)

structures.

reduced as compared to W>. The two submanifolds are
separated by a characteristic energy scale �s ≃ 0.25 eV.

The physics underlying the splitting of the eg manifold
into two subsets as one goes from the orthorhombic to the
monoclinic structure is quite easily explained. There is smaller
Ni d–O p covalency in the LB octahedra because of the larger
interatomic distance, which pushes the eg states corresponding
to the LB octahedra to lower energies. The opposite applies to
the SB octahedra. Hence, the lower submanifold has a stronger
Ni-LB character, as well as a smaller bandwidth, while the
upper submanifold has a stronger Ni-SB character and a larger
bandwidth. This is illustrated by the “fat-band” representation
in Fig. 1 used to display the Ni-LB site character. The splitting
between the two submanifolds can be related to the difference
of on-site energies (averaged over the two orbitals) between
the LB and SB nickel sites. We obtain (in eV) ǫ(NiLB1) =
0.44,ǫ(NiLB2) = 0.52 and ǫ(NiSB1) = 0.67,ǫ(NiSB2) = 0.79,
yielding �s = (0.79 + 0.67)/2 − (0.44 + 0.52)/2 = 0.25 eV,
in good agreement with the observed band splitting. Because
�s is a rather small energy scale (in comparison, for example,
with W<), the two bands actually have a rather mixed character
of Ni-LB and Ni-SB, although at degeneracy points the lower
(upper) manifold is entirely LB (SB), as expected. In the limit
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of large �s , however, the lower manifold would be fully LB
and the upper one fully SB, with a smooth connection between
the small and large �s limits.

Correspondingly, the charges (electronic occupancies) of
the two types of nickel sites are different. At the LDA level,
we find 1.16 electrons for the LB sites and 0.84 electrons for
the SB sites. One should be careful, however, in interpreting
these numbers in connection with charge disproportionation
between the two types of sites. We emphasize that these are
the occupancies referring to the strongly hybridized, extended,
low-energy eg states. The occupancies of these states cannot
be interpreted as the valence state of the localized atomic-like
nickel orbitals.

We finally observe that the energy difference between the
x2 − y2 and 3z2 − r2 orbitals on a given site is a smaller energy
scale than �s and, of course, the bandwidth, emphasizing that
the Jahn-Teller effect plays little role.

B. Low-energy Hamiltonian

In order to construct a low-energy Hamiltonian for the
eg states, we need a set of site-centered localized wave
functions describing these states. To this aim, we have built
maximally localized Wannier functions using the procedure of
Refs. [43–45]. We used an energy window of [−0.4, + 2.0]
eV that encloses the eight bands of the eg manifold and obtain
two Wannier orbitals per each Ni site corresponding to the two
eg-like orbitals [66].

We consider the following low-energy Hamiltonian, which
contains a kinetic energy (band-structure) term Hb and an
interaction term Hint:

H = Hb +
∑

i

Hint(i). (1)

The kinetic energy term reads

Hb =
∑

kσν

εν(k)e
†
kσνekσν . (2)

In this expression, εν(k) is the band dispersion calculated above
for either the orthorhombic or the monoclinic structure. The
eight different bands are labeled by the index ν, and the sum
over pseudomomenta k runs over the Brillouin zone of each

structure. The operator e
†
kσν creates an electron in one of the

eg bands with spin σ .
In Eq. (1), the index i refers to sites of the crystal lattice

(with 4 sites per unit cell and two types of inequivalent sites
in the monoclinic structure corresponding to the LB and SB
octahedra). On each site, we make the simplest possible choice
for Hint, namely a Kanamori Hamiltonian, appropriate to two
orbitals per site with local interactions only:

Hint = U
∑

m

n̂m↑n̂m↓ + (U − 2J )
∑

m�=m′

n̂m↑n̂m′↓

+ (U − 3J )
∑

m<m′,σ

n̂mσ n̂m′σ + J
∑

m�=m′

e+
m↑e+

m↓em′↓em′↑

− J
∑

m�=m′

e+
m↑em↓e+

m′↓em′↑. (3)

Here, the orbitals (labeled by m) refer to the site-centered
Wannier functions constructed above. In our calculations we
omit the spin-flip and pair-hopping terms for computational
efficiency. Although they are important for multiplet degenera-
cies and magnetic properties, the shift of the phase boundaries
caused by omitting them is relatively small [46]. Therefore,
we expect that such an approximation does not affect the
qualitative conclusions of this article.

III. PHASE TRANSITIONS AND CROSSOVERS

A. Basic strategy

Here we investigate the phase diagram of the above low-
energy model, as a function of U and J , for the two band
structures corresponding to the orthorhombic and monoclinic
phases. Because U and J are effective low-energy coupling
constants, their actual values are not known a priori. Our
basic strategy is to find out whether a range of coupling exists
in which the orthorhombic structure is metallic while the
monoclinic structure is insulating. This range should not be
too narrow so that the effective low-energy description does
not rely on excessive fine-tuning of the coupling constants.
Furthermore, it should correspond to a range of couplings
which is physically reasonable.

In this article, we shall not address the issue of estimating
the low-energy values of U and J from first-principles
methods. Progress has been made recently in the determination
of screened Coulomb interaction parameters using methods
such as constrained RPA [47] and combinations of GW and
DMFT [48]. Further work is needed however to assess the
reliability of these methods in constructing low-energy models
of late transition metal oxides, i.e., for projecting out the ligand
states despite their strong hybridization. This is of particular
concern here, since ligand holes and negative charge-transfer
physics are likely to play an important role. Furthermore, no
application of these methods to nickelates has yet appeared in
the literature, to our knowledge.

Finally, we emphasize that we shall limit ourselves to the
nonmagnetic phases since our focus is on the metal to para-
magnetic insulator transition of nickelates with heavier rare
earths. The interplay with magnetism and the simultaneous
insulating and magnetic transition of Pr and Nd compounds is
left for future investigations.

B. Phase diagram

In Fig. 3, we display the phase diagram of the low-energy
model for the orthorhombic (top) and monoclinic (bottom)
structures as a function of U and J . These results were obtained
using DFT+DMFT applied to the model given by Eqs. (1)–(3)
with the band structure described in Sec. II A. The details of
the calculations are provided in Appendix A.

