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We present a theory for the recombination of (charged) holons and doublons in one-dimensional organic

Mott insulators, which is responsible for the decay of the photoexcited state. Due to the charge-spin separation,

the dominant mechanism for recombination at low density of charges involves a multiphonon emission. We

show that a reasonable coupling to phonons is sufficient to explain the fast recombination observed by pump-

probe experiments in ET-F2TCNQ, whereby we can also account for the measured pressure dependence of the

recombination rate.
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Introduction. Femtosecond pump-probe spectroscopy is a

powerful probe for the charge relaxation and thermalization

phenomena in complex materials. These measurements can

directly address and unveil the role of strong electron correla-

tions, as well as the coupling to phonon degrees of freedom.

Materials that behave as Mott insulators due to strong electron

Coulomb repulsion contain all the latter physics, and are

therefore of high theoretical and experimental interest. It has

been observed that photoinduced charges decay within the

picosecond range, i.e., well within the experimental resolution,

but on the other hand orders of magnitude faster than in clean

semiconductors with similar energy gaps.

So far two classes of Mott insulators, investigated by pump-

probe spectroscopy, revealed similar behavior. These are the

layered undoped cuprates La2CuO4 and Nd2CuO4 [1–3], and

the quasi-one-dimensional (1D) organic Mott insulators of the

tetracyanoquinodimethane (TCNQ) family [4], in particular,

ET-F2TCNQ [4–7], which will be the focus of our study. Both

undoped cuprates and ET-F2TCNQ reveal ultrafast picosecond

charge recombination with some similarities: (a) The charged

carriers created by the pump pulse above the Mott-Hubbard

(MH) gap are holons and doublons, and their recombination

requires the distribution of a large energy quantum (the MH

gap � ∼ 1 eV) into several final excitations with smaller

energy ǫ0. At low density of charges candidates for recipient

bosons can be spin or phonon excitations. (b) The decay is

exponential in time. This excludes bi- and higher-molecular

processes involving inelastic collision of several “free” charge

carriers, and implicitly reveals the existence of an intermediate

bound state of a holon and a doublon (the MH exciton).

In this respect a different observation has been obtained

on Ca2CuO3 from the 1D cuprate family, which is known

to have negligible excitonic effects [8] and thus shows a

nonexponential decay [9].

From a theoretical viewpoint the challenge of under-

standing the charge recombination has analogies with the

decay of the double occupancy in ultracold bosons [10] and

fermions [11,12] in optical lattices, where the decay rate

Ŵ exhibits an exponential dependence on the ratio of the

Coulomb repulsion U and the typical excitation’s energy

scale ǫ0. In the latter case the system can be described by

a high-temperature state with a sufficient density of excited

charges, so that the creation of particle-hole pairs in the

compressible background [12] is the dominant decay channel,

and ǫ0 is set by the kinetic energy of recipient excitations, as

observed also within dynamical mean-field theory [13]. On the

other hand, in real materials the final effective temperature is

low, T ≪ U . For the case of two-dimensional (2D) undoped

cuprates, which are antiferromagnets at low T , a theory has

been presented [14,15] where the fast charge recombination

is explained via emission of spin excitations with the spin

exchange energy, ǫ0 ∼ J , as the relevant excitation scale.

Strong correlations and large J at the same time lead to

a nontrivial origin of the s-type bound state of holon and

doublon [16], i.e., the MH exciton, being the intermediate

state essential for the exponential decay.

In spite of similarities with 2D Mott insulators, in quasi-

1D Mott insulators the scenario involving spin excitations

cannot be effective either for the MH exciton formation

or for the multiboson emission due to the phenomenon

of charge-spin separation. In the following we will show

that a multiphonon emission can be a viable recombination

mechanism in 1D organic Mott insulators, somewhat specific

to organic materials with energetic intramolecular vibrations

and strong electron-phonon coupling [17,18]. The mechanism

bears similarity with recently proposed multiphonon exciton

decay in semiconducting carbon nanotubes [19], while in

standard semiconductors such a scenario seems to be ineffi-

cient [20]. The prerequisite is again the existence of the 1D MH

exciton [21], which can be stable in the case of longer range

Coulomb repulsion. Since the photoexcited exciton is of the

odd symmetry we will show that its decay becomes allowed

only due to the electron-phonon coupling. Finally we show

that our scenario can explain the pressure dependence of the

recombination rate established recently for ET-F2TCNQ [7].

