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Understanding thermal transport in nanoscale systems presents important challenges to both theory and

experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here,

we propose a theoretical approach where we replace the temperature gradient with controllable external

blackbody radiations. The theory recovers known physical results, for example, the linear relation between

the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not

limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena.

Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it

provides a first step toward a unified formalism for investigating thermal and electronic transport.
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The wide research field of energy transport in nanoscale

systems is very active: groundbreaking advances in under-

standing the physics of this important phenomenon have

been made in recent years [1–3], e.g., the measurement of

the quantum of thermal conductance [4,5], thermal quantum

rectifiers [6], and breaking of Fourier’s law [2]. Over time,

different theoretical approaches have been proposed ranging

from the Landauer’s theory of electrical and thermal

transport [1,7–10], molecular dynamics [11], quantum and

classical Boltzmann equations [12], nonequilibrium Green’s

function formalisms [13–18], to the theory of open quantum

systems [19–22] to point out just a few. This activity is

justified by the range of possible applications from thermo-

electric energy conversion, heat dissipation, kinetics of

chemical reactions, to a very new and more fundamental

definition of thermodynamical equilibrium [1,8,23], among

many others. It is a common everyday experience that two

macroscopic bodies in contact with each other equilibrate in

the long-time limit to the same temperature. Microscopically,

equilibration means that there is not a net energy flow

between the two bodies but energy exchanges, in the form of

small fluctuations, are still present. Since the direction of the

energy flow is determined by the sign of the difference

between the temperatures of the bodies, we conclude that the

absence of an energy flow implies the two bodies have the

same temperature. This law of thermodynamics provides an

operative definition of the temperature difference. What

makes thermal transport at the nanoscale a difficult theo-

retical problem is that the very basic fundamentals of

standard thermodynamics cannot be applied, and the idea

of thermalization needs revisiting. In the past, attempts have

been made to introduce a position-dependent temperature

[24], but they do not provide a satisfactory definition of local

temperature. Indeed, the concepts of local Hamiltonian,

useful to define a local energy density, local thermal current,

and local nanoscale thermal gradient are not uniquely

defined. Recently, a way out, restricted to small thermal

gradients, has been put forward using an effective gravita-

tional field, as originally proposed by Luttinger [25], that

mimics the effect of the temperature gradient [26,27]. Here,

we propose an alternative approach, where the temperature

field is established by two or more blackbodies of known

thermal properties. Besides thermal transport at the nano-

scale, this theory can be used to understand energy transport

in cold atoms, biological or optical systems. We first lay

down the basic formalism and then consider a simple

one-electron model system. However, our theory can be

combined with the general framework of time-dependent

current-density functional theory (TDCDFT) [28–30] to

consider also many-body systems. More important, our

approach is not restricted to the linear response or weak

coupling regimes, and we can easily investigate the interest-

ing cases of both strong coupling—recovering the Kramers’

turnover [31]—and large temperature gradients. Finally, we

have access to the full dynamics of the system; therefore,

we can investigate transient regimes, usually unaccessible

to other formalisms. Last but not least, our theory can be

applied to investigating the phonon thermal transport. In this

respect, it could be seen as a first step toward a unified

ab initio formalism for thermal and electric transport.

A blackbody, according to its original definition [32], is a

macroscopic object that absorbs all the radiation impinging

on it and, in thermal equilibrium, it emits electromagnetic

radiation (according to the Planck’s law), whose spectrum

is determined solely by the temperature of the blackbody

and not by its shape or composition [33,34]. If we connect a

blackbody with a cavity made of perfect reflecting walls,

the radiation inside the cavity thermally equilibrates with

the blackbody radiation, and any object in this cavity

will also thermalize. By changing the temperature of the
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blackbody, we control both the temperature inside the

cavity and that of the body. When thermal equilibrium is

reached, at any point in the cavity the electromagnetic

radiation follows Planck’s law with the temperature of the

blackbody. Ultimately we can extract the local temperature

from the observation of the energy radiation and this serves

us in the following to construct a formalism for thermal

transport. Our thermometer, or thermal source, is indeed a

blackbody which radiates according to its temperature.