Both phase diagrams display two insulating phases sep-
arated by a metallic phase. In order to facilitate the under-
standing of the different regimes, it is useful to consider the
physically important crossover line displayed as a black dashed
straight line on the figure. This line is defined by comparing the
energies, in the atomic limit, of the configuration in which two
neighboring nickel sites are each occupied by a single electron
(e1

ge
1
g) versus the one in which full disproportionation takes
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FIG. 3. (Color online) Phase diagram of the low-energy model

for LuNiO3 as a function of Hund’s rule coupling J and on-site

repulsion U . Top: Orthorhombic phase. Bottom: Monoclinic phase.

Straight lines separating various regions are designated according to

estimates presented in the text. The green dashed curved line in the

top panel shows the locus of the maxima of the quasiparticle weight

Z as a function of J as extracted from Fig. 4. The thin gray dashed

line across the bottom panel represents a line U − 3J = 0 and is the

same as the line U − 3J − �s = 0 for the orthorhombic structure in

the top panel (for which �s = 0). The boundaries of the BDI phase

are plotted according to Eq. (B9) with parameters W and W ′ fitted in

order for the boundary to encompass the points obtained as insulating

in DMFT calculations.

place (e2
ge

0
g , with the two electrons residing on the LB-nickel

site). The energy of the former configuration is zero, while the
one of the latter is U − 3J − �s . This yields the following
atomic-limit estimate:

U − 3J = �s, (4)

corresponding to the black dashed line displayed on both
panels of Fig. 3. For the upper panel, corresponding to
the orthorhombic structure in which all sites are equivalent
and �s = 0, this reduces to U − 3J = 0. Below this line
the smaller entry of the coupling constant matrix (i.e.,
U − 3J ) becomes negative, corresponding to the low-energy
description of a small or negative charge-transfer gap. For the

monoclinic phase of LuNiO3 (bottom panel), we have used our
LDA estimate �s ≃ 0.25 eV in drawing the crossover line.

The region of the phase diagram well above this crossover
line is quite conventional. As U is increased, a Mott transition
is encountered. For the orthorhombic structure, this is simply
the Mott transition of a quarter-filled two-orbital system
corresponding to the homogeneous filling of one electron per

site. At J = 0, we find this transition to occur at U
(1/4)
c0 ≃ 4 eV,

about twice the bandwidth W>. A nonzero value of the
Hund’s coupling increases this critical value, in agreement
with established knowledge [49–52], roughly according to

Uc = U
(1/4)
c0 + 3J (indicated as a straight blue line on the

figure). For the monoclinic structure, the location of the Mott
critical boundary is not very significantly affected. This is
expected (see Sec. IV) in view of the rather small value of
�s : in the regime U − 3J ≫ �s , the difference in the on-site
energy due to the bond-length disproportionation is a small
effect and the kinetic energy is still set by the full bandwidth
W>. In particular, for a typical physical value of J ≃ 0.8 eV
likely to be appropriate for nickelates, we observe that the
Mott transitions of the two structures occur at values of U ’s
which are quite close to each other. As a result, explaining that
the orthorhombic structure is metallic while the monoclinic
one is insulating would require fine-tuning of the interaction
parameters. Furthermore, in this regime the large U suppresses
the charge disproportionation that is already present at the
DFT level, yielding a Mott-insulating state that is qualitatively
like the Mott-insulating solution for the orthorhombic phase.
Hence, we conclude that the regime U − 3J ≫ �s (above
the dashed black crossover line) is not the relevant one for a
proper low-energy description of nickelates. This theoretical
consideration provides clear support to the fact that the
metal-insulator transition of nickelates cannot be viewed as
the homogeneous Mott transition of a quarter-filled band, as
mentioned in the introduction.

Let us now turn our attention to the regime U − 3J � �s

on the lower side of the crossover line. There we see that,
for large enough J , an insulating phase is obtained, which
is characterized by a significant disproportionation of the
eg occupancy between two neighboring nickel sites. For
this reason, this phase is labeled “bond disproportionated
insulator” (BDI) on the phase diagram of Fig. 3 (one may
also refer to it as a “site-selective Mott insulator” as in [33], or
as a “hybridization-wave insulator”).

For the monoclinic structure, where the symmetry between
the two nickel sublattices is explicitly broken, this BDI phase
has a much larger extension. It basically covers the whole
triangular-shaped area contained between an upper boundary,
which happens to be very close to the crossover line U − 3J =
�s , and a lower boundary defined by the straight line U + J ≃
W< (negative-slope dashed magenta line in Fig. 3). The
latter expression is again easily rationalized by considering
the atomic limit, this time for a half-filled two-orbital shell
occupied by two electrons [49]. Indeed, in this case, the
effective atomic gap is Ueff = U + J [67], and the relevant
bandwidth is W< corresponding to the lower band manifold.

For the orthorhombic structure, the incipient BDI phase
corresponds to a spontaneous breaking of the symmetry, in
which two inequivalent nickel sublattices occur (see Fig. 10
below). In this phase a hybridization wave (or a modulation
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of covalency) develops on Ni-O bonds, which in reality would
immediately lead to a corresponding modulation of bond
lengths. It is interesting indeed that a homogeneous solution
with all equivalent nickel sites becomes unstable when U − 3J

is too negative (and U + J exceeds a critical value). This points
to the extreme sensitivity of the system to disproportionation in
the “small or negative charge-transfer” regime. It also implies
that lattice degrees of freedom are coupled to the electrons in
an essential way in this regime.

An important observation, comparing the top and bottom
panels of Fig. 3, is that the area covered by the BDI phase
in the orthorhombic case is significantly smaller than in the
monoclinic case. Although �s is small, it shifts the BDI
boundary to the left by an appreciable amount. Hence, there is
a rather extended region of coupling constants (U,J ) in which
the orthorhombic structure is metallic, while the monoclinic
one is an insulator (BDI). We propose that this is the physical
region appropriate for a low-energy description of nickelates.
This does not require fine-tuning of the low-energy coupling
constants. In Sec. V, we will describe in more detail the
behavior of several physical quantities obtained for the values
J = 0.8 eV and U = 1.0 or U = 2.0 eV, which lie within
this region. These values were chosen for illustrative purposes
and correspond to a rather standard value of J for nickelates,
leaving a more accurate determination of the appropriate
low-energy parameters for future investigations.