The problem is tackled as follows. Treating the recom-

bination as a perturbation, we first neglect it and compute

the exciton, i.e., the lowest bound state in the sector with

one doublon and one holon. We then use Fermi’s golden

rule in order to compute the decay of the exciton |�1〉
into the manifold of states |�m

0 〉 that consists of the charge

ground state with additional phonon excitations, which in the
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process of recombination receive the energy of the exciton.

In principle, virtual hoppings give rise to the spin exchange

J = 4t2/U ; however, we shall neglect it in our calculation.

Such approximation is justified by the charge-spin separation

specific for 1D, which makes the scattering of charges on spins

ineffective (since the hopping of holons and doublons only

shifts the spin background), and by the hierarchy of energy

scales J ≪ ω0,t,U,V for typical organic materials, where ω0

is the relevant phonon frequency, t hopping, and U,V the

dominant interaction parameters.

If the Mott gap � is of the order of several phonon fre-

quencies ω0, � ≈ nω0, the n-phonon contribution determines

the matrix element in the Fermi’s golden rule expression. The

electron-phonon problem is controlled by two dimensionless

parameters: the coupling strength ξ = λ2/ω2
0 (where λ is the

typical electron-phonon coupling) and the adiabaticity t/ω0.

In the most general case, computing the exciton in the presence

of electron-phonon interaction is not possible analytically. To

generate the admixture of n ≫ 1 phonons to the exciton,

the coupling strength ξ must be treated to higher orders.

On the other hand, at least the limit t/ω0 ≪ 1 is a valid

starting point for molecular vibrations in organic crystals. In

this case it is convenient to rewrite the Hamiltonian using a

unitary Lang-Firsov transformation eS , which measures the

phonon coordinate with respect to the equilibrium position

for a given charge configuration. If the transformed exciton

state |�̃1〉 is expanded in phonon number states, |�̃1〉 ≡
|�̃(0)

1 〉 + |�̃(1)
1 〉 + |�̃(2)

1 〉 + · · · , the zero-phonon state |�̃(0)
1 〉

is already the leading contribution in t/ω0 so that additional

phonon dressing can be neglected. Using this approximation

we will derive a compact expression for the recombination rate

Ŵ:

Ŵ = 4t̃2

(

1

2
−

2t̃2

Ṽ 2

)

√

2π

�ω0

× exp

[

−
�

ω0

ln

(

�

2eξω0

)][

1 −
(

1

2

)�/ω0
]

, (1)

which can easily be compared with the experiments, taking

the hopping t̃ and the nearest-neighbor interaction Ṽ from

independent measurements.

The model. As a model for the charge recombination in

organic Mott insulators we consider the 1D extended Hubbard

model, where in addition to the local Hubbard repulsion U

and the nearest-neighbor electron hopping, a nearest-neighbor

Coulomb repulsion V > 0 is included. The latter is essential to

stabilize the exciton state in 1D [21]. The Hamiltonian is split

in the hopping Ht of doublons and holons, the recombination

term Hrc, and the interaction term HU , which are written as

Ht = −t
∑

〈ij〉,s

(d
†
i,sdj,s − h

†
i,shj,s + H.c.), (2)

Hrc = −t
∑

〈ij〉,s

(hi,s̄dj,s + hj,s̄di,s + H.c.), (3)

HU = U
∑

i

nd
i + nh

i

2
+ V

∑

〈ij〉

n̄i n̄j , (4)

with holon and doublon creation operators h
†
i,s = ci,s(1 −

ni,s̄), d
†
i,s = c

†
i,s̄ni,s , holon and doublon density operators nh

i =
1
2

∑

s h
†
i,shi,s, nd

i = 1
2

∑

s d
†
i,sdi,s , and n̄i = nd

i − nh
i . Here 〈ij 〉

denotes nearest-neighbor pairs and s̄ the spin opposite to s. In

addition, a generally nonlocal coupling between the charge

density and dispersive phonons is introduced:

Hep =
∑

j,q

λqe
−iqj (a†

q + a−q)n̄j , Hph =
∑

q

ωqa
†
qaq . (5)

We use � = a0 = 1, a0 being the intersite distance.

