# LUMINOSITY ISSUES FOR THE e<sup>-</sup>e<sup>-</sup>OPTION OF THE TESLA LINEAR COLLIDER

I. Reyzl\*, S. Schreiber<sup>†</sup>, DESY, Notkestr. 85, 22603 Hamburg, Germany

## Abstract

The future TESLA linear  ${\rm e^+\,e^-}$  collider can also be used for  ${\rm e^-\,e^-}$  collisions at a center of mass energy of  $500\,{\rm GeV}$  and beyond. A critical issue for the physics potential of this option is the achievable luminosity. For  ${\rm e^+\,e^-}$  collisions, the pinch effect enhances the luminosity, while due to the repelling forces for  ${\rm e^-e^-}$  collisions, the luminosity is significantly reduced and is more sensitive to beam separations. This report discusses an intra-train feedback to stabilize the luminosity and possibilities to partly overcome the luminosity degradation of the  ${\rm e^-\,e^-}$  mode.

# 1 INTRODUCTION

The rich physics potential of the TESLA linear collider designed for  $e^+e^-$  collisions at  $\sqrt{s}=500\,\mathrm{GeV}$  can be extended to explore  $e^-e^-$  interactions. It has been shown,

Table 1: TESLA 500 parameter list.

| Parameter                                     | Symbol             | Ref. Design                                            |
|-----------------------------------------------|--------------------|--------------------------------------------------------|
| Center of mass energy                         | $E_{\rm cm}$       | 500 GeV                                                |
| Bunch charge                                  | N                  | $2\cdot 10^{10}$ 1/ $e$                                |
| Bunches per train                             | $n_{b}$            | 2820                                                   |
| Bunch spacing                                 | $t_{\mathrm{b}}$   | 337 ns                                                 |
| Repetition rate                               | $f_{ m rep}$       | 5 Hz                                                   |
| Bunch length                                  | $\sigma_z$         | 0.3 mm                                                 |
| Horiz. beam size at IP                        | $\sigma_x$         | 553 nm                                                 |
| Vert. beam size at IP                         | $\sigma_y$         | 5 nm                                                   |
| Vert. divergence at IP                        | $\sigma_{y'}$      | $12.3~\mu\mathrm{rad}$                                 |
| Vert. emittance (norm.)                       | $\epsilon_y$       | $0.03 \cdot 10^{-6} \text{ m}$                         |
| Energy loss (beamstr.)                        | $\delta_{b}$       | 3.3 %                                                  |
| Vertical Disruption                           | $D_y$              | 25                                                     |
| Luminosity e <sup>+</sup> e <sup>-</sup> mode | $\mathcal{L}^{+-}$ | $3.4 \cdot 10^{34}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ |
| Luminosity e <sup>-</sup> e <sup>-</sup> mode | L                  | $0.47 \cdot 10^{34}  \text{cm}^{-2} \text{s}^{-1}$     |

that both spent  $e^-e^-$  beams can be safely extracted from the interaction point (IP) without changing the present  $e^+e^-$  layout [1]. In this report we discuss the achievable  $e^-e^-$  luminosity and its stabilization, for the given  $e^+e^-$  parameter set listed in Tab. 1. At TESLA, the luminosity is highly sensitive to beam separations  $\Delta y$  at the IP. This is due to the large disruption  $D_y$  of 25, a value beyond the accepted limit for the onset of the kink instability. In the case of  $e^+e^-$  collisions, the attracting forces 'pinch' the bunches enhancing the luminosity. However, for equally charged beams  $(e^-e^-)$ , the electrons repel and disrupt the beam: the luminosity is significantly reduced and is more sensitive to beam separations (see Fig. 1). A crossing an-



Figure 1: Normalized  $e^-e^-$  luminosity versus vertical beam separation and crossing angle (normalized to  $\sigma_y=5~\mathrm{nm}$  and to  $\sigma_{y'}=12~\mu\mathrm{rad}$  resp.). Machine parameters used are listed in Tab. 1. Luminosity calculations performed with GUINEA PIG [3].

gle does not degrade the luminosity as it is in the  $e^+e^-$  case [2]. Sources of beam separations are Lorentz force detuning, wakefield effects, quadrupole vibrations. A major concern is the displacement of the final doublets transferred one-to-one into a beam position offset at the IP, since a vertical separation between two bunches of  $0.1\,\sigma_y=5\,\text{Å}$  decreases the luminosity per bunch crossing by 17 % and of  $1\,\sigma_y=5\,\text{nm}$  even by 76% (see Fig. 1). From bunch train to bunch train (5 Hz) the beam separation is expected to be as large as  $35\,\sigma_y$  [4]. Obviously, a system is required to steer the beams back to collision already within a few bunches of the train. A correction is feasible on a bunch-to-bunch basis, due to the large bunch spacing of 337 ns for TESLA.

# 2 FEEDBACK SYSTEM

The schematic layout of the intra-train feedback system for the of  ${\rm e^-\,e^-}$  interactions is shown in Fig. 2. The aim is to design a fast and efficient system working at the bunch repetition frequency of 3.1 MHz.