Finally, we briefly discuss the metallic phase separating
the two insulating regions (Fig. 3, top panel). In Fig. 4,
we display the quasiparticle weight Z [68] throughout this
metallic phase, as a function of J , for several values of U .
Correspondingly, an intensity map of Z as a function of U and
J is displayed in Fig. 3 using different levels of gray shading.
The quasiparticle weight Z decreases as both the Mott phase
and the BDI phase are approached (Fig. 3). As a result, it
displays a nonmonotonic behavior as a function of the Hund’s
rule coupling J (Fig. 4). Well to the left of the crossover line
U − 3J = 0, Z increases as J is increased. This is indeed the
expected behavior for a quarter-filled correlated metal [49].

FIG. 4. (Color online) Quasiparticle weight Z (averaged over

sites and orbitals) as a function of J for different values of U in

the orthorhombic structure. Dashed line runs through the maxima of

Z(J ). The locus of the maxima is also indicated as a green dashed

line in the top panel of Fig. 3.

In contrast, as the disproportionation line U − 3J = 0 is
approached, Z passes through a maximum and then decreases
as J is increased, in line with the behavior of a half-filled
correlated metal [49]. The location where Z is maximum in
the (U,J ) plane is indicated as a dashed curve on Fig. 3,
which happens to lie well to the left of the disproportionation
crossover line. This behavior also implies, interestingly, that
at larger J the magnitude of Z increases as U is increased.
We note in passing that the parameter set U = 2,J = 0.8 eV
for which more detailed calculations will be presented later
in this article corresponds to a quasiparticle weight (inverse
mass enhancement) Z ≃ 0.35 (Fig. 4), a reasonable value for
metallic nickelates [53,54].

In the larger-J regime, the BDI phase is surrounded by a
metallic phase both on the small-U side and larger-U side.
Hence, as U is increased from weak coupling in this regime,
one encounters successively a metallic phase at small U , the
BDI insulator, a metallic phase again, and finally the Mott-
insulating phase at large U . The physical nature of the metallic
phase in the “small or negative charge-transfer regime” U −
3J � 0 definitely deserves further investigation, using, e.g.,
DMFT techniques. This is relevant, in particular, for a proper
low-energy description of metallic LaNiO3.

IV. DISCUSSION AND QUALITATIVE INSIGHTS

The above analysis of the two structures of LuNiO3 reveal
that even though �s is a small energy scale, it has a large
effect on the phase diagram: the system is extremely sensitive
to disproportionation in the regime when U − 3J � 0.

To better understand the origin of this sensitivity, we
consider a simple model that captures the main features of
the real system. The model involves two sublattices with
on-site energies split by �s . Each site carries two orbitals,
and the Hamiltonian reads

H = −t

2
∑

m=1

∑

σ=↑,↓

∑

〈ij〉

(d
†
mσidmσj + H.c.) + Hint

−
�s

2

∑

mσ,i∈A

d
†
mσidmσi +

�s

2

∑

mσ,j∈B

d
†
mσjdmσj , (5)

where the interaction Hamiltonian is the same as before as
given by Eq. (3). The difference in on-site energies induced
by bond disproportionation in nickelates is described here by
an explicitly introduced parameter �s . This allows us to study
how physical properties change as �s is varied. In reference to
nickelates, we will refer to sites A and B as LB and SB sites,
respectively. We denote by W the noninteracting bandwidth
when �s = 0 (W = 4t for a semicircular density of states).

Before proceeding to the results of DMFT calculations, let
us perform a qualitative analysis of this model. Consider first
the case of J = 0. A cartoon of the phase diagram is sketched
in the top left panel of Fig. 5, with the phase boundaries being
derived from qualitative estimates presented in more details
in Appendix B. In the limit of large �s (�U ) the model can
be viewed as a half-filled lattice of doubly occupied LB sites
connected via indirect hopping teff mediated by empty SB sites.
A key insight is that this effective hopping depends on the value
of U . A simple estimate from second-order perturbation theory

075128-6



LOW-ENERGY DESCRIPTION OF THE METAL-INSULATOR . . . PHYSICAL REVIEW B 91, 075128 (2015)

FIG. 5. (Color online) Phase diagram of the two-orbital two-sublattice model. Top: Schematic phase diagrams based on qualitative

considerations (see Appendix B) for J < Jc (left) and J > Jc (right). Bottom: Actual phase diagrams obtained from DMFT calculations

on a Bethe lattice, for J = 0.0 (left) and J = 0.9 eV (right). The dashed red line corresponds to U − 3J − �s = 0. The phase boundaries are

indicative, with actual data being represented by the markers.

around the atomic limit (Appendix B) yields

teff ∼
t2

�s − U
. (6)

Increasing the Coulomb repulsion U thus has two antagonistic
effects. On the one hand, it induces a Mott transition in this
half-filled system. On the other hand, it decreases the energy
separation between the LB and SB sites, thus enhancing
teff and driving the system towards a metallic state. Such
an ambivalent effect of U results in a reentrant behavior
of the metal-BDI-metal transition apparent in Fig. 5: the
metal to BDI critical boundary has two branches, a lower
one (metal → BDI) with critical Uc = U<

c and an upper one
(BDI → metal) with critical Uc = U>

c . A simple estimate
for these critical values can be obtained by writing that
the critical boundary corresponds to U of the order of the
effective bandwidth: Uc ≃ W 2/(�s − Uc). Hence, the upper
branch of the critical boundary, for which �s − Uc is small,
is given by U>

c ≃ �s − W 2/�s , while the lower branch for
which �s ≫ Uc is given by U<

c ≃ W 2/�s . For more detailed
expressions, see Appendix B. An important point is that there

is a critical value �c
s of the site disproportionation energy for

which U<
c = U>

c , corresponding to the tip of the lobe of the
BDI region on the upper left panel of Fig. 5. Equating the
two expressions above, we see that �c

s is proportional to the
bandwidth W (when J = 0). For �s < �c

s , no transition to
the BDI phase occurs and the system remains metallic (until
eventually the Mott phase is reached).

The regime U � �s has an entirely different physics,
dominated by the Mott transition of a quarter-filled band. The
ground-state is now characterized by both LB and SB sites
filled by one electron, with the hopping parameter being simply
the bare hopping t . The lowest-energy excitation is determined
by the energy of moving an electron from a SB to a LB, which
results in the effective interaction energy Ueff = U − �s

(while the energy cost of moving an electron from a LB to a SB
site is U + �s). The critical value of Ueff is then determined
by the bandwidth W , which leads to Uc ≃ �s + W (boundary
of the Mott phase in the top left panel of Fig. 5).