Lang-Firsov transformation. The derivation of the standard

Lang-Firsov transformation for the present case follows

Ref. [15] and is presented in the Supplemental Material [22].

The exact transformed Hamiltonian is given by

H̃0 = −t̃
∑

〈ij〉,s

(d
†
isdjse

A
†
ji eAij − h

†
ishjse

A
†
ij eAji + H.c.)

+ Ũ
∑

j

nd
j + nh

j

2
+ Ṽ

∑

〈ij〉

n̄i n̄j +
∑

q

ωqa
†
qaq, (6)

H̃rc = −t̃
∑

〈ij〉,s

(hisdj s̄e
A

†
ji eAij + hjsdis̄e

A
†
ij eAji + H.c.), (7)

where A
†
jj ′ =

∑

q(λq/ωq)(e−iqj ′ − e−iqj )a
†
q is a phonon cre-

ation term, and Ũ , Ṽ , and t̃ are renormalized interaction and

hopping parameters. As shown in the Supplemental Material,

corrections to the bare U,V,t are given by Ũ = U − ǫ̃0 and

Ṽ = V − ǫ̃1 with ǫ̃i−j = 2
∑

q(|λq |2/ωq) cos[q(i − j )], while

longer range interaction shall be neglected. Bare hopping t is

rescaled as t̃ = te−ξ1 , ξ1 =
∑

q(|λq |2/ω2
q)[1 − cos(q)].

Below we will express all results in terms of the renor-

malized parameters Ũ , Ṽ , and t̃ , which are determined

experimentally by a fit to the linear absorption spectrum and

for materials considered satisfy the condition Ũ ≫ t̃ .

Exciton ground state. We now construct the ground state for

the Hamiltonian H̃0. To neglect additional phonon dressing,

as explained above valid for t̃/ω0 ≪ 1, H̃0 is projected to

the phonon vacuum, H̃
(0)
0 ≡ |0ph〉〈0ph|H̃0|0ph〉〈0ph|. We first

construct a basis of all holon-doublon states with an arbitrary

spin configuration of the remaining sites, analogous to the

squeezed spin state [23]. For a given spin configuration σ =
{σ1, . . . ,σL−2} (with σj =↑ , ↓), we define |σm,j 〉 as the state

obtained by distributing the spins σ on lattice sites {1,...,L} \
{m,j}. For m < j

|σm,j 〉 = c
†
1,σ1

· · · c†m−1,σm−1
× c

†
m+1,σm

· · · c†j−1,σj−2

× c
†
j+1,σj−1

· · · c†L,σL−2
|0〉, (8)

and for j < m analogous. We then define the holon-doublon

state |σm
j 〉 by placing a doublon at site j ,

∣

∣σm
j

〉

=
{

c
†
j,↑c

†
j,↓|σm,j 〉 if m �= j,

0 if m = j .
(9)

These are used to define the state with a holon-doublon pair

|�m
j 〉 and the state with two holons |�m,j 〉 on an arbitrary

spin background which is a superposition or mixture of
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configurations σ ,

∣

∣�m
j

〉

≡
∑

σ

�σ

∣

∣σm
j

〉

, |�m,j 〉 ≡
∑

σ

�σ |σm,j 〉. (10)

One can see that the Hamiltonian H̃
(0)
0 does not mix different

configurations σ , because nearest-neighbor hopping of a holon

or doublon implies a shift of the spin background, which is

implicit in the definition (9) for |σ i
j 〉 → |σ i±1

j 〉 or |σ i
j 〉 →

|σ i
j±1〉. The action of the Hamiltonian is thus obtained by

(

H̃
(0)
0 − Ũ + δ|i−j |,1Ṽ

)∣

∣�i
j

〉

= −t̃
∑

α=±1

(∣

∣�i+α
j

〉

−
∣

∣�i
j+α

〉)

.

