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Understanding thermal transport in nanoscale systems presents important challenges to both theory and
experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here,
we propose a theoretical approach where we replace the temperature gradient with controllable external
blackbody radiations. The theory recovers known physical results, for example, the linear relation between
the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not
limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena.
Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it
provides a first step toward a unified formalism for investigating thermal and electronic transport.
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The wide research field of energy transport in nanoscale
systems is very active: groundbreaking advances in under-
standing the physics of this important phenomenon have
been made in recent years [1-3], e.g., the measurement of
the quantum of thermal conductance [4,5], thermal quantum
rectifiers [6], and breaking of Fourier’s law [2]. Over time,
different theoretical approaches have been proposed ranging
from the Landauer’s theory of electrical and thermal
transport [1,7-10], molecular dynamics [11], quantum and
classical Boltzmann equations [12], nonequilibrium Green’s
function formalisms [13—18], to the theory of open quantum
systems [19-22] to point out just a few. This activity is
justified by the range of possible applications from thermo-
electric energy conversion, heat dissipation, kinetics of
chemical reactions, to a very new and more fundamental
definition of thermodynamical equilibrium [1,8,23], among
many others. It is a common everyday experience that two
macroscopic bodies in contact with each other equilibrate in
the long-time limit to the same temperature. Microscopically,
equilibration means that there is not a net energy flow
between the two bodies but energy exchanges, in the form of
small fluctuations, are still present. Since the direction of the
energy flow is determined by the sign of the difference
between the temperatures of the bodies, we conclude that the
absence of an energy flow implies the two bodies have the
same temperature. This law of thermodynamics provides an
operative definition of the temperature difference. What
makes thermal transport at the nanoscale a difficult theo-
retical problem is that the very basic fundamentals of
standard thermodynamics cannot be applied, and the idea
of thermalization needs revisiting. In the past, attempts have
been made to introduce a position-dependent temperature
[24], but they do not provide a satisfactory definition of local
temperature. Indeed, the concepts of local Hamiltonian,
useful to define a local energy density, local thermal current,
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and local nanoscale thermal gradient are not uniquely
defined. Recently, a way out, restricted to small thermal
gradients, has been put forward using an effective gravita-
tional field, as originally proposed by Luttinger [25], that
mimics the effect of the temperature gradient [26,27]. Here,
we propose an alternative approach, where the temperature
field is established by two or more blackbodies of known
thermal properties. Besides thermal transport at the nano-
scale, this theory can be used to understand energy transport
in cold atoms, biological or optical systems. We first lay
down the basic formalism and then consider a simple
one-electron model system. However, our theory can be
combined with the general framework of time-dependent
current-density functional theory (TDCDFT) [28-30] to
consider also many-body systems. More important, our
approach is not restricted to the linear response or weak
coupling regimes, and we can easily investigate the interest-
ing cases of both strong coupling—recovering the Kramers’
turnover [31]—and large temperature gradients. Finally, we
have access to the full dynamics of the system; therefore,
we can investigate transient regimes, usually unaccessible
to other formalisms. Last but not least, our theory can be
applied to investigating the phonon thermal transport. In this
respect, it could be seen as a first step toward a unified
ab initio formalism for thermal and electric transport.

A blackbody, according to its original definition [32],is a
macroscopic object that absorbs all the radiation impinging
on it and, in thermal equilibrium, it emits electromagnetic
radiation (according to the Planck’s law), whose spectrum
is determined solely by the temperature of the blackbody
and not by its shape or composition [33,34]. If we connect a
blackbody with a cavity made of perfect reflecting walls,
the radiation inside the cavity thermally equilibrates with
the blackbody radiation, and any object in this cavity
will also thermalize. By changing the temperature of the
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blackbody, we control both the temperature inside the
cavity and that of the body. When thermal equilibrium is
reached, at any point in the cavity the electromagnetic
radiation follows Planck’s law with the temperature of the
blackbody. Ultimately we can extract the local temperature
from the observation of the energy radiation and this serves
us in the following to construct a formalism for thermal
transport. Our thermometer, or thermal source, is indeed a
blackbody which radiates according to its temperature.