Let us now consider a finite Hund’s coupling J > 0 which,
as we shall see, has a major effect on the phase diagram (Fig. 5,
top right panel). The crossover line between the quarter-filled
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and half-filled regimes (which is also the upper asymptotic
boundary of the BDI phase at large �s) now reads U − 3J −
�s = 0, as discussed in the previous section. Correspondingly,
the Mott critical boundary in the quarter-filled region U −
3J > �s is simply shifted according to Uc − 3J − �s ≃ W .
More drastic changes occur in the half-filled regime U − 3J �
�s . Indeed the effective Coulomb energy in this regime is
U + J , so that the metal to BDI phase boundary is now given
by the criterion U + J ∼ W 2/[�s − (U − 3J )] = W 2/[�s +
4J − (U + J )]. This is the same expression as the one for J =
0, but with crucial renormalizations of the parameters: U →
U + J,�s → �s + 4J . Hence, the Hund’s rule coupling
effectively increases the site disproportionation energy by 4J .

Critical disproportionation is dramatically reduced down to
�c

s ≃ W − 4J , as compared to the J = 0 case. As a result,
there is a critical value of the Hund’s coupling, Jc ≃ W/4,
such that for J > Jc the BDI instability takes place already
at �s = 0, which means that in this regime the small or
negative charge-transfer metal is spontaneously unstable to
site disproportionation.

Let us now turn to numerical simulations of Hamilto-
nian (5). We performed calculations within DMFT using for
simplicity a Bethe lattice (i.e., a semicircular density of states
of width W = 4t when �s = 0). In this case, the DMFT
self-consistency relation reads, for each sublattice,

G−1
0A = iωn + µ +

�s

2
− t2GB, (7)

G−1
0B = iωn + µ −

�s

2
− t2GA, (8)

where G0i (i = A,B) are the Green’s function of the self-
consistent bath for each site, and Gi the corresponding local
(impurity) Green’s function. The latter are obtained from G0i

using the CT-QMC solver. The hopping parameter t = 0.6 eV
is chosen to give the bandwidth value W = 2.4 eV, very close
to that of nickelates. The temperature is set to T = t/24 =
1/40 eV−1.

The resulting phase diagrams for J = 0 and J = 0.9 eV
(a value relevant for the nickelates) are presented in the
bottom left and right panels of Fig. 5, respectively. Apart
from some details, the numerical results agree very well
with the qualitative analysis performed above, especially
regarding the following features: (i) the quarter-filled (Mott)
and half-filled (BDI) regimes are separated by the crossover
line U − 3J − �s = 0; (ii) there is a critical value �c

s of
the on-site disproportionation energy below which the system
undergoes only a single, Mott-like, transition and above which
there are generally three transitions as a function of U ; (iii)
the value of �c

s is very sensitive to the Hund’s coupling J . At
some critical value of the Hund’s coupling Jc (corresponding
to �c

s = 0), the phase diagram becomes qualitatively different
from that of the J = 0 case. In particular, the metallic phase at
U < U>

c becomes unstable with respect to the BDI phase for
all values of �s . Only when sufficiently large U suppresses
the site disproportionation is the metallic phase stable, before
eventually turning into the Mott phase as U is increased further.

In relation to the nickelates, the model calculations reveal
that the mechanism underlying the large sensitivity to �s

observed in Fig. 3 is, in fact, tightly related to the effect of

the Hund’s coupling on changing the position of the BDI
phase boundary. We suggest that the nickelates are poised
close to the value J ≃ Jc. In this regime, the system is
highly sensitive to disproportionation, even for small �s . The
estimate Jc ≃ W/4 makes this a qualitatively reasonable range
of parameters. This ties together two observations previously
made in the literature: the relevance of the small or negative
charge-transfer regime [29] and the importance of the Hund’s
rule coupling [38].

V. EXPERIMENTAL IMPLICATIONS: SPECTROSCOPY,

LOCAL MAGNETIC PROBES

In this section, we discuss some physical implications of
our low-energy description in connection with experiments.
We do not aim at being quantitative in the present article.
Indeed, the appropriate values of the low-energy parameters
U and J will have to be determined ultimately by quantitative
comparison to experimental data, which we leave for future
work. Rather, we focus here on the main qualitative points.

A. Spectroscopy: Photoemission, optics

1. Single-particle spectral functions

We display in Fig. 6 and Fig. 7 the momentum-integrated
spectral function (total density of states) of the metallic
state (orthorhombic structure) and of the insulating state
(monoclinic structure) for two sets of interaction parameters:
U = 1,J = 0.8 eV and U = 2,J = 0.8 eV. These results were
obtained by analytically continuing the DMFT Monte Carlo
data to the real-frequency axis (for details, see Appendix A).
These two sets of interaction parameters are illustrative of two
different regimes for the insulating state. The first one is close
to the lower side of the BDI lobe in Fig. 3 (bottom panel),
so that the gap is controlled by the proximity to the lower
critical boundary U + J ≃ W<. The second one is close to
the upper critical boundary and the bond-disproportionation
crossover line U − 3J = �s , so that the gap is controlled by
the proximity to this line.

Let us first turn our attention to the spectra of the metallic
phase (Fig. 6 and Fig. 7, top panels). They display a peak
centered around the Fermi level, corresponding to quasiparticle
excitations. This quasiparticle DOS is narrowed down by
correlation effects in comparison to the LDA DOS (Fig. 2,
top panel), the narrowing being less pronounced for U =
1,J = 0.8 eV than for U = 2,J = 0.8 eV, in line with the
smaller value of the quasiparticle weight Z for the latter
(Z ≃ 0.55 and ≃0.35, respectively). Side peaks within the
lowest (dominantly LB) band, spanning the energy window
∼[−0.5, + 0.5] eV are also apparent. The most prominent
spectral feature aside from the central quasiparticle peak is the
large peak on the positive energy side, at about ∼1.2–1.3 eV.
This peak is separated from the QP peak by a pronounced dip at
∼+0.5 eV. The energy of this spectral feature does not depend
very much on the value of U . Indeed, in Fig. 8, we display
for completeness the spectra for U = 3.5,J = 1.2 eV and we
see that this high-energy peak is still well below 2.0 eV in the
metallic phase. Note that this large value of the effective U is
likely to be too large to describe nickelates properly. The dip at
∼+0.5 eV and prominent peak above this energy scale are al-
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FIG. 6. (Color online) Momentum-integrated spectral functions