(11)

To determine the ground state we start from a partial Fourier

transform with respect to the average position,

∣

∣ψ l
q

〉

=
1

√
L

∑

j

eiqj+iq(l/2)
∣

∣�
j

j+l

〉

. (12)

With this the action of the Hamiltonian becomes
(

H̃
(0)
0 − Ũ + δ|l|,1Ṽ

)∣

∣ψ l
q

〉

= −2it̃q
∑

α=±1

α
∣

∣ψ l+α
q

〉

, (13)

where t̃q = t̃ sin(q/2). There is a continuum of states in the

energy window E ∈ [Ũ − 4t̃q,Ũ + 4t̃q]. For H̃
(0)
0 , parity-even

and odd bound states are degenerate. We can restrict the

analysis to the odd states, which can be created by the optical

dipolar transition, and thus make the ansatz

∣

∣�̃
(0)
1

〉

=
∑

l>0

βl

(∣

∣ψ l
q

〉

−
∣

∣ψ−l
q

〉)

|0ph〉, βl = β0e
−κ1l . (14)

The ground state is found for q = π with βl = β0(2t̃/Ṽ )l and

E1 = Ũ − Ṽ − 4t̃2/Ṽ , which lies below the continuum for

Ṽ > 2t̃ . Without the electron magnon coupling, the exciton is

decoupled from the spin background, i.e., excitons for different

spin wave functions are degenerate.

Exciton decay. Similarly to the problem of exciton decay in

2D [14,15], we establish the recombination rate using Fermi’s

golden rule

Ŵ = 2π
∑

m

∣

∣

〈

�m
0

∣

∣H̃rc

∣

∣�̃
(0)
1

〉∣

∣

2
δ
(

Em
0 − E1

)

, (15)

for transitions from previously determined exciton |�̃(0)
1 〉,

Eq. (14), into the charge ground state with additional phonon

excitations |�m
0 〉 via the recombination operator H̃rc, Eq. (7).

If written in an integral form [15], Eq. (15) becomes

Ŵ = 2 Re
〈

�̃
(0)
1

∣

∣H̃rcP0

∫ ∞

0

dτ ei(�−Hph)τP0H̃rc

∣

∣�̃
(0)
1

〉

, (16)

where � is the charge gap, P0 is the projection to the zero

charge sector, and Hph is the only part of H̃0 which is active

in the zero charge sector.

We first evaluate the application of H̃rc on the exciton.

Starting from the expression |�̃(0)
1 〉, Eq. (14), we can restrict

the application of H̃rc to nearest-neighbor terms l = 1,

P0H̃rc

∣

∣�
j

j+1

〉

|0ph〉 = −t̃ Sj |�j,j+1〉eA
†
j+1,j |0ph〉, (17)

where Sj = c
†
j↑c

†
j+1↓ − c

†
j↓c

†
j+1↑ creates a spin singlet on sites

j,j + 1, previously occupied by a holon-doublon pair. Similar,

P0H̃rc|�j+1

j 〉|0ph〉 = −t̃ Sj |�j,j+1〉 eA
†
j,j+1 |0ph〉. In summary,

P0H̃rc

∣

∣�̃
(0)
1

〉

= −t̃
β1√
L

∑

j

i(−1)jSj |�j,j+1〉

×(eA
†
j+1,j − eA

†
j,j+1 )|0ph〉. (18)

When this is inserted into Eq. (16), recombination rate is

expressed as

Ŵ = t̃2β2
1

∑

d

gd Ŵ
ph

d (�), (19)

with a spin structure factor

gd = (−1)d
1

L

∑

j

〈�j,j+1|S†
jSj+d |�j+d,j+d+1〉, (20)

and a phonon emission factor

Ŵ
ph

j−j ′ (�) = 2 Re

∫ ∞

0

dτ ei�τ 〈0ph|(eAj ′+1,j ′ − eAj ′ ,j ′+1 )

×e−iHphτ (eA
†
j+1,j − eA

†
j,j+1 )|0ph〉. (21)

Spin structure factor. From Eqs. (20) and (8) one can

see that g0 = 2 and g1 = g−1 = 1 for an arbitrary spin

configuration. For d � 2, Eq. (8) implies that for any spin

configuration σ , (−1)d〈σ j,j+1|S†
jSj+d |σ j+d,j+d+1〉 equals 1 if

the spins (σj , . . . ,σj+d−1) form an antiferromagnetic sequence

(↑ , ↓ , ↑ , ↓ , . . .) or (↓ , ↑ , ↓ , ↑ , . . .), and 0 else. We thus

have gd �=0 = 1 for a perfect Néel antiferromagnet, and gd = 0

for |d| � 2 for a spin-polarized background. For a general

finite temperature state we expect an exponential decay of the

correlations with distance.