To begin with, we consider an electronic system coupled

to any strength to the blackbody radiation and weakly to the

free field of an external environment. The dynamics of the

blackbody radiation is determined solely by the blackbody

itself. Here, we assume the macroscopic parameters of

the blackbody to be constant in time and treated classically.

At the same time, to allow for relaxation and to mimic the

experimental setups, the system is embedded in a bosonic

environment, kept at constant temperature TE, with which

the system can exchange energy via spontaneous and

stimulated emission or absorption. The total Hamiltonian

where we treat the environment quantum-mechanically [we

set ℏ ¼ e ¼ m ¼ 1=ð4πϵ0Þ ¼ 1] is

ĤT ¼
X

N

i¼1

�

(p̂i − ÂFðr̂iÞ −ABBðr̂i; tÞ)
2

2
þUðr̂i; tÞ

�

þ ĤF;

ð1Þ

where ĤF ¼
P

k;sωkb̂
†

k;sb̂k;s is the Hamiltonian of the free

field of the environment and ÂF its corresponding vector

potential. In addition, U is an external potential and ABB

describes the electromagnetic radiation emitted by the

blackbody sources. We neglect the direct interaction of

the free field with the blackbody radiation. This can be

justified by observing that the photon-photon interaction is

small, consequently the contributions of the terms where,

e.g., a photon from the blackbody scatters with the free

field and then is absorbed by the system, are negligible.

Therefore, we write ĤT ¼ ĤSðtÞ þ ÎS;F þ ĤF, where

we have included the system-blackbody interaction in

the system Hamiltonian, ĤS ¼
P

N
i¼1

(p̂2
i =2þUðri; tÞ−

ABBðri; tÞ · p̂i), and the quadratic term A2
BB in the external

potential U. The free vector field is written as

ÂFðrÞ ¼
P

k;spk;s(b̂k;s expðikrÞ þ b̂†k;s expð−ikrÞ)ϵk;s,

where pk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=ðωkVÞ
p

and b̂†k is the creation operator

for a free-field mode with polarization direction ϵk;s.

Finally, by exploiting the field expansion Ψ̂ ¼
P

αĉαðtÞϕαðrÞ, the system-environment interaction can

be written, in the Coulomb gauge, as ÎS;F ¼
P

α;β;k;sgαβ;k;sĉ
†
αĉβðb̂k;s þ b̂†k;sÞ, where we have defined,

gαβ;k;s¼ipk

R

dVϕ�
αðrÞϵk;s ·∇ϕβðrÞ. Here, we have assumed

that the system size is small in comparison to the wave-

lengths of the electromagnetic field (dipole approximation)

[35]. Furthermore, the operators ĉ†α create the α’s energy

eigenstate of the initial Hamiltonian ĤSð0Þ. These energy

eigenstates will serve as a natural basis set for our following

considerations. Naturally, the (local) density of states

associated with the eigenstates of this Hamiltonian defines

how efficient the coupling between the system and the

blackbody radiation is [7,16].

As we are interested only in the system dynamics,

we will examine the dynamics of the expectation

value of the one-particle density operator fαβ ¼ hĉ†αĉβi,

easily derived from the equationofmotion for ĉ†αĉβ, i∂tfαβ ¼

h½ĤSðtÞ; ĉ
†
αĉβ�iþ

P

γ;k½gβ;γ;kðhb̂kĉ
†
αĉγiþ hb̂†kĉ

†
αĉγiÞ− gγ;α;k

ðhb̂kĉ
†
γ ĉβiþ hb̂†kĉ

†
γ ĉβiÞ�,where we included the spin index s

in the components of k. Its solution requires the knowledge

of the dynamics of b̂kĉ
†
αĉβ,

i∂tb̂kĉ
†
αĉβ ¼ ½ĤS; b̂kĉ

†
αĉβ� þ ωkb̂kĉ

†
αĉβ

þ
X

γ;δ;l

gγδ;l½ĉ
†
αĉβĉ

†
γ ĉδδk;l

þ fb̂kðb̂l þ b̂†l Þ − δk;lgðĉ
†
αĉδδγβ − ĉ†γ ĉβδδαÞ�:

ð2Þ

A similar equation holds for b̂†kĉ
†
αĉβ. These equations of

motion are not in a closed form, and any attempt to solve

them by investigating the dynamics of the operators

appearing on the right-hand side leads to an infinite

hierarchy of equations. For this reason, we decouple the

dynamics of the system and the field; i.e., we assume

that hb̂kb̂
†

l ĉ
†
αĉβi ≈ hb̂kb̂

†

l ihĉ
†
αĉβi. With this approximation,

Eq. (2) is solved with a standard integration technique.

Furthermore, by using that the initial-state correlation

vanishes, hb̂†kĉ
†
αĉβið0Þ ¼ hb̂kĉ

†
αĉβið0Þ ¼ 0, and that the

environment is in thermal equilibrium, nðωk; TEÞ ¼
P

lhb̂kðb̂l þ b̂†l Þ − δk;li, where nðω; TÞ is the Planck’s

distribution at energy ω and temperature T, we arrive at

a non-Markovian master equation,

i∂tfαβ ¼ h½f̂; ĤS�iαβ þ i
X

k;l

Z

t

t0

dτCk;lðτ; tÞh½Ûðτ; tÞf̂ðτÞV̂lÛ
†ðτ; tÞV̂k − Ûðτ; tÞV̂lf̂ðτÞÛ

†ðτ; tÞV̂k

− V̂kÛðτ; tÞf̂ðτÞV̂lÛ
†ðτ; tÞþV̂kÛðτ; tÞV̂lf̂ðτÞÛ

†ðτ; tÞ�iαβ − 2

Z

t

t0

dτ
X

γ;δ;σ;ζ;k;l

V�
δγ;kV

�
σζ;l sin (ωkðt − τÞ)

× fδβγUδαðτ; tÞhĉ
†
αĉδĉ

†
σ ĉζiðτÞ − δδαUβγðτ; tÞhĉ

†
γ ĉβĉ

†
σ ĉζiðτÞg: ð3Þ
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Here, we have introduced the bath correlation

function Ck;lðτ; tÞ¼ hfb̂kðτÞþ b̂†kðτÞgfb̂lðtÞþ b̂†l ðtÞgi¼

(nðωk;TÞþ1)e−iωkðτ−tÞþnðωk;TÞe
iωkðτ−tÞ, and defined

V�
βα;k ¼ −igαβ;k and Ûðτ; tÞ ¼ T̂þe

−i
R

t

τ
dt0ĤSðt

0Þ
, where T̂þ

is the time-ordering operator. Equation (3) describes a

system under the influence of a classical blackbody

radiation, where the system can dissipate to or gain energy

from the environment. It is known that for the system

described by this master equation, the detailed balance of

the power spectrum of the correlation function

Ck;lðωÞ ¼
R

∞

−∞
exp ( − iωðt − τÞ)Ck;lðt; τÞdt, is the mini-

mum requirement to reach thermal equilibrium with the

free field. One can easily check that the detailed balance

condition is satisfied by our correlation function. Then,

without any external sources, the system evolving accord-

ing to Eq. (3) reaches thermal equilibrium with the free-

field radiation. On the other hand, when external sources or

driving potentials are present, the system does not reach any

thermal equilibrium in general. However, we expect the

system to reach a steady state regime in the long-time limit.

This expectation is rooted in the observation that stimulated

and spontaneous emissions grow when the system is

strongly driven until a balance between the energy absorbed

from the external fields and that emitted is reached.