(local DOS), as obtained from DMFT (using MaxEnt for analytical

continuation) for U = 1.0,J = 0.8 eV. Top: Metallic orthorhombic

structure. Bottom: Insulating monoclinic structure (LB: long-bond

sites, SB: short-bond sites). Arrows indicate the energies of the main

optical transitions (see text).

ready apparent in the LDA DOS of Fig. 2. The dip corresponds
to the crossing points between the two band manifolds which
are subsequently split off by the bond disproportionation, and
the high-energy peak corresponds to the empty states which
form the upper manifold. We observe that the LDA DOS
displays another dip at ∼1.1 eV corresponding to another set of
crossing points in the LDA band structure. It may be that such
a dip should also be present in the presence of correlations, but
that the analytical continuation procedure smears out spectral
features and is thus insufficient to reveal it.

We now turn to the spectra in the bond-disproportionated
insulating state, displayed for each type of site (LB and SB)
in Fig. 6 and Fig. 7 (bottom panels; see also Fig. 8). Below
the insulating gap, the spectra display a lower Hubbard band
(LHB) corresponding to the removal of a single electron.
In the extreme limit of e2

ge
0
g occupancy, this LHB would be

entirely of LB nature, and no LHB would be visible for SB
sites. Because the eg charge imbalance is not complete, both
sites display a LHB, but its spectral intensity is indeed larger
for LB sites, as expected.

FIG. 7. (Color online) Same as Fig. 6, for U = 2.0,J = 0.8 eV.

The positive energy states, corresponding to the electron
addition spectrum, displays a richer structure. Both the SB and
LB spectra reveal two marked spectral features on the positive
energy side. Let us designate these two positive-energy spectral
peaks for LB sites by LB< and LB>, in increasing order
of energies (similarly, SB<, SB>). By comparing Figs. 6, 7,
and 10, we observe that the position of the peaks LB< and SB<

are always similar. In contrast, the energy of LB> and SB> are
different in general. The energy of SB> is around ∼1.3 eV, with
little dependence on U . At the same time, the energy of LB>

clearly increases with U . Coincidentally, the energies of LB>

and SB> are approximately equal for the parameter set U =
1,J = 0.8 eV, but this does not hold true for the other cases.

2. Interpretation of the spectral features

A simple analysis in the atomic limit allows us to understand
the nature of these spectral features, starting from the extreme
limit in which the ground state is e2

ge
0
g . Removing an electron

on a LB site corresponds to a transition energy between the
final and initial states,

�ELHB = −
�s

2
− µ − [−�s − 2µ + U − 3J ]

= µ +
�s

2
− (U − 3J ), (9)
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FIG. 8. (Color online) Same as Fig. 6, for U = 3.5, J = 1.2 eV.

which sets the position of the lower Hubbard band with respect
to the Fermi level µ. Similarly, adding an electron on a LB site
(upper Hubbard band for LB sites) corresponds to

�ELB
UHB = −3

�s

2
− 3µ + U + (U − 2J ) + (U − 3J )

− [−�s − 2µ + U − 3J ]

= −µ −
�s

2
+ 2U − 2J, (10)

and adding an electron to an SB site yields

�ESB
UHB =

�s

2
− µ.

Hence, the energy separation between the LHB and the upper
Hubbard band (electron addition peak) corresponding to a LB
site reads, in the atomic limit,

�ELHB + �ELB
UHB = U + J, (11)

while for a SB site,

�ELHB + �ESB
UHB = �s − (U − 3J ). (12)

Not surprisingly, we recover the two key energy scales
discussed above: U + J corresponds to the effective U for
a half-filled orbital and controls (when compared to W<) the

lower critical boundary of the BDI state, while �s − (U − 3J )
is the energy scale controlling bond disproportionation which
sets the disproportionation crossover line as well as the upper
critical boundary of the BDI state.

These considerations allow us to unambiguously identify
the highest of the two LB spectral features, LB>, as the
corresponding upper Hubbard band. Indeed its separation from
the LHB is quite well approximated by ∼U + J (yielding 1.8,
2.8, and 4.7 eV for Fig. 6, Fig. 7, and Fig. 8, respectively).
This separation is indicated by the longest plain gray arrow
in these figures. The above estimate �s − (U − 3J ) for the
UHB of SB sites is also in reasonable agreement with the
electron addition peak of highest intensity on SB sites, with
an estimated value 1.65, 0.65, and 0.35 eV for Fig. 6, Fig. 7,
and Fig. 8, respectively (also depicted as a plain gray arrow
in these figures). We observe that this highest-intensity peak
corresponds to the SB> feature for the U = 1,J = 0.8 eV
case (Fig. 6), but to the SB< feature for the two other cases.
The existence of a second peak (besides the UHB) in the SB
spectra, separated by a dip from the other SB spectral peak
is, in our opinion, due to the structure of the DOS of the SB
upper band manifold already visible at the LDA level. Indeed,
we observe that the separation between the two SB spectral
features is always of order ∼1.0 eV, which is of a magnitude
similar to the separation of the two peaks of the upper manifold
in the LDA DOS.

The fact that U + J = 1.8 eV and �s − (U − 3J ) ≃
1.65 eV are approximately equal for U = 1.0,J = 0.8 eV
explains that the LB> and SB> (UHB) features are, coinciden-
tally, located at approximately equal energies in this specific
case. The condition for such a coincidental overlap of the
two LB- and SB-UHB is, in the atomic limit from Eqs. (11)
and (12), U = J + �s/2. For U > J + �s/2, the LB-UHB
lies above the SB-UHB, while the opposite holds true when
U < J + �s/2.

3. Consequences for optical spectroscopy

These considerations have direct consequences for optical
spectroscopy, which can be anticipated by comparing the top
and bottom panels of Fig. 6 and Fig. 7 in order to understand
how the optical spectra of nickelates change through the
MIT. We only provide a qualitative discussion here, leaving
a detailed calculation of optical spectra and comparison to
experiments for future work.

Optical spectroscopy involves particle-hole transitions,
hence energy differences between the main spectral features
of the one-particle spectral function displayed in these figures.
Of course, these transitions are weighted by matrix elements
of the current, which require a detailed calculation of the band
velocities (transport function). The current is an intersite pro-
cess, which will dominantly couple LB to SB sites, so that we
should direct our attention to the energy differences between
LB and SB spectral features in the one-particle spectra.