Boson emission factor. The matrix element in the boson

factor (21) can be evaluated straightforwardly, which is done

in the Supplemental Material [22]. We obtain

Ŵ
ph

d (�) = 8 Re

∫ ∞

0

dτ ei�τ

× sinh

(

2
∑

q

|λq |2

ω2
q

cos(dq)(1 − cos q)e−iωqτ

)

.

(22)

The argument of the sinh may be written in a convenient

way as an integral 2
∫

dω e−iωτfd (ω), with the boson coupling

function

fd (ω) =
∑

q

|λq |2

ω2
q

cos(dq)(1 − cos q)δ(ω − ωq). (23)

The zeroth and first moment ηd =
∫

dωfd (ω), �dηd =
∫

dω ωfd (ω) of these functions are related to the phonon-

mediated long-range interaction parameters ǫ̃d via 2�dηd =
(ǫ̃d − 1

2
ǫ̃d−1 − 1

2
ǫ̃d+1). The time integration in Eq. (22) can

be performed numerically for any kind of dispersions λq,ωq ;

however, for a fixed function fd and �/ωq → ∞, one can

use an argument related to the central limit theorem to show

that in the lowest order the result depends only on the zeroth
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10−10
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∆/ω0


Γ

dp
h 

d=0

d=1
d=2

d=3

FIG. 1. (Color online) Comparison of boson emission factors

Ŵ
ph

d for different d , obtained by numerical integration of Eq. (22)

for dispersions ωq = ω0 + δω cos(q), λq = λ/
√

L (dashed lines) and

from Eq. (24) (solid lines). Parameters ω0 = 1, δω = 0.1ω0, ξ = 0.3

are used.

moment ηd , as presented in the Supplemental Material [22].

The integral (22) can then be approximated with

Ŵ
ph

d (�) = 2
|ηd |
ηd

√

2π

�ω0

(

�

2e|ηd |ω0

)−�/ω0

, (24)

where ω0 is the typical phonon frequency. Expression (24) is

obtained also by the saddle-point approximation for a Gaussian

fd (ω) with the same zeroth moment ηd [15].

Typically, phonons are weakly dispersive and electron

phonon interactions not long ranged, so that |ǫ̃0| ≫ |ǫ̃1| ≫
|ǫ̃2| . . .. Then it suffices to take into account only the |d| � 1

contributions, as demonstrated in Fig. 1 for dispersions λq =
λ/

√
L,ωq = ω0 + δω cos(q), showing results of numerical

integration of Eq. (22) (dashed lines). To boost the con-

vergence an additional smoothening e−iωqτ → e−iωqτ e−η2τ 2/2

with η = 0.2ω0 has been used in Eq. (22), which can

physically correspond to higher dimensionality of phonons

or a distribution of several vibrational modes. The final

expression for the recombination rate, Eq. (1), which is relevant

for the comparison with experiments, is thus obtained by

restricting Eq. (19) to the |d| = 0,1 contributions with spin

structure factor g0 = 2, g±1 = 1, and using approximations

�0 ≈ �1 ≈ ω0, 2ω0η0 ≈ ǫ̃0, 2ω0η1 ≈ −ǫ̃0/2 in Eq. (24)

with ǫ̃0 ≈ 2ω0ξ expressed via coupling strength ξ = λ2/ω2
0.

Dependence Ŵ
ph

d (�), Eq. (24), with ηd approximated as above

is for relevant terms d = 0,1 shown in Fig. 1 (solid lines),

displaying agreement with numerical integration. Note that

a nonzero δω is necessary for smooth variation of Ŵ
ph

d (�)

(otherwise recombination is possible only for discrete energies

� = nω0), but after taking the asymptotic limit �/ω0 ≫ 1,

corrections in δω/ω0 to the analytical expression Eq. (24)

are small at least for the dominant |d| = 0,1, so that the

latter expression is applicable for sufficient but not too large

dispersion amplitudes. The prefactor (1/2 − 2t̃2/Ṽ 2) in Eq. (1)

comes from β2
1 .