To begin with, we consider an electronic system coupled
to any strength to the blackbody radiation and weakly to the
free field of an external environment. The dynamics of the
blackbody radiation is determined solely by the blackbody
itself. Here, we assume the macroscopic parameters of
the blackbody to be constant in time and treated classically.
At the same time, to allow for relaxation and to mimic the
experimental setups, the system is embedded in a bosonic
environment, kept at constant temperature 7z, with which
the system can exchange energy via spontaneous and
stimulated emission or absorption. The total Hamiltonian
where we treat the environment quantum-mechanically [we
set h =e=m=1/(4ney) = 1] is

0|+ Hp,

_ EN: [(f’i — Ap(¥) 2— Agg(F:, 1)) + UG,

i=1

(1)

where Hj = Zk’swkfaﬂsl;kﬁ is the Hamiltonian of the free

field of the environment and A F its corresponding vector
potential. In addition, U is an external potential and Agp
describes the electromagnetic radiation emitted by the
blackbody sources. We neglect the direct interaction of
the free field with the blackbody radiation. This can be
justified by observing that the photon-photon interaction is
small, consequently the contributions of the terms where,
e.g., a photon from the blackbody scatters with the free
field and then is absorbed by the system, are negligible.
Therefore, we write Hy = Hg(f) + Igp + Hp, where
we have included the system—blackbody interaction in
the system Hamiltonian, Hg =YV, (p?/2 + U(r;,t)—

Agg(r;, 1) - P;), and the quadratic term A% in the external
potential U. The free vector field is written as

AF(r) Zk sPKk, v(bk s exp(lkr) + bk K CXp( ikr))ek.s’

where p; = \/27/(w,V) and b]TK is the creation operator
for a free-field mode with polarization direction € .
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Finally, by exploiting the field expansion ¥ =
> uCa()pe(r), the system-environment interaction can
be written, in the 1 SF=
Za’ﬂ’k,sgaﬁ’k‘séléﬂ(lgkqs + by ), where we have defined,
Gapk.s=1Pk [ AV P} (r)€x - Vepy(r). Here, we have assumed
that the system size is small in comparison to the wave-
lengths of the electromagnetic field (dipole approximation)

Coulomb gauge, as

[35]. Furthermore, the operators &l create the a’s energy
eigenstate of the initial Hamiltonian Hg(0). These energy
eigenstates will serve as a natural basis set for our following
considerations. Naturally, the (local) density of states
associated with the eigenstates of this Hamiltonian defines
how efficient the coupling between the system and the
blackbody radiation is [7,16].

As we are interested only in the system dynamics,
we will examine the dynamics of the expectation
value of the one-particle density operator f,; = (82613),

easily derived from the equation of motion for 6’28 IRCHES

([Hs(t).ekeq]) + > xl9px ((bese,) + (biehe,) — g, ax
((byeyep) + (bLejep))], where we included the spin index s
in the components of k. Its solution requires the knowledge
of the dynamics of Bkézéﬂ,

Hs. l;kégéﬁ] + wkl;kégéﬁ

+ ) gaalehestiesdi,
7.0l

+ {by (b + IQD

i0,by Chey =

- 6;6ﬁ66a)]
(2)

A similar equation holds for bkcacﬁ These equations of
motion are not in a closed form, and any attempt to solve
them by investigating the dynamics of the operators
appearing on the right-hand side leads to an infinite
hierarchy of equations. For this reason, we decouple the
dynamics of the system and the field; i.e., we assume
that (by by cacﬂ> (byb] )(626,;). With this approximation,
Eq. (2) is solved with a standard integration technique.
Furthermore, by using that the initial-state correlation
vanishes, (byk¢)(0) = (byéi¢,)(0) =0, and that the
environment is in thermal equilibrium, n(wy,Tg) =
S by (by + b)) = 8¢)), where n(w,T) is the Planck’s
distribution at energy @ and temperature 7, we arrive at
a non-Markovian master equation,