In the metallic phase, we expect the optical conductivity
to consist of two main spectral features: a Drude peak at low
energy (with reduced weight ∼Z) involving near Fermi level
transitions, and an additional feature at ∼1.2 eV (indicated by
the plain arrow on the top panels of the figures, and rather

075128-10



LOW-ENERGY DESCRIPTION OF THE METAL-INSULATOR . . . PHYSICAL REVIEW B 91, 075128 (2015)

independent of U,J ), corresponding to the optical transitions
between the states near Fermi level and the states forming the
upper band submanifold, as discussed above.

In the insulating state, we expect generically three spectral
features above the absorption edge set by the gap. The lowest-
energy one corresponds to transitions from the LHB to the
LB</SB< lowest spectral feature (indicated by the shortest
arrow in the bottom panel of the figures). The highest-energy
one corresponds to transitions from the LHB to the highest
of the two high-energy spectral features (i.e., for U > J +
�s/2, the LB-UHB, LB> excitation), indicated by the longest
arrow in the figures. An intermediate energy optical feature
corresponds to the transition between the LHB and the lowest
of the two high-energy spectral features (dashed arrow on the
figures). As discussed above, the intermediate and high-energy
optical transition merge when U ∼ J + �s/2 (as in Fig. 6),
leaving only two peaks above the absorption edge.

Hence, the distinctive signature of the MIT is expected to
be the splitting of the ∼1.2 eV peak in the metallic phase into
two (or three) peaks, one of lower and one of higher energy
(Figs. 6 and 7). Indeed, such a splitting has been observed in
recent optical spectroscopy experiments [55]. We propose that
our low-energy theory provides a theoretical interpretation of
this experimental discovery, and hope to support this claim by
explicit calculations of optical spectra in future work.

B. Local magnetic moments, NMR, and relation to charge

disproportionation

We now discuss the consequences of the bond dispropor-
tionation for the local magnetic properties of the SB and LB
sites in the paramagnetic insulating phase (BDI). As pointed
out in Refs. [29,33,36,38], in the extreme d8L2/d8 picture, one
expects the SB octahedra to carry no magnetic moment and the
LB ones to carry a full S = 1 moment. Indeed, in this picture
the spin-1 moment (corresponding to two eg electrons with
parallel spins in different orbitals in the Ni d8 configuration)
on SB octahedra is screened by the two ligand holes, while
no such screening takes place on the LB sites. The analogy to
a mixed Kondo-insulator (SB sites)/Mott insulator (LB sites)
state was emphasized in Ref. [33].

Reproducing such a behavior is a challenge to any low-
energy description that does not include explicitly the oxygen
states. Here, we show that our low-energy two-orbital model
does achieve this goal in the regime U − 3J < �s .

To support this claim, we have calculated the local spin-spin
correlation on both the LB and SB sites. In Fig. 9 (top panel),
we display this correlation function χloc(τ ) = 〈Sz(0)Sz(τ )〉
as a function of imaginary time in the BDI phase at a
temperature T = 1/80 eV ≃ 150 K. In the bottom panel of
the same figure, we display the zero-frequency value of the
local susceptibility χloc(ω = 0,T ) as a function of temperature.
These data clearly signal the presence of a fluctuating local
moment on LB sites: χloc(τ ) does not decay at large τ

(∼β/2), and χloc(ω = 0,T ) follows a Curie law ∼1/T . The
corresponding value of the local moment obtained from a fit
to χ = µ2

BSeff(Seff + 1)/3T is Seff = 1.86 µB . In contrast,
on SB sites χloc(τ ) and χloc(ω = 0,T ) have a very small
temperature-independent value, signaling the absence of a
local moment.

FIG. 9. (Color online) Local spin-spin correlations of Ni-LB and

Ni-SB sites in the insulating monoclinic structure, for U = 1,J =
0.8 eV. Top: Local correlation function χloc(τ ) = 〈Sz(0)Sz(τ )〉 as a

function of imaginary time, at a temperature T = 1/80 eV ≃ 150 K.

Bottom: Static zero-frequency value χloc(ω = 0) as a function of

temperature.

Obviously, the detection of a clear separation between
moment-carrying LB octahedra and nonmagnetic (or at least
reduced moment) SB octahedra would be a smoking gun for
the physical picture proposed in earlier works and for the
low-energy description introduced here. Further studies of the
insulating phase of nickelates in the range TN < T < TMIT

using local magnetic probes such as NMR or muon diffraction,
or inelastic neutron scattering, is therefore highly desirable.

Finally, we show the evolution of the LB and SB site
occupancies as a function of J in Fig. 10. The eg charge
disproportionation is clearly enhanced as one approaches the
BDI phase. In contrast, it is suppressed as one moves towards
the Mott phase, as indicated by a smaller difference of the
site occupancies for the larger value of U . It is important
to note that the eg occupancies should not be interpreted
as indicative of the valence of nickel atoms because the eg

orbitals are antibonding linear combinations of the Ni d and O
p orbitals. As the eg states have substantial O p character, the
disproportionation of the eg occupancy could primarily be the
result of a change in occupation of the O p states (ligand holes).
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FIG. 10. (Color online) Occupancies of LB and SB sites as a

function of J for U = 1.0 and 2.0 eV. Also shown are the occupancies

(triangles) of the two types of Ni sites in the orthorhombic structure

experiencing a spontaneous symmetry breaking at J ∼ 1.0 eV.

Some disproportionation of the atomic Ni charge cannot be
ruled out within our low-energy model, however.

Furthermore, the charge of an ion in a solid compound
with strongly covalent bonds is not a well-defined quantity.
This implies that x-ray or neutron scattering experiments do
not distinguish whether the disproportionation takes place
within the atomic-like Ni d7 orbitals, d8L states in the small
or negative charge transfer regime, or the antibonding eg

states. Probes such as polarized soft x-ray absorption (XAS)
or resonant inelastic x-ray scattering (RIXS) spectroscopy
are actually sensitive to the occupancy and symmetry of the
antibonding valence eg states, since in those spectroscopies an
electron is transferred from a core state into such an empty
eg state. Therefore, we believe that available experimental
results [27,56] usually interpreted as “charge” disproportion-
ation or “charge” ordering are actually consistent with a
disproportionation of the eg occupancies.