Comparison with experiment. Finally we compare the

recombination times τr = Ŵ−1 obtained from Eq. (1) with

experimentally measured ones [7]. All quantities but the

strength of charge-phonon coupling ξ are set by the experi-

mental data: ω0 = 0.23 eV [24], Ũ = 0.845 eV, while t̃ ,Ṽ are

ξ=0.25

ξ=0.27

ξ=0.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

p [GPa]

τ r
[p

s]

FIG. 2. (Color online) Recombination time τr as a function of

pressure p calculated from the Eq. (1) using the experimen-

tal parameters [7,24]: ω0 = 0.23 eV, U = 0.845 eV, and t̃(p) ∈
[0,04,0.06] eV, Ṽ (p) ∈ [0.12,0.16] eV for coupling strengths ξ =
0.25,0.27,0.3.

specified functions of pressure p, p ∈ [0,1] GPa, with linear

dependence within intervals t̃(p) ∈ [0,04,0.06] eV, Ṽ (p) ∈
[0.12,0.16] eV [7], and � ≈ Ũ − Ṽ − 4t̃2/Ṽ .

Figure 2 displays τr as a function of pressure p for three

different values ξ = 0.25,0.27,0.30, showing that ξ ≈ 0.27

is consistent with the experimentally measured recombination

times [7], yielding the electron-phonon coupling λ = ω0

√
ξ =

0.12 eV. The latter has been measured and calculated for a

similar organic material, finding λ ∈ [0.05 eV,0.1 eV] [17],

confirming that the electron-phonon coupling needed to

reproduce the experimental results is indeed realistic.

Conclusions and discussion. The central result of our

study is that the fast charge recombination observed recently

in quasi-1D organic Mott insulators [7] can be explained

via creation of phonon excitations, which can be for the

material considered (ET-F2TCNQ) identified as molecular

vibrations. Due to the charge-spin separation in 1D systems

and hierarchy of energies J < ω0 in materials addressed,

spin excitations are in contrast to 2D systems an inefficient

decay channel and were neglected in our analysis by setting

J → 0. Motivated by the experimentally observed exponential

decay of charge density we derive the recombination rate

based on the assumption that a holon and a doublon initially

form a bound state—exciton, which is odd under the par-

ity transformation (therefore optically accessible). Still, the

transition into the charge ground state with even parity is

allowed due to the coupling to phonons. We established the

charge recombination rate using Fermi’s golden rule, showing

approximately exponential suppression with the number of

phonons emitted in the process; an observation common to

several doublon decay processes with different recipients of

doublon energy [11–15,25].

To understand the pressure dependence of the decay

rate, not only the modulation of gap �(p) but also the

prefactor in Eq. (1) coming from the exciton wave function

should be considered. By applying the pressure the exciton

is delocalized, leading to a reduction of decay rate, as

recognized in Ref. [7]. While the latter reference proposed

a phenomenological treatment of the decay in terms of a

spin-boson model, our aim is to establish the microscopic

origin of the decay mechanism, based on a more realistic
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spectral function describing coupling to vibrations that have

indeed been observed in this material [24].

The experimentally established frequency of the relevant

vibrations [24] is much larger than that of typical lattice

phonons, making the recombination mechanism somewhat

specific for organic insulators. To explain recent experiments

on 1D cuprates (Ca2CuO3) [9] with smaller typical phonon

frequencies and negligible excitonic effect some modification

of the mechanism might be needed and remains as a future

challenge. One should note that to assist a proper dissipation

of energy in the case considered the vibrations must be at least

partially dispersive or coupled to other modes. Even though

our derivation focuses on 1D phonons, it is straightforward

to generalize it to more realistic three-dimensional electron-

phonon coupling. Recognizing the role of the electron-

phonon coupling in the recombination mechanism, we see

the recombination measurements as an indirect way to es-

tablish its typically elusive strength at least for this class of

materials.
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