— S (2kesd,,

Z Vi, kVarasin (g (1 — 7))

r.0.0.0k.1
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have introduced the bath correlation
function  Cyy(r.1) = ({By () + b (2) } by (1) + B{ (1)}) =
(n(w.T) +1)e™ ™) L n(wy, T)ex 1, and defined
Viax = ~igapx and U, t) =T,e™ Jiarts(e)
is the time-ordering operator. Equation (3) describes a
system under the influence of a classical blackbody
radiation, where the system can dissipate to or gain energy
from the environment. It is known that for the system
described by this master equation, the detailed balance of
the power spectrum of the correlation function
Cri(w) = [ exp (—iw(t —1))Cy (1. 7)dt, is the mini-
mum requ1rement to reach thermal equilibrium with the
free field. One can easily check that the detailed balance
condition is satisfied by our correlation function. Then,
without any external sources, the system evolving accord-
ing to Eq. (3) reaches thermal equilibrium with the free-
field radiation. On the other hand, when external sources or
driving potentials are present, the system does not reach any
thermal equilibrium in general. However, we expect the
system to reach a steady state regime in the long-time limit.
This expectation is rooted in the observation that stimulated
and spontaneous emissions grow when the system is
strongly driven until a balance between the energy absorbed
from the external fields and that emitted is reached.

In the following, we will demonstrate and test the theory
on a model system of fundamental importance, namely, we
will study heat transport induced by the blackbody fields in
a small two-dimensional spinless tight-binding system
sketched in Fig. 1. First of all, we check whether known
results are reproduced. For this, we prove that the system
relaxes in the long-time limit to its thermal equilibrium, and
find that our system also shows a Kramers-turnover—like
behavior [31,36], as expected. The tight-binding sites are
labeled by the numbers 1 to 6, and they are connected via
nearest-neighbor hopping. Here, A; and Ay represent the
electromagnetic field from two blackbodies at positions
x =—oc0 and x = +oco with temperatures 7; and Tk,
respectively. In addition, the system is embedded in an
environment at temperature 7T'f.

) @ © ©A
®ooe
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FIG. 1 (color online). Sketch of the setup under consideration.
The tight binding sites are labeled by 1 to 6 and are connected on
the left and right side to two blackbody radiations at different
temperature, 7; and Ty. This system is embedded in an
environment at temperature 7.

As these blackbodies are far away from the system, their
fields are a superposition of plane waves traveling in
the positive (or negative) x direction, weighted according

to their temperature, A z(r.?) EofdQ,/Qn (T, R)
sin(Qr£kx+¢(Q)), where Eg = Epe,, and E, is the

strength of the corresponding electric field, e, is the unit
vector in the y direction, and ¢(Q) € [0, 2x] are uncorre-
lated random phase factors. Here, one might use more
realistic, and also complicated, models for the correlation
of thermal radiation [37,38]. This thermal radiation enters
through the Peierls transformation of the hopping param-

fR dI‘ (AL(r t)+AR(r t))], intO
the tight-bmdmg Hamiltonian,

=2 Tiee (4)

Here, the operator ¢; creates an electron at site { with position
R;, and we assume a single electron to be present in
the whole system. The sum (i, j) denotes summation over
nearest neighbors only. The vector potentials A; and Ay
couple to the most leftward and rightward sites, respectively,
and will introduce a local temperature gradient in the system.
Note that, in general, the potentials penetrate into the system;
however, for this model system, we assume the external
radiation is rapidly screened. For example, the core electrons
in the tight-binding sites can be responsible for this screening.

The coupling to the environmental degrees of freedom
is described by a master equation. For the coupling of an
electronic system to the electromagnetic field of the
environment, the coupling operator V and bath-correlation
function C(z,t) can be derived from first principles by
assuming the system to be embedded in a cavity at
temperature Tg [22]. The power spectrum, essentially
the Fourier transform of the bath-correlation function, is
given by Con (@) = 410/ (|0, Tp) + 0(—0)] for

eter T = T;jexp[—

T
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FIG. 2 (color online). Relaxation dynamics of the occupation
probabilities of the eigenstates of the Hamiltonian (4). These
results have been obtained by averaging over 4000 realizations of
the stochastic noise. The inset shows the vanishing energy current
through the system when the number of runs of the stochastic
process N increases.
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FIG. 3. Dependence of the steady-state energy current on the

coupling strength (S) for kzgTr = 10 and N = 4000. A turnover
in the energy current can be observed.

|o| < ., where (w) is the Heaviside step function and @,
is a cutoff frequency determined by the dimensions of the
system. For |@| > w,, the power spectrum is set to vanish.
This cutoff is necessitated by the assumption made in the
dipole approximation that the electromagnetic field
is uniform in the region of space occupied by the system.
The corresponding coupling operator, entering the master
equation, is given by V = —>u (W|r|W)éje;, where
|W;) is the single-particle state localized at site i. As we
are interested in the steady-state energy current through the
system, we simplify the memory kernel of the non-