In our low-energy description of the nickelates, the bond
disproportionation plays an essential role in the electronic
properties. This strong coupling between the lattice and elec-
tronic properties should also manifest in the phonon properties.
In particular, the zone-center Raman mode corresponding
to the expansion and compression, respectively, of alternate
sets of corner-shared NiO6 octahedra of the orthorhombic
phase should show a large and increasing linewidth as the
temperature is lowered down to TMIT. In addition, this phonon
mode should soften and show an unstable behavior upon
reaching TMIT.

VI. CONCLUSION AND PERSPECTIVES

We have used combined DFT+DMFT calculations to
construct and study in detail a low-energy model for
the rare-earth nickelates that describes the metal-insulator
and orthorhombic-monoclinic structural transitions observed
in these materials. The DFT calculations show that the
eg manifold is well separated and quarter filled in the

high-temperature orthorhombic phase. The major effect of the
bond disproportionation in the low-temperature monoclinic
phase is to split the eg manifold into two submanifolds. This
reduces the average degeneracy and the effective bandwidth.
We capture these features of the electronic structure by
constructing a simple model with only two eg orbitals per Ni
site and a parameter �s that describes the difference in energy
between the eg states at the two bond-disproportionated Ni
sub-lattices. Although we explicitly construct this model for
LuNiO3, our model is generic and applicable to other members
of the rare-earth nickelates family.

We solve this model using DMFT calculations for a wide
range of values of the on-site Coulomb repulsion U and Hund’s
rule coupling J for the physically relevant small values of �s ,
as well as for larger values. We find that the physics of nick-
elates can be consistently accounted for in the regime where
U − 3J � �s is small or negative, without a fine-tuning of the
interaction parameters. In particular, a bond-disproportionated
paramagnetic insulating state is stabilized for a wide range of
interaction parameters in this regime. Furthermore, we find
that in this regime and for large enough (but realistic) values
of J > Jc, the metallic state is spontaneously unstable to
disproportionation. This rationalizes the large sensitivity to
bond-length disproportionation observed in these materials.

Our minimal theory demonstrates that the MIT of nickelates
cannot be viewed as the Mott transition of a homogeneously
quarter-filled band. Furthermore, it emphasizes that a small or
negative charge transfer energy, a sizable Hund’s coupling, and
a strong coupling to lattice effects through bond-length dispro-
portionation are essential to the physics, hence confirming and
unifying the proposals of previous authors [29,33,36,38].

The main advantages of the minimal low-energy de-
scription proposed here is its universality: it can easily be
applied to other nickelates and other materials with similar
physics. Quantitative calculations using DMFT for this low-
energy model are considerably simpler than a full-fledged
DFT+DMFT treatment involving both transition-metal and
ligand states, and are free of the ambiguities associated with
double counting. The one-particle part of the low-energy
Hamiltonian can be easily adapted to the specific material
of interest using standard electronic structure and Wannier
function techniques. Furthermore, as demonstrated in this
article, the main aspects of the phase diagram and underlying
physics of this low-energy model can be rationalized and
explained using simple qualitative arguments.

In contrast, the coupling constants U and J entering our
theory are low-energy parameters that we did not attempt to
derive from first principles. We would like to propose this as an
important physical test of first-principle methods aiming at the
determination of such low-energy parameters. Whether these
methods can access the regime of small or negative charge
transfer and whether they will support the view that nickelates
(and other materials with similar physics) belong to this regime
is an outstanding challenge.

Finally, we have outlined some experimental implications
of the low-energy effective theory proposed in this paper. Some
of these appear to be consistent with very recent experimental
findings from optical spectroscopy [55]. More theoretical and
experimental work is obviously needed however to put our
low-energy description to the test.
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APPENDIX A: METHODS AND TECHNICAL

INFORMATION ON THE CALCULATIONS

1. Electronic structure calculations

The electronic structure calculations presented in this
article were obtained within the local density aproximation
(LDA) using the general full-potential linearized augmented
plane-wave method as implemented in the WIEN2K software
package [57]. Muffin-tin radii of 2.28, 1.91, and 1.64 a.u. for
Lu, Ni, and O, respectively, were used. An 8 × 8 × 8 k-point
grid was used to perform the Brillouin zone integration in
the self-consistent calculations. The plane-wave cutoff was
set by RKmax = 7, where Kmax is the plane-wave cutoff and
R is the smallest muffin-tin radius used in the calculations.
The calculations were performed at experimental values of the
lattice parameters and atomic positions, as given for LuNiO3

in Ref. [8] at a temperature of 673 K for the orthorhombic
structure and of 533 K for the monoclinic structure. In the
orthorhombic structure, the Ni-O-Ni angles are 145◦ and 143◦

along the ab plane and c axis, respectively (they would be 180◦

in the hypothetical undistorted cubic structure). Similar values
of the angles hold in the monoclinic structure. Such relatively
large rotations induce a clear separation between the manifold
of the Ni eg bands and that of the Ni t2g ones and significantly
reduce the bandwidth of the eg manifold (by approximately a
factor of 2, as compared to the cubic structure).

2. DMFT calculations

All DMFT calculations presented in this paper have been
performed using the continuous-time hybridization expansion
Monte Carlo solver [58] as implemented in the TRIQS
software library [59]. The local Green’s functions have been
sampled in the Legendre basis [60] and analytical continuation
has been performed using a maximum entropy (MaxEnt)
method. Combined DFT+DMFT calculations have been done
by making use of two different interfaces: one based on
maximally localized Wannier functions (MLWF) [43–45]
constructed from the WIEN2K band structure and another one
based on projector localized orbitals (PLO) [61] obtained from
the Vienna ab initio simulation package (VASP) [62–64] (VASP

band structures have been calculated for the same structure
parameters as given in the previous subsection, with the k

mesh containing 10 × 10 × 7 points and the plane-wave cutoff

FIG. 11. (Color online) Wannier functions corresponding to

PLOs for Ni eg orbitals for one of the Ni ions (large gray balls). The

Wannier functions are very similar in both the monoclinic (for two

types of Ni sites) and orthorhombic structures. Note that a significant

contribution is coming from oxygen ions (medium-size red balls). The

size of La ions (small cyan balls) is reduced for a better presentation.