In the following, we will demonstrate and test the theory

on a model system of fundamental importance, namely, we

will study heat transport induced by the blackbody fields in

a small two-dimensional spinless tight-binding system

sketched in Fig. 1. First of all, we check whether known

results are reproduced. For this, we prove that the system

relaxes in the long-time limit to its thermal equilibrium, and

find that our system also shows a Kramers-turnover–like

behavior [31,36], as expected. The tight-binding sites are

labeled by the numbers 1 to 6, and they are connected via

nearest-neighbor hopping. Here, AL and AR represent the

electromagnetic field from two blackbodies at positions

x ¼ −∞ and x ¼ þ∞ with temperatures TL and TR,

respectively. In addition, the system is embedded in an

environment at temperature TE.

As these blackbodies are far away from the system, their

fields are a superposition of plane waves traveling in

the positive (or negative) x direction, weighted according

to their temperature, AL;Rðr;tÞ¼E0

R

dΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩnðΩ;TL;RÞ
p

sin(Ωt�kxþϕðΩÞ), where E0 ¼ E0ey, and E0 is the

strength of the corresponding electric field, ey is the unit

vector in the y direction, and ϕðΩÞ ∈ ½0; 2π� are uncorre-

lated random phase factors. Here, one might use more

realistic, and also complicated, models for the correlation

of thermal radiation [37,38]. This thermal radiation enters

through the Peierls transformation of the hopping param-

eter TA
ij ¼ Tij exp ½−i

RRj

Ri
dr · (ALðr; tÞ þARðr; tÞ)�, into

the tight-binding Hamiltonian,

ĤS ¼
X

hi;ji

TA
ijĉ

†
i ĉj: ð4Þ

Here, the operator ĉ†i creates an electron at site iwith position

Ri, and we assume a single electron to be present in

the whole system. The sum hi; ji denotes summation over

nearest neighbors only. The vector potentials AL and AR

couple to the most leftward and rightward sites, respectively,

and will introduce a local temperature gradient in the system.

Note that, in general, the potentials penetrate into the system;

however, for this model system, we assume the external

radiation is rapidly screened. For example, the core electrons

in the tight-binding sites can be responsible for this screening.

The coupling to the environmental degrees of freedom

is described by a master equation. For the coupling of an

electronic system to the electromagnetic field of the

environment, the coupling operator V̂ and bath-correlation

function Cðτ; tÞ can be derived from first principles by

assuming the system to be embedded in a cavity at

temperature TE [22]. The power spectrum, essentially

the Fourier transform of the bath-correlation function, is

given by CenvðωÞ ¼ 4jωj3=c3½nðjωj; TEÞ þ θð−ωÞ� for

FIG. 1 (color online). Sketch of the setup under consideration.

The tight binding sites are labeled by 1 to 6 and are connected on

the left and right side to two blackbody radiations at different

temperature, TL and TR. This system is embedded in an

environment at temperature TE.

FIG. 2 (color online). Relaxation dynamics of the occupation

probabilities of the eigenstates of the Hamiltonian (4). These

results have been obtained by averaging over 4000 realizations of

the stochastic noise. The inset shows the vanishing energy current

through the system when the number of runs of the stochastic

process N increases.
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jωj < ωc, where θðωÞ is the Heaviside step function and ωc

is a cutoff frequency determined by the dimensions of the

system. For jωj > ωc, the power spectrum is set to vanish.

This cutoff is necessitated by the assumption made in the

dipole approximation that the electromagnetic field

is uniform in the region of space occupied by the system.

The corresponding coupling operator, entering the master

equation, is given by V̂ ¼ −

P

i;ju · hWijrjWjiĉ
†
i ĉj, where

jWii is the single-particle state localized at site i. As we

are interested in the steady-state energy current through the

system, we simplify the memory kernel of the non-

Markovian master equation (3) by setting
R

t
0
dτf̂ðτÞ½…� →

R

∞

−∞
dτf̂ðtÞ½…�. This approximation does not change

the long-time limit of the equation of motion and hence is

suitable to study steady-state dynamics [21]. In order to

calculate the energy transport, one has to define, via the

continuityequation, anenergycurrent in the system.With the

local energy-density operator, ĥi ¼
1

2

P

hjiðT
A
ijĉ

†
i ĉj þ H:c:Þ,

one can define the total current in the x direction via

ĵxT ¼ −
_̂
h1 −

_̂
h4 þ

_̂
h3 þ

_̂
h6, where

_̂O ¼ i½ĤS; Ô� þ ∂tÔ. As

a first test of the thermal transport theory, we examine the

relaxation dynamics of the tight-binding system driven by a

left and right blackbody radiation kept at temperature

kBT ¼ 10 a:u:, the same temperature as the environment.