A vertical separation  $\Delta y$  between two electron bunches at the IP becomes detectable even in a range well below the vertical beam size  $\sigma_y$  of 5 nm due to the strong beambeam deflection (Fig. 3). The strong angular kick experienced by the bunches results in a measurable position shift at the final doublets located 3 m downstreams to the IP. Two beam position monitors (BPM) measure the positions of the incoming and spent bunch. A digital controller derives an estimate of the beam separation by means of a linear beam-beam deflection model. The correction is determined with a proportional-integral (PI) control algorithm. The P-

<sup>\*</sup>Email: ingrid.reyzl@desy.de

<sup>†</sup> Email: siegfried.schreiber@desy.de



Figure 2: Layout of the e<sup>-</sup>e<sup>-</sup> feedback system at the IP.

controller ensures a fast response to incoming disturbances. The I-controller is needed to remove the steady state error in the case of a step disturbance. Correction kicks are applied to subsequent bunches with a latency of two bunches by two kickers. Commonly available kickers have a sufficiently short field rise time of 25 ns and produce a kick of up to  $0.12\,\mu\mathrm{rad}$  at a beam energy of  $250\,\mathrm{GeV}$  [5]. Two kickers are sufficient to cover a control range of  $\pm 100\,\sigma_y$ . A time varying controller with two models of the beam-



Figure 3: Beam-beam deflection as a function of beam separation for e<sup>-</sup>e<sup>-</sup> interaction in TESLA and the two linear models used by the time varying controller.

beam deflection is used as indicated in Fig. 3. The aggressive model, is given by  $\Phi=64.4/\mu{\rm rad} \cdot \Delta y/\sigma_y$  It provides a fast response to large separations, but poor correction accuracy. Only 35 bunches are required to correct an bunch train separation of  $50\,\sigma_y$ . However, the collisions of the following bunches can barely be kept within  $1.6\,\sigma_y$ , since the model strongly overestimates small bunch separations. The correction accuracy is improved to a fraction of the vertical beam size, by switching to a moderate model:  $\Phi=1000/\mu{\rm rad}\cdot\Delta y/\sigma_y$ . This model is characterized by a negligible noise amplification and a slow step response. The correction accuracy achieved is  $0.02\,\sigma_y$ .

Figure 4 shows the simulated feedback response to a stationary bunch train separation of  $50~\sigma_y$ . The simulation includes the following effects: residual beam position offsets due to higher-order mode effects in the linac; finite BPM resolution and analog-to-digital signal quantization



Figure 4: Response of time-varying controller. The aggressive model brings the beams within 35 bunches (interactions) into collision, the switch to the moderate model insures a high correction accuracy for the subsequent bunches.

of 5  $\mu$ m; kicker field imperfections of 0.1%; random variation of the beam-beam deflection by 10% to include fluctuations, e.g. in bunch charge, bunch length, or beam size.

As a conclusion, the feedback system is capable of limiting the luminosity loss to 6% in case of a  $50\,\sigma_y$  beam separation.

# 3 LUMINOSITY IMPROVEMENTS

The enhancement or reduction of the luminosity is described by the disruption (de-)enhancement factor  $H_D$ . It is 2 for  $e^+e^-$  with TESLA parameters, but only 0.34 for  $e^-e^-$ . There is no complete analytical expression for  $H_D$  (see e.g. [6]), therefore, a simulation of the beam-beam interaction is used to evaluate the luminosity [3].



Figure 5: Luminosity as a function of the bunch length and horizontal bunch size for e<sup>-</sup>e<sup>-</sup> collisions using the TESLA parameters of Tab. 1. Simulations are performed with GUINEA PIG.[3]

In the case of flat beams ( $\sigma_y/\sigma_x\ll 1$ ) the luminosity for

Table 2: Luminosity and average beam energy loss due to beamstrahlung for e<sup>-</sup>e<sup>-</sup> collisions for different bunch lengths and horizontal beam sizes. The TESLA parameters in Tab. 1 have been used.

| $\sigma_z \left( \mu \mathrm{m} \right)$ | $\sigma_x  (\mathrm{nm})$ | $\delta_b\left(\% ight)$ | $\mathcal{L}  (10^{33}  \mathrm{cm}^{-2} \mathrm{s}^{-1})$ |
|------------------------------------------|---------------------------|--------------------------|------------------------------------------------------------|
| 400                                      | 553                       | 1.6                      | 4.1                                                        |
| 300                                      | 553                       | 2.2                      | 4.7                                                        |
| 200                                      | 553                       | 3.3                      | 5.7                                                        |
| 100                                      | 553                       | 5.6                      | 7.7                                                        |
| 50                                       | 553                       | 8.1                      | 9.9                                                        |
| 300                                      | 300                       | 7.2                      | 5.5                                                        |
| 300                                      | 100                       | 19.6                     | 4.2                                                        |