Plotted using VESTA [65].

being Ecut = 500 eV). Examples of the resulting Wannier
functions are presented in Fig. 11. Both approaches, MLWF
and PLO, lead to almost identical outcomes (including the
band structure) and we have thus checked that our results
and conclusions are not sensitive to a particular choice of the
DFT+DMFT method.

For MLWFs (PLOs) we have used an energy window of
[−0.4, + 2.0] eV ([−0.6, + 2.6] eV) which encloses the eight
bands of the eg manifold, and obtain two Wannier functions
per each Ni site, corresponding to the two eg-like orbitals.
The spatial spreads of the MLWFs which were minimized
using Wannier90 [44] came out to be NiLB1: 4.32, NiLB2:
4.42, NiSB1: 4.17, NiSB2: 4.17 (in Å2).
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APPENDIX B: QUALITATIVE ANALYSIS OF THE

TWO-SUBLATTICE TWO-ORBITAL MODEL

We start from a Hamiltonian for a two-sublattice model
with nearest- (NN), t , and next-to-nearest-neighbor (NNN), t ′,
hoppings,

H = −t
∑

mσ 〈ij〉

(d
†
mσidmσj+H.c.) − t ′

∑

mσ [ij ]

(d
†
mσidmσj + H.c.)

−
�s

2

∑

mσi∈A

d
†
mσidmσi+

�s

2

∑

mσj∈B

d
†
mσjdmσj + Hint,

(B1)

where the first summation is over pairs of NN sites i ∈ A,
j ∈ B, belonging to the two different sublattices A and B,
while the second summation is over pairs of NNN sites i,j ∈ A

or B belonging to the same sublattice. This Hamiltonian is
slightly more general than Eq. (5) because it also includes
the NNN hopping, introduced here to have a more physically
meaningful limit �s → ∞; we always assume that t ′ ≪ t .
The bare bandwidth can, thus, be still estimated (for a Bethe
lattice) as W0 ≃ 4t for �s = 0.

Consider first the case of J = 0. In the limit of large �s

the model can be viewed as a half-filled lattice of doubly
occupied LB sites connected via indirect hopping mediated
by empty SB sites. At U = 0, the effective hopping is simply
teff = t ′ + t2/�s (provided that t ≪ �s), and the system is
always metallic (with a small bandwidth). At finite U < �s

the energy of the doubly occupied LB sites is lifted by U and
the indirect hopping is now given by

teff = t ′ +
t2

�s − U
, (B2)

with the corresponding bandwidth Weff = 4teff .
At some critical value Uc = αWeff the LB sublattice will

experience a Mott transition. For U ≪ �s , this condition leads
to a critical value Uc ≃ ct ′ + α4t2/�s . More generally, setting
U = Uc in Eq. (B2) (and implicitly extending the range of
validity of this formula to U � �s) we get a quadratic equation
for Uc,

U 2
c − (�s + 4αt ′)Uc + α4(t2 + �s t

′) = 0, (B3)

leading to two solutions,

Uc = 1
2
(�s + W ′ ±

√

(�s − W ′)2 − W 2), (B4)

with W ′ = 4αt ′, W 2 = α16t2, provided that �s > �c
s = W +

W ′. When �s < �c
s , the equation has no real solutions

implying that the system is metallic in the entire region
U < �s .

In the limit �s → ∞ we can estimate the two critical points
as

Uc1
≃W ′ +

W 2

4�s

, (B5)

Uc2
≃�s −

W 2

4�s

, (B6)

FIG. 12. (Color online) Occupancies of LB and SB sites as a

function of U (J = 0.9 eV) for a two-sublattice simplified model.

The magenta (left) and blue (right) arrows indicate the approximate

positions of the BDI-metal (Uc1
) and metal-Mott (Uc2

) transitions,

respectively. The dashed horizontal lines correspond to the values of

LB and SB occupancies in the noninteracting model.

which emphasizes the physical meaning of the asymptotic
phase boundary U = �s and also shows that in the limit �s =
∞ the lower critical value is entirely determined by the NNN
hopping.

This simple estimate provides us with an important insight
into the peculiar behavior of the model for U < �s . The main
conclusion is that the phase diagram (see the top left panel of
Fig. 5) of such a system is characterized by two transitions
metal → BDI and BDI → metal at U<

c and U>
c , respectively,

provided that the site splitting �s is larger than some critical
value �c

s . As an illustrative example, the evolution of the
site occupancy with increasing U for a model calculation (as
described in Sec. IV) is demonstrated in Fig. 12. For smaller
�s the system will remain metallic at all values of U < �s .

The above considerations can now be extended to J >

0. Now, in the large-�s limit the two electrons on LB
sites will occupy different orbitals, with the electron spins
being aligned on one site and with the LB-sublattice being
antiferromagnetically ordered. The effective hopping in this
case is estimated as

teff = t ′ +
t2

�s − (U − 3J )
, (B7)

and, importantly, the critical value of U is determined by the
relation Uc + J = αWeff appropriate for a half-filled band.
The equation for Uc now reads

Ũ 2
c − [(�s − 4J ) + 4αt ′]Ũc + α4t2 + �s(4J − t ′) = 0,

(B8)

where Ũ = U − 3J , with the two solutions

Ũc = 1
2
([�s − (4J − W ′)] ±

√

(4J − W ′ + �s)2 − W 2),

(B9)
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U<
c ≃ W ′ − J +

W 2

4�s

, (B10)

U>
c ≃ �s + 3J −

W 2

4�s

, (B11)

provided that �s > �c
s = W + W ′ − 4J . The upper asymp-

totic boundary is now shifted by 3J compared to the case with
J = 0 and it is defined by the equation U − 3J − �s = 0.
As to the lower critical value U<

c it can now easily become
negative implying that the metallic phase is unstable even for
small values of U (note, also, that the two-sublattice model

becomes generally unstable with respect to even stronger
charge disproportionation for U < J , as mentioned in the main
text).

This solution reveals the drastic effect of J on the behavior
of the system. Indeed, the two roots in (B11) are real provided
that �s � �c

s , with �c
s = W + W ′ − 4J . One sees that the

critical disproportionation is now dramatically reduced by 4J .
As a result, there is a critical value of the Hund’s coupling,
Jc = (W + W ′)/4, above which the system is expected to
disproportionate spontaneously even at �s = 0. The phase
diagram for this case is sketched in the top right panel of
Fig. 5.
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