Markovian master equation (3) by setting [! dzf(z)]...] —

[, def(#)[...]. This approximation does not change
the long-time limit of the equation of motion and hence is
suitable to study steady-state dynamics [21]. In order to
calculate the energy transport, one has to define, via the
continuity equation, an energy currentin the system. With the

local energy-density operator, 7; = 13" 0 (T?jéjéj +H.c.),

one can define the total current in the x direction via

T+ = —hy — hy + hy + hg, where O = i[Hg, O] + 9,0. As
a first test of the thermal transport theory, we examine the
relaxation dynamics of the tight-binding system driven by a
left and right blackbody radiation kept at temperature
kgT = 10 a.u., the same temperature as the environment.
We choose T;; = 0.5 a.u. as an energy-scale for the system,
and for the coupling to the environment, we set y =

\/2/(mc?) = 0.05. For the energy scale of the blackbody
radiations, we have normalized both left and right radiation
with the time-averaged Poynting vector, (S}, setto 15/ (uqc).
In Fig. 2, the dynamics of the occupation probabilities of
the eigenstates of the Hamiltonian (4) in the one-electron sector
is shown for the thermally balanced system (T = T = T;).
One can see that the system relaxes toward a steady state.
The steady state is characterized by zero energy transport in
the system, which can be seen in the inset of Fig. 2.

To further verify the theory, we show that one finds
the expected turnover behavior as seen in Fig. 3 [31,36].

7:
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FIG. 4. Energy current in the tight-binding system of Fig. 1 vs
temperature gradient introduced by the blackbody radiations
around the environmental temperature 7. For this plot, we have
used (S) = 15/pgc close to the maximum current of Fig. 3, and
N = 4000.

The turnover can be understood by considering that, for
small energy flux, when increasing the flux, more states are
excited and can contribute to transport. On the other hand,
at large fluxes, some of the states are fully occupied and are
not able to contribute to transport anymore. At intermediate
energy fluxes, a peak of the energy current must be
achieved. In general, this behavior cannot be described
by perturbative theories for thermal transport such as the
Redfield theory [36]. We have set the temperature gradient
to AT = (T, —Tg)/2. In Fig. 4, the energy current is
plotted vs the introduced thermal gradient AT from the
black bodies. A linear dependence on the thermal gradient
can be found for AT < T (see inset). At large AT, a
maximum in the energy current is reached. This means that
the system can sustain up to a maximum energy flow for
given external boundary conditions. Also, the position of
the maximum of the energy current shifts to the right by
increasing the temperature of the environment. This might
be relevant for technological applications since the maxi-
mum efficiency can tuned according to the working
conditions.

In conclusion, we have presented a theoretical frame-
work to investigate thermal and energy transport, where the
thermal imbalance in the system is introduced by two
classical blackbody radiations. Our theory also includes a
dissipative environment, where the system can gain energy
from or dissipate to, in order to mimic the quantum nature
of the photons. Due to the latter, we include the funda-
mental concept of thermal relaxation of the system, which
is not included in other thermal transport theories. The
theory can also be used in different setups; e.g., we can
consider one blackbody only, to adapt to different experi-
ments. Finally, as our formalism relies on the knowledge of
the external vector potential, we can foresee that its
combination with the powerful techniques of TDCDFT
will provide an ab initio tool to study thermal transport in
many-body systems, and possibly pave the way to define a
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local temperature. In addition, by utilizing a recent develop-
ment in combining time-dependent density functional
theory and quantum electrodynamics [39], we can go
beyond the mean-field description of the environment.
Moreover, within the same formalism, we can investigate
phonon thermal transport, thereby combined with the
TDCDFT, our model provides a unified way to investigate
ab initio electrical and thermal transport beyond linear
response. Nonlinear regimes are important since in seeking
for, e.g., the maximum efficiency of a thermoelectric
energy converter, we might need to go beyond the standard
linear response [40]. Since our formalism is fully dynamic,
we have direct access to transient regimes, to how the
steady state is approached, and to whether or not this steady
state is unique or depends on the history of the system [41].
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