 $E_{\rm cm} = 500 \, {\rm GeV}$  can be expressed as

$$\mathcal{L} = 7.2 \cdot 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \frac{\eta P_{\mathrm{AC}} [MW]}{\sqrt{\epsilon_y [m]}} \sqrt{\delta_b} H_D , \quad (1)$$

with  $P_{\rm AC}$  the overall AC power consumption,  $\eta$  the AC-to-beam power efficiency,  $\epsilon_y$  the normalized vertical emittance, and  $\delta_b$  the average energy loss due to beamstrahlung. Since it is trivial to increase the luminosity by increasing the power consumption, we limit the  $P_{\rm AC}$  to  $100\,{\rm MW}$ . TESLA has a favourable AC to beam power efficiency of  $\eta=22\,\%$  due to the use of superconducting accelerating structures. The e<sup>-</sup>e<sup>-</sup> luminosity calculated for TESLA parameters is  $4.7\cdot10^{33}\,{\rm cm^{-2}s^{-1}}$  ( $H_D=0.34$ ) compared to  $34\cdot10^{33}\,{\rm cm^{-2}s^{-1}}$  ( $H_D=2.0$ ) for the e<sup>+</sup>e<sup>-</sup> case (see Tab. 1). Since the vertical emittance of  $3\cdot10^{-8}$  m is already very demanding, the only reasonable way to improve the luminosity is to allow a larger average beam energy loss  $\delta_b$ . In addition, one can expect a larger  $H_D$  for smaller vertical disruption  $D_y$ . Looking at the analytical expressions for  $\delta_b$  and  $D_y$ .

$$\delta_b = 0.86 \frac{r_e^3 \gamma N^2}{\sigma_x^2 \sigma_z}$$
, and  $D_y = \frac{2N r_e}{\gamma \sigma_x \sigma_y} \sigma_z$ , (2)

the bunch length  $\sigma_z$  is the only adequate parameter to tune. (Here, N denotes the bunch charge,  $r_e$  the classical electron radius,  $\gamma$  the Lorentz factor, and  $\sigma_{x,y}$  the horizontal and vertical beam sizes respectively.) A reevaluation of the bunch compressor scheme for TESLA showed, that a compression to  $\sigma_z=300~\mu\mathrm{m}$  is indeed possible, which yields to an increase in luminosity and to a better performance of the feedback system as for the previous case of  $\sigma_z=400~\mu\mathrm{m}$  [7].

The luminosity is enlarged by a reduction of the bunch length, with the expense of an increased beamstrahlung induced energy loss  $\delta_b$  (see Fig. 5 and Tab. 2). A moderate increase of  $\delta_b$  seems to be tolerable for physics, since the luminosity spectrum of  $e^-e^-$  collisions is narrower than the spectrum for  $e^+e^-$  (Fig. 6). A bunch length reduction does not spoil the spectrum significantly.

An additional gain in luminosity is achieved by reducing the horizontal spot size down to  $300\,\mu\text{m}$  (see Fig. 5 and

Tab. 2). In this case, the luminosity increases by 14 %, but  $\delta_b$  is enlarged significantly to 7.2 %.

## 4 CONCLUSION

The large disruption parameter for the high luminosity TESLA parameters demands a sophisticated beam stabilization system for beam collisions. The intra-train feedback system is capable of limiting the maximum luminosity loss to 6% in the case of an initial beam separation of  $50\,\sigma_y$ . The e<sup>-</sup>e<sup>-</sup> luminosity for the TESLA e<sup>+</sup>e<sup>-</sup> parameters is by a factor of 7.6 smaller than the e<sup>+</sup>e<sup>-</sup> luminosity due to the anti-pinch effect. A further increase of luminosity is only possible by reducing the bunch length and the horizontal spot size with the expense of a larger energy loss.



Figure 6: Normalized luminosity spectrum for e<sup>-</sup>e<sup>-</sup> collisions compared to e<sup>+</sup>e<sup>-</sup>. TESLA high luminosity parameters from Tab. 1 are used.

## 5 ACKNOWLEDGMENT

We would like to thank O. Napoly, R. Brinkmann, and N. Walker for their support and fruitful discussions.

# **REFERENCES**

- O. Napoly, CEA Saclay, private communication see http://www.pd.infn.it/ecfa/listatalks\_def.html (S. Schreiber).
- [2] I. Reyzl, "Stabilization of Beam Interaction in the TESLA Linear Collider", these proceedings.
- [3] D. Schulte, "Study of Electromagnetic and Hadronic Background in the Interaction Region of the TESLA Collider", DESY, Hamburg, 1997, TESLA 97-08.
- [4] N. Walker, DESY, private communication.
- [5] J. Rümmler, "Feedback Kickers in the DESY Rings", Proc. EPAC 1994, London, 27 June - 1 July 1994.
- [6] K. Thompson, "Optimization of NLC Luminosity for e<sup>-</sup>e<sup>-</sup> Running", Proc. e<sup>-</sup>e<sup>-</sup> Linear Collider Workshop, 1999, Santa Cruz, CA.; Int. J. of Modern Physics A, June 30, 2000, p. 139.
- [7] I. Reyzl, S. Schreiber, "Bunch to Bunch Orbit Feedback and Luminosity Considerations of e-e- Interactions in TESLA", Proc. e<sup>-</sup>e<sup>-</sup> Linear Collider Workshop, 1999, Santa Cruz, CA.; Int. J. of Modern Physics A, June 30, 2000, p. 149.