We choose Tij ¼ 0.5 a:u: as an energy-scale for the system,

and for the coupling to the environment, we set γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπc3Þ
p

¼ 0.05. For the energy scale of the blackbody

radiations, we have normalized both left and right radiation

with the time-averaged Poynting vector, hSi, set to 15=ðμ0cÞ.
In Fig. 2, the dynamics of the occupation probabilities of

theeigenstatesoftheHamiltonian(4)intheone-electronsector

is shown for the thermallybalanced system ðTE ¼ TR ¼ TLÞ.
One can see that the system relaxes toward a steady state.

The steady state is characterized by zero energy transport in

the system, which can be seen in the inset of Fig. 2.

To further verify the theory, we show that one finds

the expected turnover behavior as seen in Fig. 3 [31,36].

The turnover can be understood by considering that, for

small energy flux, when increasing the flux, more states are

excited and can contribute to transport. On the other hand,

at large fluxes, some of the states are fully occupied and are

not able to contribute to transport anymore. At intermediate

energy fluxes, a peak of the energy current must be

achieved. In general, this behavior cannot be described

by perturbative theories for thermal transport such as the

Redfield theory [36]. We have set the temperature gradient

to ΔT ¼ ðTL − TRÞ=2. In Fig. 4, the energy current is

plotted vs the introduced thermal gradient ΔT from the

black bodies. A linear dependence on the thermal gradient

can be found for ΔT ≪ T (see inset). At large ΔT, a

maximum in the energy current is reached. This means that

the system can sustain up to a maximum energy flow for

given external boundary conditions. Also, the position of

the maximum of the energy current shifts to the right by

increasing the temperature of the environment. This might

be relevant for technological applications since the maxi-

mum efficiency can tuned according to the working

conditions.

In conclusion, we have presented a theoretical frame-

work to investigate thermal and energy transport, where the

thermal imbalance in the system is introduced by two

classical blackbody radiations. Our theory also includes a

dissipative environment, where the system can gain energy

from or dissipate to, in order to mimic the quantum nature

of the photons. Due to the latter, we include the funda-

mental concept of thermal relaxation of the system, which

is not included in other thermal transport theories. The

theory can also be used in different setups; e.g., we can

consider one blackbody only, to adapt to different experi-

ments. Finally, as our formalism relies on the knowledge of

the external vector potential, we can foresee that its

combination with the powerful techniques of TDCDFT

will provide an ab initio tool to study thermal transport in

many-body systems, and possibly pave the way to define a

FIG. 3. Dependence of the steady-state energy current on the

coupling strength hSi for kBTE ¼ 10 and N ¼ 4000. A turnover

in the energy current can be observed.

FIG. 4. Energy current in the tight-binding system of Fig. 1 vs

temperature gradient introduced by the blackbody radiations

around the environmental temperature TE. For this plot, we have

used hSi ¼ 15=μ0c close to the maximum current of Fig. 3, and

N ¼ 4000.
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local temperature. In addition, by utilizing a recent develop-

ment in combining time-dependent density functional

theory and quantum electrodynamics [39], we can go

beyond the mean-field description of the environment.

Moreover, within the same formalism, we can investigate

phonon thermal transport, thereby combined with the

TDCDFT, our model provides a unified way to investigate

ab initio electrical and thermal transport beyond linear

response. Nonlinear regimes are important since in seeking

for, e.g., the maximum efficiency of a thermoelectric

energy converter, we might need to go beyond the standard

linear response [40]. Since our formalism is fully dynamic,

we have direct access to transient regimes, to how the

steady state is approached, and to whether or not this steady

state is unique or depends on the history of the system [41].
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